1
|
Weisschuh N, Schimpf-Linzenbold S, Mazzola P, Kieninger S, Xiao T, Kellner U, Neuhann T, Kelbsch C, Tonagel F, Wilhelm H, Kohl S, Wissinger B. Mutation spectrum of the OPA1 gene in a large cohort of patients with suspected dominant optic atrophy: Identification and classification of 48 novel variants. PLoS One 2021; 16:e0253987. [PMID: 34242285 PMCID: PMC8270428 DOI: 10.1371/journal.pone.0253987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant optic atrophy is one of the most common inherited optic neuropathies. This disease is genetically heterogeneous, but most cases are due to pathogenic variants in the OPA1 gene: depending on the population studied, 32–90% of cases harbor pathogenic variants in this gene. The aim of this study was to provide a comprehensive overview of the entire spectrum of likely pathogenic variants in the OPA1 gene in a large cohort of patients. Over a period of 20 years, 755 unrelated probands with a diagnosis of bilateral optic atrophy were referred to our laboratory for molecular genetic investigation. Genetic testing of the OPA1 gene was initially performed by a combined analysis using either single-strand conformation polymorphism or denaturing high performance liquid chromatography followed by Sanger sequencing to validate aberrant bands or melting profiles. The presence of copy number variations was assessed using multiplex ligation-dependent probe amplification. Since 2012, genetic testing was based on next-generation sequencing platforms. Genetic screening of the OPA1 gene revealed putatively pathogenic variants in 278 unrelated probands which represent 36.8% of the entire cohort. A total of 156 unique variants were identified, 78% of which can be considered null alleles. Variant c.2708_2711del/p.(V903Gfs*3) was found to constitute 14% of all disease-causing alleles. Special emphasis was placed on the validation of splice variants either by analyzing cDNA derived from patients´ blood samples or by heterologous splice assays using minigenes. Splicing analysis revealed different aberrant splicing events, including exon skipping, activation of exonic or intronic cryptic splice sites, and the inclusion of pseudoexons. Forty-eight variants that we identified were novel. Nine of them were classified as pathogenic, 34 as likely pathogenic and five as variant of uncertain significance. Our study adds a significant number of novel variants to the mutation spectrum of the OPA1 gene and will thereby facilitate genetic diagnostics of patients with suspected dominant optic atrophy.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Simone Schimpf-Linzenbold
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.,CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sinja Kieninger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ting Xiao
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ulrich Kellner
- Zentrum für seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany.,RetinaScience, Bonn, Germany
| | | | - Carina Kelbsch
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Felix Tonagel
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Helmut Wilhelm
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Lenaers G, Neutzner A, Le Dantec Y, Jüschke C, Xiao T, Decembrini S, Swirski S, Kieninger S, Agca C, Kim US, Reynier P, Yu-Wai-Man P, Neidhardt J, Wissinger B. Dominant optic atrophy: Culprit mitochondria in the optic nerve. Prog Retin Eye Res 2021; 83:100935. [PMID: 33340656 DOI: 10.1016/j.preteyeres.2020.100935] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Dominant optic atrophy (DOA) is an inherited mitochondrial disease leading to specific degeneration of retinal ganglion cells (RGCs), thus compromising transmission of visual information from the retina to the brain. Usually, DOA starts during childhood and evolves to poor vision or legal blindness, affecting the central vision, whilst sparing the peripheral visual field. In 20% of cases, DOA presents as syndromic disorder, with secondary symptoms affecting neuronal and muscular functions. Twenty years ago, we demonstrated that heterozygous mutations in OPA1 are the most frequent molecular cause of DOA. Since then, variants in additional genes, whose functions in many instances converge with those of OPA1, have been identified by next generation sequencing. OPA1 encodes a dynamin-related GTPase imported into mitochondria and located to the inner membrane and intermembrane space. The many OPA1 isoforms, resulting from alternative splicing of three exons, form complex homopolymers that structure mitochondrial cristae, and contribute to fusion of the outer membrane, thus shaping the whole mitochondrial network. Moreover, OPA1 is required for oxidative phosphorylation, maintenance of mitochondrial genome, calcium homeostasis and regulation of apoptosis, thus making OPA1 the Swiss army-knife of mitochondria. Understanding DOA pathophysiology requires the understanding of RGC peculiarities with respect to OPA1 functions. Besides the tremendous energy requirements of RGCs to relay visual information from the eye to the brain, these neurons present unique features related to their differential environments in the retina, and to the anatomical transition occurring at the lamina cribrosa, which parallel major adaptations of mitochondrial physiology and shape, in the pre- and post-laminar segments of the optic nerve. Three DOA mouse models, with different Opa1 mutations, have been generated to study intrinsic mechanisms responsible for RGC degeneration, and these have further revealed secondary symptoms related to mitochondrial dysfunctions, mirroring the more severe syndromic phenotypes seen in a subgroup of patients. Metabolomics analyses of cells, mouse organs and patient plasma mutated for OPA1 revealed new unexpected pathophysiological mechanisms related to mitochondrial dysfunction, and biomarkers correlated quantitatively to the severity of the disease. Here, we review and synthesize these data, and propose different approaches for embracing possible therapies to fulfil the unmet clinical needs of this disease, and provide hope to affected DOA patients.
Collapse
Affiliation(s)
- Guy Lenaers
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France.
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Yannick Le Dantec
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Christoph Jüschke
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ting Xiao
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Sarah Decembrini
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Swirski
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Sinja Kieninger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey; Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| | - Ungsoo S Kim
- Kim's Eye Hospital, Seoul, South Korea; Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France; Department of Biochemistry, University Hospital of Angers, Angers, France
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - John Neidhardt
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University Oldenburg, Oldenburg, Germany.
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Weisschuh N, Mazzola P, Heinrich T, Haack T, Wissinger B, Tonagel F, Kelbsch C. First submicroscopic inversion of the OPA1 gene identified in dominant optic atrophy - a case report. BMC MEDICAL GENETICS 2020; 21:236. [PMID: 33243194 PMCID: PMC7690134 DOI: 10.1186/s12881-020-01166-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Background Dominant optic atrophy (DOA) is an inherited optic neuropathy that mainly affects visual acuity, central visual fields and color vision due to a progressive loss of retinal ganglion cells and their axons that form the optic nerve. Approximately 45–90% of affected individuals with DOA harbor pathogenic variants in the OPA1 gene. The mutation spectrum of OPA1 comprises nonsense, canonical and non-canonical splice site, frameshift and missense as well as copy number variants, but intragenic inversions have not been reported so far. Case presentation We report a 33-year-old male with characteristic clinical features of DOA. Whole-genome sequencing identified a structural variant of 2.4 kb comprising an inversion of 937 bp at the OPA1 locus. Fine mapping of the breakpoints to single nucleotide level revealed that the structural variation was an inversion flanked by two deletions. As this rearrangement inverts the entire first exon of OPA1, it was classified as likely pathogenic. Conclusions We report the first DOA case harboring an inversion in the OPA1 gene. Our study demonstrates that copy-neutral genomic rearrangements have to be considered as a possible cause of disease in DOA cases. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01166-z.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Felix Tonagel
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Carina Kelbsch
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Ham M, Han J, Osann K, Smith M, Kimonis V. Meta-analysis of genotype-phenotype analysis of OPA1 mutations in autosomal dominant optic atrophy. Mitochondrion 2018; 46:262-269. [PMID: 30165240 DOI: 10.1016/j.mito.2018.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/20/2018] [Accepted: 07/31/2018] [Indexed: 01/21/2023]
Abstract
Autosomal Dominant Optic Atrophy (ADOA) is a neuro-ophthalmic disease characterized by progressive bilateral vision loss, pallor of the optic disc, central vision loss, and impairment of color vision. Additionally, a small percentage of patients experience hearing loss and ataxia, while recent studies suggest disruption of cardiac and neuromuscular functions. In order to obtain a better understanding of the genotype-phenotype correlation of the various mutations in the optic atrophy 1 (OPA1) gene, we obtained both clinical and genetic information of ADOA patients from published reports. We conducted a systematic review of published OPA1 literature and identified 408 individuals with confirmed OPA1 mutations, 120 of whom reported extra-ocular (ADOA 'plus') manifestations through their descriptions of visual and multi-systemic symptoms. Our results show that there is a significant variation in frequency of the specific exons involved between the ADOA classic and ADOA 'plus' patients. Classic ADOA groups were more likely to have mutations in exon 8 and 9, while ADOA 'plus' groups were more likely to have mutations in exons 14, 15 and 17. Additional comparisons revealed significant differences between mutation types/domains and specific ADOA 'plus' manifestations. We also found that individuals with maternally inherited OPA1 mutations were significantly more likely to develop 'plus' manifestations than those with paternally inherited mutations. Overall, this study provides novel information regarding genotype-phenotype correlations of ADOA which warrants additional recommendations added to the current clinical management of ADOA patients.
Collapse
Affiliation(s)
- Michelle Ham
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA
| | - Julia Han
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA
| | - Kathryn Osann
- Department of Medicine, Division of Hematology-Oncology, University of California, Irvine, CA, USA
| | - Moyra Smith
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Li H, Jones EM, Li H, Yang L, Sun Z, Yuan Z, Chen R, Dong F, Sui R. Clinical and genetic features of eight Chinese autosomal-dominant optic atrophy pedigrees with six novel OPA1 pathogenic variants. Ophthalmic Genet 2018; 39:569-576. [PMID: 29952689 DOI: 10.1080/13816810.2018.1466337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Autosomal-dominant optic atrophy (ADOA) is one of the most common types of inherited optic atrophy. We identify OPA1 pathogenic variants and assess the clinical features of a cohort of Chinese ADOA patients Materials and Methods: Detailed clinical evaluations were performed and genomic DNA was extracted from peripheral blood for all the participants. Sanger sequencing was used to analyze all exons and exon/intron junctions of OPA1 for eight pedigrees. Target exome capture plus next-generation sequencing (NGS) were applied for one atypical family with photophobia. Reverse transcription polymerase chain reaction was carried out to further characterize the mRNA change of selected splicing alteration. RESULTS All 17 patients had impaired vision and optic-disk pallor; however, the clinical severity varied markedly. Two patients complicated with hearing loss. Six novel and two reported pathogenic variants in OPA1 (GenBank Accession No. NM_130837.2) were identified including four nonsynonymous variants (c.2400T > G, c.1468T > C, c.1567A > G and c.1466T > C), two splicing variants (c.2984-1_2986delGAGA and c.2983 + 5G > A), one small deletion (c.2960_2968delGCGTTCAAC), and one small insertion (c.3009_3010insA). RNA analysis revealed the splicing variant c.2984-1_2986delGAGA caused small deletion of mRNA (r.2983_2988del). CONCLUSIONS ADOA patients presented variable clinical manifestations. Novel OPA1 pathogenic variants are the main genetic defect for Chinese ADOA cases. NGS may be a useful molecular testing tool for atypical ADOA.
Collapse
Affiliation(s)
- Huajin Li
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Evan M Jones
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Hui Li
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Lizhu Yang
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Zixi Sun
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Zhisheng Yuan
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Rui Chen
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Fangtian Dong
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Ruifang Sui
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
6
|
Gaier ED, Boudreault K, Nakata I, Janessian M, Skidd P, DelBono E, Allen KF, Pasquale LR, Place E, Cestari DM, Stacy RC, Rizzo JF, Wiggs JL. Diagnostic genetic testing for patients with bilateral optic neuropathy and comparison of clinical features according to OPA1 mutation status. Mol Vis 2017; 23:548-560. [PMID: 28848318 PMCID: PMC5561143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/08/2017] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Inherited optic neuropathy is genetically heterogeneous, and genetic testing has an important role in risk assessment and counseling. The purpose of this study is to determine the prevalence and spectrum of mutations in a group of patients referred for genetic testing to a tertiary center in the United States. In addition, we compared the clinical features of patients with and without mutations in OPA1, the gene most commonly involved in dominantly inherited optic atrophy. METHODS Clinical data and genetic testing results were reviewed for 74 unrelated, consecutive patients referred with a history of insidious, relatively symmetric, bilateral visual loss secondary to an optic neuropathy. Patients were evaluated for disease-causing variants in OPA1, OPA3, WFS1, and the entire mitochondrial genome with DNA sequencing and copy number variation (CNV) testing. RESULTS Pathogenic DNA variants were found in 25 cases, with the majority (24 patients) located in OPA1. Demographics, clinical history, and clinical features for the group of patients with mutations in OPA1 were compared to those without disease-causing variants. Compared to the patients without mutations, cases with mutations in OPA1 were more likely to have a family history of optic nerve disease (p = 0.027); however, 30.4% of patients without a family history of disease also had mutations in OPA1. OPA1 mutation carriers had less severe mean deviation and pattern standard deviation on automated visual field testing than patients with optic atrophy without mutations in OPA1 (p<0.005). Other demographic and ocular features were not statistically significantly different between the two groups, including the fraction of patients with central scotomas (42.9% of OPA1 mutation positive and 66.0% of OPA1 mutation negative). CONCLUSIONS Genetic testing identified disease-causing mutations in 34% of referred cases, with the majority of these in OPA1. Patients with mutations in OPA1 were more likely to have a family history of disease; however, 30.4% of patients without a family history were also found to have an OPA1 mutation. This observation, as well as similar frequencies of central scotomas in the groups with and without mutations in OPA1, underscores the need for genetic testing to establish an OPA1 genetic diagnosis.
Collapse
Affiliation(s)
- Eric D. Gaier
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Katherine Boudreault
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Isao Nakata
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Maria Janessian
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Philip Skidd
- Departments of Ophthalmology and Neurology, University of Vermont College of Medicine, Burlington, MA
| | - Elizabeth DelBono
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Keri F. Allen
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Louis R. Pasquale
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA,Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Emily Place
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Dean M. Cestari
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Rebecca C. Stacy
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Joseph F. Rizzo
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| |
Collapse
|
7
|
Hayashi T, Sasano H, Katagiri S, Tsunoda K, Kameya S, Nakazawa M, Iwata T, Tsuneoka H. Heterozygous deletion of the OPA1 gene in patients with dominant optic atrophy. Jpn J Ophthalmol 2017; 61:395-401. [DOI: 10.1007/s10384-017-0522-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/09/2017] [Indexed: 11/30/2022]
|
8
|
Allen KF, Gaier ED, Wiggs JL. Genetics of Primary Inherited Disorders of the Optic Nerve: Clinical Applications. Cold Spring Harb Perspect Med 2015; 5:a017277. [PMID: 26134840 DOI: 10.1101/cshperspect.a017277] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inherited disorders of the optic nerve significantly impact vision in children and adults. The optic nerve disorders most commonly encountered clinically are glaucoma and primary optic neuropathy including Leber's hereditary optic neuropathy (LHON) and autosomal dominant or Kjer's optic atrophy. Current knowledge of the genetics of optic neuropathy and glaucoma makes it possible to test for mutations in disease-causing genes allowing for presymptomatic testing and risk assessment, and recent advances have revealed important disease mechanisms that may suggest potential therapeutic targets. In this perspective, we describe the current approaches and limitations to genetic testing for these disorders and provide an update on the development of gene-based therapies.
Collapse
Affiliation(s)
- Keri F Allen
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| | - Eric D Gaier
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| | - Janey L Wiggs
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| |
Collapse
|
9
|
Mitochondrial dysfunction affecting visual pathways. Rev Neurol (Paris) 2014; 170:344-54. [DOI: 10.1016/j.neurol.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023]
|
10
|
Meunier I, Lenaers G, Hamel C, Defoort-Dhellemmes S. [Hereditary optic neuropathies: from clinical signs to diagnosis]. J Fr Ophtalmol 2013; 36:886-900. [PMID: 24161764 DOI: 10.1016/j.jfo.2013.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/17/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
Inherited optic atrophy must be considered when working up any optic nerve involvement and any systemic disease with signs of optic atrophy, even with a negative family history. There are two classical forms: dominant optic atrophy, characterized by insidious, bilateral, slowly progressive visual loss and temporal disc pallor, and Leber's optic atrophy, characterized by acute loss of central vision followed by the same event in the fellow eye within a few weeks to months, with disc hyperemia in the acute phase. Family history is critical for diagnosis. In the absence of family history, the clinician must rule out an identifiable acquired cause, i.e. toxic, inflammatory, perinatal injury, traumatic or tumoral, with orbital and brain imaging (MRI). Recessive optic atrophies are more rare and more severe and occur as part of multisystemic disorders, particularly Wolfram syndrome (diabetes mellitus, diabetes insipidus, and hearing loss). Effective treatments are limited; alcohol and smoking should be avoided. A cyclosporine trial (taken immediately upon visual loss in the first eye) is in progress in Leber's optic atrophy to prevent involvement of the fellow eye.
Collapse
Affiliation(s)
- I Meunier
- Centre national de référence maladies rares, affections sensorielles génétiques, service d'ophtalmologie, hôpital Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
11
|
Alavi MV, Fuhrmann N. Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics. Mol Neurodegener 2013; 8:32. [PMID: 24067127 PMCID: PMC3856479 DOI: 10.1186/1750-1326-8-32] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/16/2013] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial quality control is fundamental to all neurodegenerative diseases, including the most prominent ones, Alzheimer’s Disease and Parkinsonism. It is accomplished by mitochondrial network dynamics – continuous fission and fusion of mitochondria. Mitochondrial fission is facilitated by DRP1, while MFN1 and MFN2 on the mitochondrial outer membrane and OPA1 on the mitochondrial inner membrane are essential for mitochondrial fusion. Mitochondrial network dynamics are regulated in highly sophisticated ways by various different posttranslational modifications, such as phosphorylation, ubiquitination, and proteolytic processing of their key-proteins. By this, mitochondria process a wide range of different intracellular and extracellular parameters in order to adapt mitochondrial function to actual energetic and metabolic demands of the host cell, attenuate mitochondrial damage, recycle dysfunctional mitochondria via the mitochondrial autophagy pathway, or arrange for the recycling of the complete host cell by apoptosis. Most of the genes coding for proteins involved in this process have been associated with neurodegenerative diseases. Mutations in one of these genes are associated with a neurodegenerative disease that originally was described to affect retinal ganglion cells only. Since more and more evidence shows that other cell types are affected as well, we would like to discuss the pathology of dominant optic atrophy, which is caused by heterozygous sequence variants in OPA1, in the light of the current view on OPA1 protein function in mitochondrial quality control, in particular on its function in mitochondrial fusion and cytochrome C release. We think OPA1 is a good example to understand the molecular basis for mitochondrial network dynamics.
Collapse
Affiliation(s)
- Marcel V Alavi
- Department of Ophthalmology, University of California, San Francisco, 10 Koret Way, 94143-0730 San Francisco, CA, USA.
| | | |
Collapse
|
12
|
Almind GJ, Ek J, Rosenberg T, Eiberg H, Larsen M, Lucamp L, Brøndum-Nielsen K, Grønskov K. Dominant optic atrophy in Denmark - report of 15 novel mutations in OPA1, using a strategy with a detection rate of 90%. BMC MEDICAL GENETICS 2012; 13:65. [PMID: 22857269 PMCID: PMC3507804 DOI: 10.1186/1471-2350-13-65] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/26/2012] [Indexed: 11/25/2022]
Abstract
Background Investigation of the OPA1 mutation spectrum in autosomal dominant optic atrophy (ADOA) in Denmark. Methods Index patients from 93 unrelated ADOA families were assessed for a common Danish founder mutation (c.2826_2836delinsGGATGCTCCA) inOPA1. If negative, direct DNA sequencing of the coding sequence and multiplex ligation-dependent probe amplification (MLPA) were performed. Results from MLPA analysis have been previously reported. Haplotype analysis was carried out analysing single nucleotide polymorphisms (SNP). Retrospective clinical data were retrieved from medical files. Results Probably causative mutations were identified in 84 out of 93 families (90%) including 15 novel mutations. Three mutations c.983A > G, c.2708_2711delTTAG and c.2826_2836delinsGGATGCTCCA, were responsible for ADOA in10, 11 and 28 families, respectively, corresponding to 11%, 12% and 30%. A common haplotype in nine of ten c.983A > G families suggests that they descend from a single founder. The c.2708_2711delTTAG mutation was present on at least two haplotypes and has been repeatedly reported in various ethnic groups,thus represents a mutational hotspot. Clinical examinations of index patients with the two latter mutations demonstrated large inter- and intra-familial variations apparently. Conclusions Genetic testing for OPA1mutations assist in the diagnosis. We have identified mutations in OPA1 in 90% of families including 15 novel mutations. Both DNA sequencing and MLPA analysis are necessary to achieve a high detection rate. More than half of the affected families in Denmark are represented by three common mutations, at least two of which are due to a founder effect, which may account for the high prevalence of ADOA in Denmark.
Collapse
Affiliation(s)
- Gitte J Almind
- Center for Applied Human Molecular Genetics, Kennedy Center, Glostrup, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lenaers G, Hamel C, Delettre C, Amati-Bonneau P, Procaccio V, Bonneau D, Reynier P, Milea D. Dominant optic atrophy. Orphanet J Rare Dis 2012; 7:46. [PMID: 22776096 PMCID: PMC3526509 DOI: 10.1186/1750-1172-7-46] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/15/2012] [Indexed: 11/18/2022] Open
Abstract
Definition of the disease Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology Two genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis. Diagnosis Patients are usually diagnosed during their early childhood, because of bilateral, mild, otherwise unexplained visual loss related to optic discs pallor or atrophy, and typically occurring in the context of a family history of DOA. Optical Coherence Tomography further discloses non-specific thinning of retinal nerve fiber layer, but a normal morphology of the photoreceptors layers. Abnormal visual evoked potentials and pattern ERG may also reflect the dysfunction of the RGCs and their axons. Molecular diagnosis is provided by the identification of a mutation in the OPA1 gene (75% of DOA patients) or in the OPA3 gene (1% of patients). Prognosis Visual loss in DOA may progress during puberty until adulthood, with very slow subsequent chronic progression in most of the cases. On the opposite, in DOA patients with associated extra-ocular features, the visual loss may be more severe over time. Management To date, there is no preventative or curative treatment in DOA; severely visually impaired patients may benefit from low vision aids. Genetic counseling is commonly offered and patients are advised to avoid alcohol and tobacco consumption, as well as the use of medications that may interfere with mitochondrial metabolism. Gene and pharmacological therapies for DOA are currently under investigation.
Collapse
Affiliation(s)
- Guy Lenaers
- Institut des Neurosciences de Montpellier, U1051 de l'INSERM, Université de Montpellier I et II, BP 74103, F-34091 Montpellier cedex 05, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ranieri M, Del Bo R, Bordoni A, Ronchi D, Colombo I, Riboldi G, Cosi A, Servida M, Magri F, Moggio M, Bresolin N, Comi GP, Corti S. Optic atrophy plus phenotype due to mutations in the OPA1 gene: two more Italian families. J Neurol Sci 2011; 315:146-9. [PMID: 22197506 PMCID: PMC3315002 DOI: 10.1016/j.jns.2011.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/24/2011] [Accepted: 12/02/2011] [Indexed: 12/01/2022]
Abstract
Autosomal Dominant Optic Atrophy (ADOA) is characterized by the selective degeneration of retinal ganglion cells. The occurrence of mutations in the gene encoding the dynamin-like GTPase protein Optic Atrophy 1 (OPA1) has been observed in about 60–70% of ADOA cases. A subset of missense mutations, mostly within the GTPase domain, has recently been associated with a syndromic ADOA form called “OPA1 plus” phenotype presenting, at muscle level, mitochondrial DNA (mtDNA) instability. In this study we disclosed two OPA1 gene mutations in independent probands from two families affected by OPA1 plus phenotype: the previously reported c.985-2A > G substitution and a novel microdeletion (c.2819-1_2821del). The correlation between genotype and phenotype and the effects of these variants at the transcript level and in the muscle tissue were investigated, confirming the broad complexity in the phenotypic spectrum associated with these OPA1 mutations.
Collapse
Affiliation(s)
- Michela Ranieri
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|