1
|
Identification and Characterization of Novel Mutations in Chronic Kidney Disease (CKD) and Autosomal Dominant Polycystic Kidney Disease (ADPKD) in Saudi Subjects by Whole-Exome Sequencing. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58111657. [PMID: 36422197 PMCID: PMC9692281 DOI: 10.3390/medicina58111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is a condition usually caused by a single gene mutation and manifested by both renal and extrarenal features, eventually leading to end-stage renal disease (ESRD) by the median age of 60 years worldwide. Approximately 89% of ADPKD patients had either PKD1 or PKD2 gene mutations. The majority (85%) of the mutations are in the PKD1 gene, especially in the context of family history. Objectives: This study investigated the genetic basis and the undiscovered genes that are involved in ADPKD development among the Saudi population. Materials and Methods: In this study, 11 patients with chronic kidney disease were enrolled. The diagnosis of ADPKD was based on history and diagnostic images: CT images include enlargement of renal outlines, renal echogenicity, and presence of multiple renal cysts with dilated collecting ducts, loss of corticomedullary differentiation, and changes in GFR and serum creatinine levels. Next-generation whole-exome sequencing was conducted using the Ion Torrent PGM platform. Results: Of the 11 Saudi patients diagnosed with chronic kidney disease (CKD) and ADPKD, the most common heterozygote nonsynonymous variant in the PKD1 gene was exon15: (c.4264G > A). Two missense mutations were identified with a PKD1 (c.1758A > C and c.9774T > G), and one patient had a PKD2 mutation (c.1445T > G). Three detected variants were novel, identified at PKD1 (c.1758A > C), PKD2L2 (c.1364A > T), and TSC2 (deletion of a’a at the 3’UTR, R1680C) genes. Other variants in PKD1L1 (c.3813_381 4delinsTG) and PKD1L2 (c.404C > T) were also detected. The median age of end-stage renal disease for ADPK patients in Saudi Arabia was 30 years. Conclusion: This study reported a common variant in the PKD1 gene in Saudi patients with typical ADPKD. We also reported (to our knowledge) for the first time two novel missense variants in PKD1 and PKD2L2 genes and one indel mutation at the 3’UTR of the TSC2 gene. This study establishes that the reported mutations in the affected genes resulted in ADPKD development in the Saudi population by a median age of 30. Nevertheless, future protein−protein interaction studies to investigate the influence of these mutations on PKD1 and PKD2 functions are required. Furthermore, large-scale population-based studies to verify these findings are recommended.
Collapse
|
2
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
3
|
Autosomal dominant polycystic kidney disease (ADPKD) in Tunisia: From molecular genetics to the development of prognostic tools. Gene X 2022; 817:146174. [PMID: 35031424 DOI: 10.1016/j.gene.2021.146174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
A high prevalence of genetic kidney disease in Tunisia has been detected, and their study provides very important clinical and genetic information. Autosomal dominant polycystic kidney disease (ADPKD) is one of the main causes of morbidity and mortality associated with the kidneys in Tunisia. We present here clinical and genetic characteristics of a cohort of Tunisian patients with ADPKD. Nineteen Tunisian patients with ADPKD, among 4 familial cases and 11 sporadic cases, and 50 Healthy individuals were included in this cohort. Genetic studies of PKD1/2 were carried on using Sanger sequencing and MLPA. In our study, the mean age at diagnosis was 47 ± 18 years. In addition, 84.21% of cases present a family history of ADPKD. Overall, 57.89% of the affected individuals had HTA and 26.31% patients had hematuria. 15.78 % of the patient has extra-renal cysts i.e. one patient with splenic cysts and two patients had liver cysts. 57.89 % of patients were diagnosed with various extra-renal clinical presentations i.e. myopia, hernia, deafness, intracranial aneurysm, respiratory distress, hyperthyroidism, urinary tract infection and lower back pains. The PKD1 genotype showed earlier onset of ESRD compared to PKD2 genotype (43 vs. 55 years old). Six mutations have been detected in PKD1 gene. Among them, three were novels e.g. c.688 T>G, p.C230G and c.690C>G, p.C230W among exon 5 and c.8522A>G, p.N2841S among exon 23. In addition, thirteen single nucleotides polymorphisms have been reported in PKD1 gene. Among them, eleven previously reported in heterozygous state and two novel single nucleotides polymorphisms in heterozygous and homozygous state and predicted to be probable polymorphisms by computational tools: c.496C>T, p.L166= among the exon 4, and c.10165G>C and p.E3389Gln among the exon 31. Only three single nucleotides polymorphisms previously reported in ADPKD database have been identified in PKD2 gene. The description and analysis of our cohort can help in rapid and reliable diagnosis for early management of patients in Tunisia. Indeed, predictive genetic testing can facilitate donor evaluation and increase living related kidney transplantation.
Collapse
|
4
|
Bitarafan F, Garshasbi M. Molecular genetic analysis of polycystic kidney disease 1 and polycystic kidney disease 2 mutations in pedigrees with autosomal dominant polycystic kidney disease. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2019; 24:44. [PMID: 31160911 PMCID: PMC6540774 DOI: 10.4103/jrms.jrms_835_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 02/25/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Dysfunction of polycystin-1 or polycystin-2, the proteins encoded by polycystic kidney disease 1 (PKD1) and PKD2, respectively, are the cause of autosomal dominant PKD (ADPKD). This genetically heterogeneous monogenic disorder is the most common inherited kidney disease. The disease manifests are progressive cyst growth, renal enlargement, and renal failure, due to abnormal proliferation of kidney tubular epithelium. MATERIALS AND METHODS In this study, mutation analysis of PKD1 and PKD2 genes in nine Iranian families was performed using next-generation sequencing. All patients met the diagnostic criteria of ADPKD. RESULTS Mutations were found in all 9 families in PKD1 gene, comprising 2 novel and 7 previously reported mutations. No mutation in PKD2 was identified. CONCLUSION Finding more mutations and expanding the spectrum of PKD1 and PKD2 mutations can increase the diagnostic value of molecular testing in the screening of ADPKD patients.
Collapse
Affiliation(s)
- Fatemeh Bitarafan
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Teheran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Teheran, Iran
| |
Collapse
|
5
|
Ali H, Al-Mulla F, Hussain N, Naim M, Asbeutah AM, AlSahow A, Abu-Farha M, Abubaker J, Al Madhoun A, Ahmad S, Harris PC. PKD1 Duplicated regions limit clinical Utility of Whole Exome Sequencing for Genetic Diagnosis of Autosomal Dominant Polycystic Kidney Disease. Sci Rep 2019; 9:4141. [PMID: 30858458 PMCID: PMC6412018 DOI: 10.1038/s41598-019-40761-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited monogenic renal disease characterised by the accumulation of clusters of fluid-filled cysts in the kidneys and is caused by mutations in PKD1 or PKD2 genes. ADPKD genetic diagnosis is complicated by PKD1 pseudogenes located proximal to the original gene with a high degree of homology. The next generation sequencing (NGS) technology including whole exome sequencing (WES) and whole genome sequencing (WGS), is becoming more affordable and its use in the detection of ADPKD mutations for diagnostic and research purposes more widespread. However, how well does NGS technology compare with the Gold standard (Sanger sequencing) in the detection of ADPKD mutations? Is a question that remains to be answered. We have evaluated the efficacy of WES, WGS and targeted enrichment methodologies in detecting ADPKD mutations in the PKD1 and PKD2 genes in patients who were clinically evaluated by ultrasonography and renal function tests. Our results showed that WES detected PKD1 mutations in ADPKD patients with 50% sensitivity, as the reading depth and sequencing quality were low in the duplicated regions of PKD1 (exons 1–32) compared with those of WGS and target enrichment arrays. Our investigation highlights major limitations of WES in ADPKD genetic diagnosis. Enhancing reading depth, quality and sensitivity of WES in the PKD1 duplicated regions (exons 1–32) is crucial for its potential diagnostic or research applications.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait. .,Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait. .,Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait.
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait.
| | - Naser Hussain
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
| | - Medhat Naim
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
| | - Akram M Asbeutah
- Department of Radiological Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Ali AlSahow
- Division of Nephrology, Al-Jahra Hospital, Ministry of Health, Al-Jahra, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Sajjad Ahmad
- Department of Cornea and External Diseases, Moorfields Eye Hospital-NHS Foundation Trust, London, United Kingdom.,Institute of Ophthalmology, University Collage London (UCL), London, United Kingdom
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| |
Collapse
|
6
|
Xu P, Huang S, Li J, Zou Y, Gao M, Kang R, Yan J, Gao X, Gao Y. A novel splicing mutation in the PKD1 gene causes autosomal dominant polycystic kidney disease in a Chinese family: a case report. BMC MEDICAL GENETICS 2018; 19:198. [PMID: 30424739 PMCID: PMC6234645 DOI: 10.1186/s12881-018-0706-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic renal disorder in humans, affecting 1 in 400 to 1000 individuals. Mutations PKD1 (which accounts for 85% of ADPKD and produces polycystin-1) and PKD2 (produces polycystin-2) are responsible for this disease. These two polycystins are critical for maintaining normal renal tubular structures during kidney development. Case presentation We performed genetic analysis on a family with ADPKD. DNA samples extracted from ADPKD patient blood were subject to targeted Next generation sequencing for human a panel of renal disease-related genes. A splicing mutation, c.2854-3C > G (also known as IVS11–3C > G), in the PKD1 gene was found in the 3 patients from the family, but was not found in four unaffected relatives and 100 normal control samples. Reverse transcription-PCR (RT-PCR) was performed to analyse the relative mRNA expression in the patient samples. mRNA sequencing showed that 29 bases inserted into the 3′-end of exon 11 in the PKD1 gene lead to a frameshift mutation. Conclusions The PKD1 c.2854-3C > G mutation leads to a frameshift mutation during translation of the polycystin-1 protein, which eventually led to ADPKD in the Chinese family.
Collapse
Affiliation(s)
- Peiwen Xu
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Sexing Huang
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Jie Li
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Yang Zou
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Ming Gao
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Ranran Kang
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Xuan Gao
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China.
| | - Yuan Gao
- Center for Reproductive Medicine, Shandong University, Jinan, 250001, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China. .,The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China.
| |
Collapse
|
7
|
Liu W, Chen M, Wei J, He W, Li Z, Sun X, Shi Y. Modification of PCR conditions and design of exon-specific primers for the efficient molecular diagnosis of PKD1 mutations. Kidney Blood Press Res 2014; 39:536-45. [PMID: 25531466 DOI: 10.1159/000368464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Autosomal-dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by mutations in the PKD1 and PKD2 genes. Currently, long-range PCR followed by nested PCR and sequencing (LRNS) is the gold standard approach for PKD1 testing. However, LRNS is complicated by the high structural and sequence complexity of PKD1, which makes the procedure for amplification and analysis of PKD1 difficult. METHODS Here in, we modified the PCR conditions and designed primers for efficient and specific amplification of both the long-range and individual exons of PKD1. RESULTS Using the modified system, seven long-range fragments were specifically amplified using two distinct sets of conditions, and all individual exon PCR assays were easily performed using a touch-down PCR method. Seven pathogenic or likely pathogenic variants, including two novel truncated frameshift indels and two novel likely pathogenic missense mutations, were identified in eight unrelated patients with or without histories of ADPKD disease (one variant was observed in two unrelated patients). Using combined bioinformatics tools, two indeterminate missense variants were identified in two sporadic patients. CONCLUSION Four novel PKD1 variants were identified in this study. We demonstrated that the modified LRNS method achieves high sensitivity and specificity for detecting pathogenic variants of ADPKD.
Collapse
Affiliation(s)
- WeiQiang Liu
- Graduate school, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | |
Collapse
|
8
|
New mutations in the PKD1 gene in Czech population with autosomal dominant polycystic kidney disease. BMC MEDICAL GENETICS 2009; 10:78. [PMID: 19686598 PMCID: PMC2736583 DOI: 10.1186/1471-2350-10-78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 08/17/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease. The disease is caused by mutations of the PKD1 (affecting roughly 85% of ADPKD patients) and PKD2 (affecting roughly 14% of ADPKD patients) genes, although in several ADPKD families, the PKD1 and/or PKD2 linkage was not found. Mutation analysis of the PKD1 gene is complicated by the presence of highly homologous genomic duplications of the first two thirds of the gene. METHODS The direct detection of mutations in the non-duplicated region of the PKD1 gene was performed in 90 unrelated individuals, consisting of 58 patients with end-stage renal failure (manifesting before their 50th year of life) and 32 individuals from families where the disease was clearly linked to the PKD1 gene. Mutation screening was performed using denaturing gradient gel electrophoresis (DGGE). DNA fragments showing an aberrant electrophoretic banding pattern were sequenced. RESULTS In the non-duplicated region of the PKD1 gene, 19 different likely pathogenic germline sequence changes were identified in 19 unrelated families/individuals. Fifteen likely pathogenic sequence changes are unique for the Czech population. The following probable mutations were identified: 9 nonsense mutations, 6 likely pathogenic missense mutations, 2 frameshifting mutations, one in-frame deletion and probable splice site mutation. In the non-duplicated region of the PKD1 gene, 16 different polymorphisms or unclassified variants were detected. CONCLUSION Twenty probable mutations of the PKD1 gene in 90 Czech individuals (fifteen new probable mutations) were detected. The establishment of localization and the type of causal mutations and their genotype phenotype correlation in ADPKD families will improve DNA diagnosis and could help in the assessment of the clinical prognosis of ADPKD patients.
Collapse
|
9
|
Endreffy E, Maróti Z, Bereczki C, Túri S. Usefulness of combined genetic data in Hungarian families affected by autosomal dominant polycystic kidney disease. Mol Cell Probes 2008; 23:39-43. [PMID: 19056484 DOI: 10.1016/j.mcp.2008.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 11/04/2008] [Accepted: 11/11/2008] [Indexed: 11/17/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common hereditary diseases. Mutations of two known genetic loci (PKD1: 16p13.3 and PKD2: 4q21.2) can lead to bilateral renal cysts. The PKD1 locus is the more common ( approximately 85%), with a more severe phenotype. Because of the genetic complexity of ADPKD and the size and complexity of the PKD1 gene, pedigree-based linkage analysis is a useful tool for the genetic diagnosis in families with more than one subject affected. We tested linkage or non-linkage to the closely linked DNA markers flanking the PKD1 (D16S663 and D16S291) and one intragenic D16S3252 and PKD2 (D4S1563 and D4S2462) in 30 ADPKD-affected families, to determine the distributions of alleles and the degree of microsatellite polymorphisms (in 91 patients and 125 healthy subjects). To characterize the markers, used heterozygosity levels, polymorphism information content and LOD scores were calculated. The D16S663 marker included 12 kinds of alleles, while D16S291 had 10 alleles and D16S3252 had 8. D4S1563 had 12 alleles and D4S2462 had 11. In a search for a common ancestral relationship, we considered the patients' alleles with the same repeat number. Only one haplotype was detected in more than one (2) unrelated families. The calculated two-point LOD scores indicated a linkage to PKD1 in 22 families (74%). In four families (13%) with a linkage to PKD2, the patients reached the end-stage renal disease after the age of 65years. One family was linked to neither gene (3%), and in three families (10%) a linkage to both genes was possible. In the latter three families, the numbers of analyzed subjects were small (4-5), and/or some markers were only partially or non-informative. However, the elderly affected family members exhibited the clinical signs of the PKD1 form in these cases. The new Hungarian population genetic information was compared with available data on other populations.
Collapse
Affiliation(s)
- Emoke Endreffy
- Pediatric Department and Pediatric Health Center, Faculty of Medicine, A. Szent-Györgyi Clinical Center, University of Szeged, Korányi fasor 14-15, H-6720 Szeged, Hungary.
| | | | | | | |
Collapse
|