1
|
Rani A, Jakhmola S, Karnati S, Parmar HS, Chandra Jha H. Potential entry receptors for human γ-herpesvirus into epithelial cells: A plausible therapeutic target for viral infections. Tumour Virus Res 2021; 12:200227. [PMID: 34800753 PMCID: PMC8628264 DOI: 10.1016/j.tvr.2021.200227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses are ubiquitous viruses, specifically the Epstein Barr virus (EBV). EBV and Kaposi's sarcoma-associated herpesvirus (KSHV) establish their latency for a long period in B-cells and their reactivation instigates dreadful diseases from cancer to neurological modalities. The envelope glycoprotein of these viruses makes an attachment with several host receptors. For instance; glycoprotein 350/220, gp42, gHgL and gB of EBV establish an attachment with CD21, HLA-DR, Ephs, and other receptor molecules to hijack the B- and epithelial cell machinery. Ephs are reported recently as potent receptors for EBV entry into epithelial cells. Eph receptors play a role in the maintenance and control of various cellular processes including morphology, adhesion, proliferation, survival and differentiation. Alterations in the structure and expression of Eph and ephrin (Eph ligands) molecules is entangled with various pathologies including tumours and neurological complications. Along with Eph, integrins, NRP, NMHC are also key players in viral infections as they are possibly involved in viral transmission, replication and persistence. Contrarily, KSHV gH is known to interact with EphA2 and -A4 molecules, whereas in the case of EBV only EphA2 receptors are being reported to date. The ELEFN region of KSHV gH was involved in the interaction with EphA2, however, the interacting region of EBV gH is elusive. Further, the gHgL of KSHV and EBV form a complex with the EphA2 ligand-binding domain (LBD). Primarily by using gL both KSHV and EBV gHgL bind to the peripheral regions of LBD. In addition to γ-herpesviruses, several other viruses like Nipah virus, Cedar virus, Hepatitis C virus and Rhesus macaque rhadinovirus (RRV) also access the host cells via Eph receptors. Therefore, we summarise the possible roles of Eph and ephrins in virus-mediated infection and these molecules could serve as potential therapeutic targets. Crucial understanding of human γ-herpesviruses entry mechanism. Eph receptors relate to changed biomolecular profile upon EBV infection. EBV association with neurological disorders. Eph receptors could be an elegant drug for human γ-herpesviruses.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Srikanth Karnati
- Department of Medical Cell Biology, Julius Maximilians University, Wuerzburg, Germany
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, 452001, MP, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
2
|
A recombinant multi-epitope peptide vaccine based on MOMP and CPSIT_p6 protein protects against Chlamydia psittaci lung infection. Appl Microbiol Biotechnol 2018; 103:941-952. [DOI: 10.1007/s00253-018-9513-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
|
3
|
Ning S, Yao M, Wu Y, Zhou X, Zhong C, Yan K, Wei Z, Xie Y. Correlation of variable repeat number in the neck regions of DC-SIGN and DC-SIGNR with susceptibility to nasopharyngeal carcinoma in a Chinese population. Cancer Manag Res 2018; 10:3193-3198. [PMID: 30233235 PMCID: PMC6130306 DOI: 10.2147/cmar.s167114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective To evaluate the potential association of variations in the number of tandem repeats in the dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin-related (DC-SIGNR) neck region with susceptibility to nasopharyngeal carcinoma (NPC). Methods Variations in the number of repeats in the genotypes and alleles in the neck region of DC-SIGN/DC-SIGNR were analyzed in 477 unrelated NPC patients and 561 cancer-free controls. Results Genotypes and alleles in the DC-SIGN neck region did not differ significantly between NPC patients and controls, but the 9-repeat genotype in the DC-SIGNR neck region was significantly more frequent among patients (OR 1.339, 95% CI 1.018–1.760, P=0.037). The association between this genotype and NPC remained significant after adjusting for sex, age, smoking history, and presence of immunoglobulin against Epstein–Barr virus viral capsid antigen (OR 1.625, 95% CI 1.134–2.329, P=0.0082). Conclusion These results suggest that genotypes/alleles in the DC-SIGN neck region are not associated with NPC susceptibility, whereas the 9-repeat variant in the neck region of DC-SIGNR may increase the risk of NPC.
Collapse
Affiliation(s)
- Sisi Ning
- Graduate School of Guangxi Medical University, Nanning, China
| | - Mengwei Yao
- Graduate School of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Graduate School of Guangxi Medical University, Nanning, China
| | - Xunzhao Zhou
- Graduate School of Guangxi Medical University, Nanning, China
| | - Changtao Zhong
- Graduate School of Guangxi Medical University, Nanning, China
| | - Kui Yan
- Graduate School of Guangxi Medical University, Nanning, China
| | - Zhengbo Wei
- Department of Head and Neck Tumor Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China,
| | - Ying Xie
- Life Sciences Institute of Guangxi Medical University, Nanning, China, .,Key Laboratory for High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, China,
| |
Collapse
|
4
|
Association of Single-Nucleotide Polymorphisms in DC-SIGN with Nasopharyngeal Carcinoma Susceptibility. DISEASE MARKERS 2017; 2017:6309754. [PMID: 28694559 PMCID: PMC5488229 DOI: 10.1155/2017/6309754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022]
Abstract
The aim of this study was to explore potential relationships of four single-nucleotide polymorphisms (SNPs) in the gene encoding dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) with risk of nasopharyngeal carcinoma (NPC). The DC-SIGN SNPs rs7252229, rs4804803, rs2287886, and rs735240 were genotyped in 477 unrelated NPC patients and 561 cancer-free controls. At rs7252229, risk of NPC was significantly lower in individuals with GC (odds ratio [OR] 0.076, 95% confidence interval [CI] 0.008-0.690), GG (OR 0.056, 95%CI 0.006-0.487), or GC + GG (OR 0.059, 95%CI 0.007-0.515) than in individuals with the CC genotype, after adjusting for age, gender, smoking history, and EBV-VCA-IgA status. At rs4804803, risk of NPC was significantly higher in individuals with the genotype GG than in those with the genotype AA (adjusted OR 9.038, 95%CI 1.708-47.822). At rs735240, risk of NPC did not change significantly with genotypes AG, GG, or AG + GG after adjusting for age, gender, and smoking history. However, when data were also adjusted for EBV-VCA-IgA status, three genotypes emerged as associated with significantly higher risk of NPC than the AA genotype: AG (OR 2.976, 95%CI 1.123-7.888), GG (OR 3.314, 95%CI 1.274-8.622), or GG + AG (OR 3.191, 95%CI 1.237-8.230). Our results suggest that DC-SIGN SNPs rs7252229, rs4804803, and rs735240 may influence NPC risk in the Chinese population. The mechanisms mediating this risk require a further study.
Collapse
|
5
|
Lung ML, Cheung AKL, Ko JMY, Lung HL, Cheng Y, Dai W. The interplay of host genetic factors and Epstein-Barr virus in the development of nasopharyngeal carcinoma. CHINESE JOURNAL OF CANCER 2015; 33:556-68. [PMID: 25367335 PMCID: PMC4244319 DOI: 10.5732/cjc.014.10170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The interplay between host cell genetics and Epstein-Barr virus (EBV) infection contributes to the development of nasopharyngeal carcinoma (NPC). Understanding the host genetic and epigenetic alterations and the influence of EBV on cell signaling and host gene regulation will aid in understanding the molecular pathogenesis of NPC and provide useful biomarkers and targets for diagnosis and therapy. In this review, we provide an update of the oncogenes and tumor suppressor genes associated with NPC, as well as genes associated with NPC risk including those involved in carcinogen detoxification and DNA repair. We also describe the importance of host genetics that govern the human leukocyte antigen (HLA) complex and immune responses, and we describe the impact of EBV infection on host cell signaling changes and epigenetic regulation of gene expression. High-power genomic sequencing approaches are needed to elucidate the genetic basis for inherited susceptibility to NPC and to identify the genes and pathways driving its molecular pathogenesis.
Collapse
Affiliation(s)
- Maria Li Lung
- Department of Clinical Oncology and Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, P. R. China.
| | | | | | | | | | | |
Collapse
|
6
|
Yan H, Kamiya T, Suabjakyong P, Tsuji NM. Targeting C-Type Lectin Receptors for Cancer Immunity. Front Immunol 2015; 6:408. [PMID: 26379663 PMCID: PMC4547497 DOI: 10.3389/fimmu.2015.00408] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022] Open
Abstract
C-type lectin receptors (CLRs) are a large family of soluble and trans-membrane pattern recognition receptors that are widely and primarily expressed on myeloid cells. CLRs are important for cell-cell communication and host defense against pathogens through the recognition of specific carbohydrate structures. Similar to a family of Toll-like receptors, CLRs signaling are involved in the various steps for initiation of innate immune responses and promote secretion of soluble factors such as cytokines and interferons. Moreover, CLRs contribute to endocytosis and antigen presentation, thereby fine-tune adaptive immune responses. In addition, there may also be a direct activation of acquired immunity. On the other hand, glycans, such as mannose structures, Lewis-type antigens, or GalNAc are components of tumor antigens and ligate CLRs, leading to immunoregulation. Therefore, agonists or antagonists of CLRs signaling are potential therapeutic reagents for cancer immunotherapy. We aim to overview the current knowledge of CLRs signaling and the application of their ligands on tumor-associating immune response.
Collapse
Affiliation(s)
- Huimin Yan
- Immune Homeostasis Laboratory, Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan ; Institute for Liver Disease, Fifth Hospital of Shijiazhuang , Shijiazhuang , China
| | - Tomomori Kamiya
- Immune Homeostasis Laboratory, Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan ; Research Institute for Biomedical Sciences, Tokyo University of Science , Noda-shi , Japan
| | - Papawee Suabjakyong
- Immune Homeostasis Laboratory, Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan ; Department of Clinical and Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University , Chiba-shi , Japan
| | - Noriko M Tsuji
- Immune Homeostasis Laboratory, Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| |
Collapse
|
7
|
Chao PZ, Hsieh MS, Cheng CW, Hsu TJ, Lin YT, Lai CH, Liao CC, Chen WY, Leung TK, Lee FP, Lin YF, Chen CH. Dendritic cells respond to nasopharygeal carcinoma cells through annexin A2-recognizing DC-SIGN. Oncotarget 2015; 6:159-70. [PMID: 25402728 PMCID: PMC4381585 DOI: 10.18632/oncotarget.2700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/06/2014] [Indexed: 01/23/2023] Open
Abstract
Dendritic cells (DCs) play an essential role in immunity and are used in cancer immunotherapy. However, these cells can be tuned by tumors with immunosuppressive responses. DC-specific intercellular adhesion molecule 3-Grabbing Nonintegrin (DC-SIGN), a C-type lectin expressed on DCs, recognizes certain carbohydrate structures which can be found on cancer cells. Nasopharyngeal carcinoma (NPC) is an epithelial cell-derived malignant tumor, in which immune response remains unclear. This research is to reveal the molecular link on NPC cells that induces the immunosuppressive responses in DCs. In this article, we report identification of annexin A2 (ANXA2) on NPC cells as a ligand for DC-SIGN on DCs. N-linked mannose-rich glycan on ANXA2 may mediate the interaction. ANXA2 was abundantly expressed in NPC, and knockdown of ANXA2 suppressed NPC xenograft in mice, suggesting a crucial role of ANXA2 in NPC growth. Interaction with NPC cells caused DC-SIGN activation in DCs. Consequently DC maturation and the proinflammatory interleukin (IL)-12 production were inhibited, and the immunosuppressive IL-10 production was promoted. Blockage of either DC-SIGN or ANXA2 eliminated the production of IL-10 from DCs. This report suggests that suppression of ANXA2 at its expression or glycosylation on NPC may improve DC-mediated immunotherapy for the tumor.
Collapse
Affiliation(s)
- Pin-Zhir Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Otolaryngology, Shuang-Ho Hospital, New Taipei, Taiwan
| | - Ming-Shium Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Orthopedics, En Chu Kong Hospital, New Taipei, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tin-Jui Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Tien Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chang-Hao Lai
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei, Taiwan
| | - Ting-Kai Leung
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fei-Peng Lee
- Department of Otolaryngology, Head and Neck Surgery, Wan-Fang Medical Center, Taipei, Taiwan
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Ho Chen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Zhang J, Shang Z, Zhang X, Zhang Y. Modeling and analysis of Schistosoma Argonaute protein molecular spatial conformation. Asian Pac J Trop Biomed 2015; 1:275-8. [PMID: 23569774 DOI: 10.1016/s2221-1691(11)60042-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 04/02/2011] [Accepted: 04/16/2011] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To analyze the amino acid sequence composition, secondary structure, the spatial conformation of its domain and other characteristics of Argonaute protein. METHODS Bioinformatics tools and the internet server were used. Firstly, the amino acid sequence composition features of the Argonaute protein were analyzed, and the phylogenetic tree was constructed. Secondly, Argonaute protein's distribution of secondary structure and its physicochemical properties were predicted. Lastly, the protein functional expression form of the domain group was established through the Phyre-based analysis on the spatial conformation of Argonaute protein domains. RESULTS 593 amino acids were encoded by Argonaute protein, the phylogenetic tree was constructed, and Argonaute protein's distribution of secondary structure and its physicochemical properties were obtained through analysis. In addition, the functional expression form which comprised the N-terminal PAZ domain and C-terminal Piwi domain for the Argonaute protein was obtained with Phyre. CONCLUSIONS The information relationship between the structure and function of the Argonaute protein can be initially established with bioinformatics tools and the internet server, and this provides the theoretical basis for further clarifying the function of Schistosoma Argonaute protein.
Collapse
Affiliation(s)
- Jianhua Zhang
- The Faculty of Biomedical Engineering of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | | | | | | |
Collapse
|
9
|
Genetic polymorphisms in host innate immune sensor genes and the risk of nasopharyngeal carcinoma in North Africa. G3-GENES GENOMES GENETICS 2013; 3:971-7. [PMID: 23576520 PMCID: PMC3689808 DOI: 10.1534/g3.112.005371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a rare malignancy in most parts of the world. It is an Epstein-Barr virus−associated malignancy with an unusual racial and geographical distribution. The host innate immune sensor genes play an important role in infection recognition and immune response against viruses. Therefore, we examined the association between polymorphisms in genes within a group of pattern recognition receptors (including families of Toll-like receptors, C-type lectin receptors, and retinoic acid−inducible gene I−like receptors) and NPC susceptibility. Twenty-six single-nucleotide polymorphisms (SNPs) in five pattern-recognition genes were genotyped in 492 North African NPC cases and 373 frequency-matched controls. TLR3_rs3775291 was the most significantly associated SNP (odds ratio [OR] 1.49; 95% confidence interval [95% CI] 1.11−2.00; P = 0.008; dominant model). The analysis showed also that CD209_rs7248637 (OR 0.69; 95% CI 0.52−0.93; P = 0.02; dominant model) and DDX58_rs56309110 (OR 0.70; 95% CI 0.51−0.98; P = 0.04) were associated with the risk of NPC. An 18% increased risk per allele was observed for the five most significantly associated SNPs, TLR3_rs3775291, CD209_rs7248637, DDX58_rs56309110, CD209_rs4804800, and MBL2_rs10824792, (ptrend = 8.2 × 10−4). Our results suggest that genetic variation in pattern-recognition genes is associated with the risk of NPC. These preliminary findings require replication in larger studies.
Collapse
|
10
|
Rao DP, Gu J, Meng XH, Zhang Q, Fu MQ, Liu Y, Chen F, Cao SM, Hong MH, Liu Q. An efficacy analysis for nasopharyngeal carcinoma screening of different screening intervals. J Int Med Res 2012; 40:525-36. [PMID: 22613413 DOI: 10.1177/147323001204000214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To evaluate the impact of different screening intervals on screening for nasopharyngeal carcinoma (NPC). METHODS A Markov model was constructed, based on the natural history of NPC. The 5-year mortality rate of NPC was the major measurement to evaluate the efficacies of 16 screening strategies. Parameters for the model were derived from published literature. RESULTS Screening reduced the 5-year mortality rate for NPC by 20.4 - 43.3%, compared with the equivalent rate without screening. The 5 year mortality rate and the NPC pick-up rate with strategy A1 (annual screening) were 23.6% and 83.9%, respectively. Compared with strategy A1, strategy B1 (annual screening for seropositive subjects; biennial screening for seronegative subjects) had a similar 5-year mortality rate (24.0%) and a slightly smaller NPC pick-up rate (81.7%), but led to a 39.3% reduction in total screenings. Compared with all other strategies excluding strategy A1, strategy B1 achieved the lowest 5-year mortality rate and the largest NPC pick-up rate. CONCLUSIONS Strategy B1 had the highest efficacy for NPC screening.
Collapse
Affiliation(s)
- D P Rao
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yu HR, Chang WP, Wang L, Lin YJ, Liang CD, Yang KD, Kuo CM, Huang YC, Chang WC, Kuo HC. DC-SIGN (CD209) promoter -336 A/G (rs4804803) polymorphism associated with susceptibility of Kawasaki disease. ScientificWorldJournal 2012; 2012:634835. [PMID: 22629172 PMCID: PMC3354554 DOI: 10.1100/2012/634835] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/02/2012] [Indexed: 01/24/2023] Open
Abstract
Kawasaki disease (KD) is characterized by systemic vasculitis of unknown etiology. High-dose intravenous immunoglobulin (IVIG) is the most effective therapy for KD to reduce the prevalence of coronary artery lesion (CAL) formation. Recently, the α2, 6 sialylated IgG was reported to interact with a lectin receptor, specific intracellular adhesion molecule-3 grabbing nonintegrin homolog-related 1 (SIGN-R1) in mice and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) in human, and to trigger an anti-inflammatory cascade. This study was conducted to investigate whether the polymorphism of DC-SIGN (CD209) promoter −336 A/G (rs4804803) is responsible for susceptibility and CAL formation in KD patients using Custom TaqMan SNP Genotyping Assays. A total of 521 subjects (278 KD patients and 243 controls) were investigated to identify an SNP of rs4804803, and they were studied and showed a significant association between the genotypes and allele frequency of rs4804803 in control subjects and KD patients (P = 0.004 under the dominant model). However, the promoter variant of DC-SIGN gene was not associated with the occurrence of IVIG resistance, CAL formation in KD. The G allele of DC-SIGN promoter −336 (rs4804803) is a risk allele in the development of KD.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kutikhin AG, Yuzhalin AE. C-type lectin receptors and RIG-I-like receptors: new points on the oncogenomics map. Cancer Manag Res 2012; 4:39-53. [PMID: 22427730 PMCID: PMC3304337 DOI: 10.2147/cmar.s28983] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The group of pattern recognition receptors includes families of Toll-like receptors, NOD-like receptors, C-type lectin receptors, and RIG-I-like receptors. They are key sensors for a number of infectious agents, some of which are oncogenic, and they launch an immune response against them, normally promoting their eradication. Inherited variations in genes encoding these receptors and proteins and their signaling pathways may affect their function, possibly modulating cancer risk and features of cancer progression. There are numerous studies investigating the association of single nucleotide polymorphisms within or near genes encoding Toll-like receptors and NOD-like receptors, cancer risk, and features of cancer progression. However, there is an almost total absence of articles analyzing the correlation between polymorphisms of genes encoding C-type lectin receptors and RIG-I-like receptors and cancer risk or progression. Nevertheless, there is some evidence supporting the hypothesis that inherited C-type lectin receptor and RIG-I-like receptor variants can be associated with increased cancer risk. Certain C-type lectin receptors and RIG-I-like receptors recognize pathogen-associated molecular patterns of potentially oncogenic infectious agents, and certain polymorphisms of genes encoding C-type lectin receptors and RIG-I-like receptors may have functional consequences at the molecular level that can lead to association of such single nucleotide polymorphisms with risk or progression of some diseases that may modulate cancer risk, so these gene polymorphisms may affect cancer risk indirectly. Polymorphisms of genes encoding C-type lectin receptors and RIG-I-like receptors thereby may be correlated with a risk of lung, oral, esophageal, gastric, colorectal, and liver cancer, as well as nasopharyngeal carcinoma, glioblastoma, multiple myeloma, and lymphoma. The list of the most promising polymorphisms for oncogenomic investigations may include rs1926736, rs2478577, rs2437257, rs691005, rs2287886, rs735239, rs4804803, rs16910526, rs36055726, rs11795404, and rs10813831.
Collapse
Affiliation(s)
- Anton G Kutikhin
- Department of Epidemiology, Kemerovo State Medical Academy, Kemerovo, Russian Federation
| | | |
Collapse
|
13
|
Bei JX, Jia WH, Zeng YX. Familial and large-scale case-control studies identify genes associated with nasopharyngeal carcinoma. Semin Cancer Biol 2012; 22:96-106. [PMID: 22313875 DOI: 10.1016/j.semcancer.2012.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/21/2012] [Accepted: 01/24/2012] [Indexed: 12/17/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy and has a remarkable geographic distribution, which is highly prevalent in southern China, Southeast Asia, and North Africa. Although most of the NPC are sporadic cases, the familial clustering of NPC has been demonstrated worldwide. Accumulating studies have proposed that the etiology of NPC is multi-stage and multi-factorial, involving genetic lesions, Epstein-Barr virus infection, and environmental exposure. Genetic variations result in differences in gene function, which in turn lead to different susceptibility to disease. Many studies have been carried out to dissect the genetic variants that contribute to NPC susceptibility. This article reviews the current progress of genetic studies to identify genes associated with NPC, focusing on the familial linkage and large-scale case-control study designs.
Collapse
Affiliation(s)
- Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | | | | |
Collapse
|
14
|
Hildesheim A, Wang CP. Genetic predisposition factors and nasopharyngeal carcinoma risk: a review of epidemiological association studies, 2000-2011: Rosetta Stone for NPC: genetics, viral infection, and other environmental factors. Semin Cancer Biol 2012; 22:107-16. [PMID: 22300735 DOI: 10.1016/j.semcancer.2012.01.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 12/09/2022]
Abstract
While infection with Epstein-Barr virus (EBV) is known to be an essential risk factor for the development of nasopharyngeal carcinoma (NPC), other co-factors including genetic factors are thought to play an important role. In this review, we summarize association studies conducted over the past decade to evaluate the role of genetic polymorphisms in NPC development. A review of the literature identified close to 100 studies, including 3 genome-wide association studies (GWAS), since 2000 that evaluated genetic polymorphisms and NPC risk in at least 100 NPC cases and 100 controls. Consistent evidence for associations were reported for a handful of genes, including immune-related HLA Class I genes, DNA repair gene RAD51L1, cell cycle control genes MDM2 and TP53, and cell adhesion/migration gene MMP2. However, for most of the genes evaluated, there was no effort to replicate findings and studies were largely modest in size, typically consisting of no more than a few hundred cases and controls. The small size of most studies, and the lack of attempts at replication have limited progress in understanding the genetics of NPC. Moving forward, if we are to advance our understanding of genetic factors involved in the development of NPC, and of the impact of gene-gene and gene-environment interations in the development of this disease, consortial efforts that pool across multiple, well-designed and coordinated efforts will most likely be required.
Collapse
Affiliation(s)
- Allan Hildesheim
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | | |
Collapse
|
15
|
|