1
|
Mahenge HH, Muyaga LL, Nkya JD, Kafwenji AD, Mwalugelo YA, Kahamba NF, Ngowo HS, Kaindoa EW. Semi-field evaluation of aquatic predators for the control of Anopheles funestus in rural south-eastern Tanzania. Malar J 2024; 23:228. [PMID: 39090658 PMCID: PMC11295350 DOI: 10.1186/s12936-024-05055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Biological control is a promising alternative or complementary approach for controlling vector populations in response to the spread of insecticide resistance in malaria vectors. This study evaluated the efficacy of three selected potential predators on the density and fitness parameters of Anopheles funestus larvae in rural Tanzania. METHODS Common predator families Aeshnidae (dragonflies), Coenagrionidae (damselflies), and Notonectidae (backswimmers) and An. funestus group larvae were collected from natural aquatic habitats in rural south-eastern Tanzania. Predators were starved for 12-h while An. funestus larvae were given fish food before starting the experiment. Anopheles funestus larvae were placed into artificial habitats containing predators, exposing them to potential predation. The number of surviving An. funestus larvae were counted every 24-h. An emergence traps were placed at the top of artificial habitats to capture emerging mosquitoes. Emerged mosquitoes were monitored until they died. Female wings were measured and used as a proxy for body size. Generalized linear mixed models (GLMM) with binomial variates at 95% CI and Cox proportional hazard models were used to assess the proportion of dead mosquitoes and the daily survival determined. RESULTS There were significant differences in the number of emerged mosquitoes between the treatment and control groups (P < 0.001). Thus, all predator species played a significant role in reducing the density of An. funestus mosquitoes (P < 0.001). Furthermore, these predators had notable effects on the fitness parameters and survival of emerged mosquitoes (P < 0.001). Among the three predators studied, Coenagrionidae (damselflies) were most efficient followed by Notonectidae (backswimmers), with Aeshnidae (dragonflies) being the least efficient. CONCLUSION Selected aquatic predators have the potential to reduce the survival and density of An. funestus larvae. They might eventually be included within an integrated malaria vector control strategy, ultimately leading to a reduction in malaria transmission.
Collapse
Affiliation(s)
- Herieth H Mahenge
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, Tengeru, Arusha, United Republic of Tanzania.
| | - Letus L Muyaga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Joel D Nkya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Andrew D Kafwenji
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Yohana A Mwalugelo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O Box 210-40601, Bondo, Kenya
| | - Najat F Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, Tengeru, Arusha, United Republic of Tanzania
- Faculty of Health Sciences, School of Pathology, The Centre for Emerging Zoonotic and Parasitic Diseases, Wits Research Institute for Malaria, National Institute for Communicable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Rahong P, Techakijvej C, Phalaraksh C. Predators as biocontrol agents of mosquito larvae in small and large habitats in Chiang Mai, Thailand. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 48:78-88. [PMID: 37843450 DOI: 10.52707/1081-1710-48.2.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 10/17/2023]
Abstract
Controlling mosquito-borne disease is a major global challenge due to the rise of insecticide-resistant mosquitoes. In response, we conducted a study in Chiang Mai Province, Thailand, which is one of the largest and the most popular cities for tourists in Southeast Asia, to explore the potential of local species as biological control agents for mosquito larvae. Mosquito larvae and aquatic predators were sampled from large and small habitats, while relevant physico-chemical parameters were measured. The study identified 560 predators and 1,572 mosquitoes, with most mosquito species belonging to the genus Culex. Additionally, the study identified 16 predator taxa, including four fish taxa and 12 taxa of predatory aquatic insects belonging to four orders: Coleoptera, Hemiptera, Odonata, and Diptera. The study found that several locally occurring predator species, namely Poecillia, Laccophilus, Lutzia, Toxorhynchites splendens, Agrionoptera, and Pseudarion, shared habitats with mosquitoes, indicating their potential as effective biological control agents for mosquito control. Conductivity, dissolved oxygen, and pH were the important physico-chemical parameters that affect both predators and mosquito larvae. Consequently, promoting native predators and reducing mosquito larvae through habitat management would be a sustainable and ecologically friendly approach in large habitats where it is not possible to remove mosquito oviposition sites. In smaller habitats, releasing local aquatic predators and removing oviposition sites may be a suitable strategy.
Collapse
Affiliation(s)
- Panida Rahong
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chotiwut Techakijvej
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chitchol Phalaraksh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand,
| |
Collapse
|
3
|
Mahenge HH, Muyaga LL, Nkya JD, Kifungo KS, Kahamba NF, Ngowo HS, Kaindoa EW. Common predators and factors influencing their abundance in Anopheles funestus aquatic habitats in rural south-eastern Tanzania. PLoS One 2023; 18:e0287655. [PMID: 37363899 DOI: 10.1371/journal.pone.0287655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The role of larval predators in regulating the Anopheles funestus population in various malaria-endemic countries remains relatively unknown. This study aimed to investigate the common predators that co-exist with Anopheles funestus group larvae and evaluate factors that influence their abundance in rural south-eastern Tanzania. METHODS Mosquito larvae and predators were sampled concurrently using standard dipper (350 ml) or 10 L bucket in previously identified aquatic habitats in selected villages in southern Tanzania. Predators and mosquito larvae were identified using standard identification keys. All positive habitats were geo-located and their physical features characterized. Water physicochemical parameters such as dissolved oxygen (DO), pH, electrical conductivity (EC), total dissolved solids (TDS) and temperature were also recorded. RESULTS A total of 85 previously identified An. funestus aquatic habitats in nine villages were sampled for larvae and potential predators. A total of 8,295 predators were sampled. Of these Coenagrionidae 57.7% (n = 4785), Corixidae 12.8% (n = 1,060), Notonectidae 9.9% (n = 822), Aeshnidae 4.9% (n = 405), Amphibian 4.5% (n = 370), Dytiscidae 3.8% (n = 313) were common. A total of 5,260 mosquito larvae were sampled, whereby Anopheles funestus group were 60.3% (n = 3,170), Culex spp. 24.3% (n = 1,279), An. gambie s.l. 8.3% (n = 438) and other anophelines 7.1% (n = 373). Permanent and aquatic habitats larger than 100m2 were positively associated with An. funestus group larvae (P<0.05) and predator abundance (P<0.05). Habitats with submerged vegetation were negatively associated with An. funestus group larvae (P<0.05). Only dissolved oxygen (DO) was positively and significantly affect the abundance of An. funestus group larvae (P<0.05). While predators' abundance was not impacted by all physicochemical parameters. CONCLUSION Six potential predator families were common in aquatic habitats of An. funestus group larvae. Additional studies are needed to demonstrate the efficacy of different predators on larval density and adult fitness traits. Interventions leveraging the interaction between mosquitoes and predators can be established to disrupt the transmission potential and survival of the An. funestus mosquitoes.
Collapse
Affiliation(s)
- Herieth H Mahenge
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and Bio Engineering, Tengeru, Arusha, United Republic of Tanzania
| | - Letus L Muyaga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Joel D Nkya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Khamis S Kifungo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Najat F Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodervisty, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodervisty, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and Bio Engineering, Tengeru, Arusha, United Republic of Tanzania
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
4
|
Wong ML, Zulzahrin Z, Vythilingam I, Lau YL, Sam IC, Fong MY, Lee WC. Perspectives of vector management in the control and elimination of vector-borne zoonoses. Front Microbiol 2023; 14:1135977. [PMID: 37025644 PMCID: PMC10070879 DOI: 10.3389/fmicb.2023.1135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The complex transmission profiles of vector-borne zoonoses (VZB) and vector-borne infections with animal reservoirs (VBIAR) complicate efforts to break the transmission circuit of these infections. To control and eliminate VZB and VBIAR, insecticide application may not be conducted easily in all circumstances, particularly for infections with sylvatic transmission cycle. As a result, alternative approaches have been considered in the vector management against these infections. In this review, we highlighted differences among the environmental, chemical, and biological control approaches in vector management, from the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining to the available control approaches were discussed to better understand the prospects of integrating these vector control approaches to synergistically break the transmission of VZB and VBIAR in humans, in line with the integrated vector management (IVM) developed by the World Health Organization (WHO) since 2004.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zulhisham Zulzahrin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
5
|
Eltaly RI, Mohammed SH, Alakeel KA, Salem HH, Abdelfattah A, Ezzat Ahmed A, El-Tahan AM, El-Saadony MT, Saad AM, Abu El-Hassan GM, Farag SM. Phototoxicity of Eosin yellow Lactone and Phloxine B photosensitizers against mosquito larvae and their associated predators in El-Fayoum (Egypt). Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Onen H, Odong R, Chemurot M, Tripet F, Kayondo JK. Predatory and competitive interaction in Anopheles gambiae sensu lato larval breeding habitats in selected villages of central Uganda. Parasit Vectors 2021; 14:420. [PMID: 34419140 PMCID: PMC8380324 DOI: 10.1186/s13071-021-04926-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is often persistent in communities surrounded by mosquito breeding habitats. Anopheles gambiae sensu lato exploit a variety of aquatic habitats, but the biotic determinants of its preferences are poorly understood. This study aimed to identify and quantify macroinvertebrates in different habitat types with determined water physico-chemical parameters to establish those preferred by An. gambiae s.l. larvae as well as their predators and competitors. Methods A field survey was conducted in Kibuye and Kayonjo villages located in the vicinity of the River Sezibwa, north-eastern Uganda to identify Anopheline larval habitats shared by aquatic insects. Habitats were geo-recorded and as streams, ponds, temporary pools and roadside ditches. From October to December 2017, random microhabitats/quadrats were selected from each habitat type, their water physico-chemical parameters (electrical conductivity, total dissolved solids, temperature and pH) were measured, and they were sampled for macroinvertebrates using standard dippers. All collected arthropod macroinvertebrates were then morphologically identified to family level and enumerated. Results Principal component analysis showed that the four larval habitat types were characterized by distinct physico-chemical parameter profiles. Ponds and streams had the highest number and diversity of macroinvertebrate insect taxa and sustained few An. gambiae s.l. larvae. Anopheles gambiae s.l. were more common in roadside ditches and particularly abundant in temporary pools which it commonly shared with Dytiscidae (predaceous diving beetles) and Culex spp. Cluster correlation analysis conducted on the abundance of these taxa within quadrats suggested that An. gambiae s.l. and Dytiscidae have the most similar patterns of microhabitat use, followed by Cybaeidae (water spiders). Whilst Culex spp. co-occurred with An. gambiae s.l. in some habitats, there was only partial niche overlap and no clear evidence of competition between the two mosquito taxa. Conclusions Ponds and streams are habitats that host the largest diversity and abundance of aquatic insect taxa. Anopheles gambiae s.l. larvae distinctively preferred temporary pools and roadside ditches, where they were exposed to few predators and no apparent competition by Culex spp. Further studies should aim to test the impact of Dytiscidae and Cybaeidae on An. gambiae s.l. dynamics experimentally. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04926-9.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, PO Box 7062, Kampala, Uganda. .,Department of Entomology, Uganda Virus Research Institute (UVRI), PO Box 49, Entebbe, Uganda. .,Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, SFD, ST5 5BG, UK.
| | - Robinson Odong
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, PO Box 7062, Kampala, Uganda
| | - Moses Chemurot
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, PO Box 7062, Kampala, Uganda
| | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, SFD, ST5 5BG, UK.
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), PO Box 49, Entebbe, Uganda
| |
Collapse
|
7
|
Williams DD, Williams SS. Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population. INSECTS 2017; 8:insects8030072. [PMID: 28754025 PMCID: PMC5620692 DOI: 10.3390/insects8030072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this?
Collapse
Affiliation(s)
- D Dudley Williams
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Siân S Williams
- The Wildlife Trust, The Manor House, Broad Street, Great Cambourne, Cambridge CB23 6DH, UK.
| |
Collapse
|
8
|
Yasuoka J, Jimba M, Levins R. Application of loop analysis for evaluation of malaria control interventions. Malar J 2014; 13:140. [PMID: 24713031 PMCID: PMC4017832 DOI: 10.1186/1475-2875-13-140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 04/01/2014] [Indexed: 11/10/2022] Open
Abstract
Background Despite continuous efforts and recent rapid expansion in the financing and implementation of malaria control interventions, malaria still remains one of the most devastating global health issues. Even in countries that have been successful in reducing the incidence of malaria, malaria control is becoming more challenging because of the changing epidemiology of malaria and waning community participation in control interventions. In order to improve the effectiveness of interventions and to promote community understanding of the necessity of continued control efforts, there is an urgent need to develop new methodologies that examine the mechanisms by which community-based malaria interventions could reduce local malaria incidence. Methods This study demonstrated how the impact of community-based malaria control interventions on malaria incidence can be examined in complex systems by qualitative analysis combined with an extensive review of literature. First, sign digraphs were developed through loop analysis to analyse seven interventions: source reduction, insecticide/larvicide use, biological control, treatment with anti-malarials, insecticide-treated mosquito net/long-lasting insecticidal net, non-chemical personal protection measures, and educational intervention. Then, for each intervention, the sign digraphs and literature review were combined to analyse a variety of pathways through which the intervention can influence local malaria incidence as well as interactions between variables involved in the system. Through loop analysis it is possible to see whether increases in one variable qualitatively increases or decreases other variables or leaves them unchanged and the net effect of multiple, interacting variables. Results Qualitative analysis, specifically loop analysis, can be a useful tool to examine the impact of community-based malaria control interventions. Without relying on numerical data, the analysis was able to describe pathways through which each intervention could influence malaria incidence on the basis of the qualitative patterns of the interactions between variables in complex systems. This methodology is generalizable to various disease control interventions at different levels, and can be utilized by a variety of stakeholders such as researchers, community leaders and policy makers to better plan and evaluate their community-based disease control interventions.
Collapse
Affiliation(s)
- Junko Yasuoka
- Department of Community and Global Health, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
9
|
Sasakawa K. A novel technique for identifying the instar of field-collected insect larvae. PLoS One 2013; 8:e57836. [PMID: 23469083 PMCID: PMC3585218 DOI: 10.1371/journal.pone.0057836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/26/2013] [Indexed: 11/18/2022] Open
Abstract
Many field studies of insects have focused on the adult stage alone, likely because immature stages are unknown in most insect species. Molecular species identification (e.g., DNA barcoding) has helped ascertain the immature stages of many insects, but larval developmental stages (instars) cannot be identified. The identification of the growth stages of collected individuals is indispensable from both ecological and taxonomic perspectives. Using a larval–adult body size relationship across species, I present a novel technique for identifying the instar of field-collected insect larvae that are identified by molecular species identification technique. This method is based on the assumption that classification functions derived from discriminant analyses, performed with larval instar as a response variable and adult and larval body sizes as explanatory variables, can be used to determine the instar of a given larval specimen that was not included in the original data set, even at the species level. This size relationship has been demonstrated in larval instars for many insects (Dyar’s rule), but no attempt has been made to include the adult stage. Analysis of a test data set derived from the beetle family Carabidae (Coleoptera) showed that classification functions obtained from data sets derived from related species had a correct classification rate of 81–100%. Given that no reliable method has been established to identify the instar of field-collected insect larvae, these values may have sufficient accuracy as an analytical method for field-collected samples. The chief advantage of this technique is that the instar can be identified even when only one specimen is available per species if classification functions are determined for groups to which the focal species belongs. Similar classification functions should be created for other insect groups. By using those functions together with molecular species identification, future studies could include larval stages as well as adults.
Collapse
Affiliation(s)
- Kôji Sasakawa
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Klecka J, Boukal DS. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLoS One 2012; 7:e37741. [PMID: 22679487 PMCID: PMC3367957 DOI: 10.1371/journal.pone.0037741] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/23/2012] [Indexed: 11/26/2022] Open
Abstract
Predatory aquatic insects are a diverse group comprising top predators in small fishless water bodies. Knowledge of their diet composition is fragmentary, which hinders the understanding of mechanisms maintaining their high local diversity and of their impacts on local food web structure and dynamics. We conducted multiple-choice predation experiments using nine common species of predatory aquatic insects, including adult and larval Coleoptera, adult Heteroptera and larval Odonata, and complemented them with literature survey of similar experiments. All predators in our experiments fed selectively on the seven prey species offered, and vulnerability to predation varied strongly between the prey. The predators most often preferred dipteran larvae; previous studies further reported preferences for cladocerans. Diet overlaps between all predator pairs and predator overlaps between all prey pairs were non-zero. Modularity analysis separated all primarily nectonic predator and prey species from two groups of large and small benthic predators and their prey. These results, together with limited evidence from the literature, suggest a highly interconnected food web with several modules, in which similarly sized predators from the same microhabitat are likely to compete strongly for resources in the field (observed Pianka’s diet overlap indices >0.85). Our experiments further imply that ontogenetic diet shifts are common in predatory aquatic insects, although we observed higher diet overlaps than previously reported. Hence, individuals may or may not shift between food web modules during ontogeny.
Collapse
Affiliation(s)
- Jan Klecka
- Department of Ecosystems Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | | |
Collapse
|
11
|
Kweka EJ, Zhou G, Gilbreath TM, Afrane Y, Nyindo M, Githeko AK, Yan G. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands. Parasit Vectors 2011; 4:128. [PMID: 21729269 PMCID: PMC3141748 DOI: 10.1186/1756-3305-4-128] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022] Open
Abstract
Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P < 0.0001) and predator species (P < 0.0001) had a significant impact on the predation rate in the 24 hour evaluations. In semi-field experiments, predator species (P < 0.0001) and habitat type (P < 0.0001) were significant factors in both the daily survival and the overall developmental time of larvae. Pupation rates took significantly longer in habitats with refugia. An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Centre for Global Health Research, Kenya Medical Research Institute, P O Box 1578, Kisumu 40100, Kenya.
| | | | | | | | | | | | | |
Collapse
|
12
|
Vonesh JR, Blaustein L. Predator-Induced Shifts in Mosquito Oviposition Site Selection: A Meta-Analysis and Implications for Vector Control. Isr J Ecol Evol 2010. [DOI: 10.1560/ijee.56.3-4.263] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The global resurgence and emergence of new mosquito-borne diseases and increasing resistance of mosquitoes to chemical pesticides have prompted renewed interest in biocontrol methods that use aquatic predators of mosquito larvae. For disease vectors with complex life cycles, like mosquitoes, in which adults are terrestrial and choose aquatic habitats in which to deposit their offspring, shifts in oviposition site selection may have important consequences for vector population dynamics and epidemiology. While there have been numerous studies of mosquito oviposition site selection, methodology and results vary, making it difficult to evaluate the general importance of predator-induced shifts in oviposition site selection for biocontrol scenarios. Here we use meta-analysis to provide a quantitative framework for examining variation in mosquito oviposition responses to predators. Overall, we find a broad pattern of predator avoidance among mosquito and predator taxa. The primary factor explaining variation in oviposition response appears to be taxonomic and/or life-history related—avoidance is weakest or non-existent inAedesspecies that oviposit eggs above water in container habitats. Responses also varied among predators. Generally, oviposition avoidance was strongest in response to fish and insects, weak or nonexistent in response to notostracans, urodeles, or dipterans, and there is limited evidence that some mosquitoes are attracted to cyclopoid crustaceans. Our results highlight that predator avoidance during oviposition is common, but not ubiquitous, in mosquitoes and needs to be considered when evaluating the likely efficacy of aquatic predators for biocontrol.
Collapse
Affiliation(s)
| | - Leon Blaustein
- Laboratory for Community Ecology, Institute of Evolution and Department of Evolutionary and Environmental Sciences, Faculty of Natural Sciences, University of Haifa
| |
Collapse
|
13
|
Ohba SY, Takagi M. Predatory ability of adult diving beetles on the Japanese encephalitis vector Culex tritaeniorhynchus. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2010; 26:32-36. [PMID: 20402348 DOI: 10.2987/09-5946.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The predatory ability of adult Japanese diving beetles on 4th instars of the Japanese encephalitis vector mosquito, Culex tritaeniorhynchus, was assessed under laboratory conditions. To determine the differences in the predatory ability among 14 beetle species inhabiting rice fields, the following species were introduced to 10 Cx. tritaeniorhynchus 4th instars in a plastic cup: 5 small-bodied species (< 9 mm in body length) comprising Hydroglyphus japonicus, Noterus japonicus, Laccophilus difficilis, Hyphydrus japonicus, and Agabusjaponicus; 7 medium-bodied species (9-20 mm in body length) comprising Hydaticus rhantoides, Hydaticus grammicus, Rhantus suturalis, Eretes griseus, Hydaticus bowringii, Agabus conspicuous, and Graphoderus adamsii; and 2 large-bodied species (> 20 mm) comprising Cybister brevis and C. japonicus. The average 24-h predation rate was highest in medium-bodied species (> 90%), followed by small-bodied species (31%) and large-bodied species (19%). The functional responses to Cx. tritaeniorhynchus larvae of 3 medium-bodied species (H. grammicus, R. suturalis, and E. griseus) were estimated. Eretes griseus exhibited the highest attach rate and shortest prey-handling time, suggesting that medium-bodied diving beetles, especially E. griseus, may be efficient predators of mosquito larvae in rice fields.
Collapse
Affiliation(s)
- Shin-Ya Ohba
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, 852-8523 Japan
| | | |
Collapse
|