1
|
Gras M, Heide S, Keren B, Valence S, Garel C, Whalen S, Jansen AC, Keymolen K, Stouffs K, Jennesson M, Poirsier C, Lesca G, Depienne C, Nava C, Rastetter A, Curie A, Cuisset L, Des Portes V, Milh M, Charles P, Mignot C, Héron D. Further characterisation of ARX-related disorders in females due to inherited or de novo variants. J Med Genet 2024; 61:103-108. [PMID: 37879892 DOI: 10.1136/jmg-2023-109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.
Collapse
Affiliation(s)
- Mathilde Gras
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Solveig Heide
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Boris Keren
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Stéphanie Valence
- Unit of Pediatric Neurology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilites of rare causes » Déficiences Intellectuelles de Causes Rares, Armand-Trousseau Hospital, Paris, France
| | - Catherine Garel
- Unit of Pediatric Radiology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Sandra Whalen
- Department of Clinical Genetics and Reference Center for Rare Diseases « Developmental disorders and syndromes », APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katrien Stouffs
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mélanie Jennesson
- Pediatrics Unit, University Hospital of Reims, American Memorial Hospital, Reims, France
| | - Céline Poirsier
- UF génétique clinique, Pôle Femme-Parents-Enfants, CHU Reims, Reims, France
| | - Gaetan Lesca
- Department of Genetics, Referral Center for Developmental Anomalies and Malformative Syndromes, Centre-est HCL, Hospices Civils de Lyon, Lyon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Aurore Curie
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Laurence Cuisset
- APHP Centre Université Paris Cité, Service de Médecine Génomique des Maladies de Système et d'Organe, Cochin Hospital, Paris, France
| | - Vincent Des Portes
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Mathieu Milh
- Department of Neurology Pediatrics, AP-HM, Hôpital de la Timone, Marseille, France
| | - Perrine Charles
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Delphine Héron
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| |
Collapse
|
2
|
Drongitis D, Caterino M, Verrillo L, Santonicola P, Costanzo M, Poeta L, Attianese B, Barra A, Terrone G, Lioi MB, Paladino S, Di Schiavi E, Costa V, Ruoppolo M, Miano MG. Deregulation of microtubule organization and RNA metabolism in Arx models for lissencephaly and developmental epileptic encephalopathy. Hum Mol Genet 2022; 31:1884-1908. [PMID: 35094084 PMCID: PMC9169459 DOI: 10.1093/hmg/ddac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Loredana Poeta
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Adriano Barra
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Child Neurology Unit, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| |
Collapse
|
3
|
Further Delineation of Duplications of ARX Locus Detected in Male Patients with Varying Degrees of Intellectual Disability. Int J Mol Sci 2022; 23:ijms23063084. [PMID: 35328505 PMCID: PMC8955779 DOI: 10.3390/ijms23063084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
The X-linked gene encoding aristaless-related homeobox (ARX) is a bi-functional transcription factor capable of activating or repressing gene transcription, whose mutations have been found in a wide spectrum of neurodevelopmental disorders (NDDs); these include cortical malformations, paediatric epilepsy, intellectual disability (ID) and autism. In addition to point mutations, duplications of the ARX locus have been detected in male patients with ID. These rearrangements include telencephalon ultraconserved enhancers, whose structural alterations can interfere with the control of ARX expression in the developing brain. Here, we review the structural features of 15 gain copy-number variants (CNVs) of the ARX locus found in patients presenting wide-ranging phenotypic variations including ID, speech delay, hypotonia and psychiatric abnormalities. We also report on a further novel Xp21.3 duplication detected in a male patient with moderate ID and carrying a fully duplicated copy of the ARX locus and the ultraconserved enhancers. As consequences of this rearrangement, the patient-derived lymphoblastoid cell line shows abnormal activity of the ARX-KDM5C-SYN1 regulatory axis. Moreover, the three-dimensional (3D) structure of the Arx locus, both in mouse embryonic stem cells and cortical neurons, provides new insight for the functional consequences of ARX duplications. Finally, by comparing the clinical features of the 16 CNVs affecting the ARX locus, we conclude that—depending on the involvement of tissue-specific enhancers—the ARX duplications are ID-associated risk CNVs with variable expressivity and penetrance.
Collapse
|
4
|
Poeta L, Padula A, Lioi MB, van Bokhoven H, Miano MG. Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures. Genes (Basel) 2021; 12:genes12071088. [PMID: 34356104 PMCID: PMC8305412 DOI: 10.3390/genes12071088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of transcriptional pathways is observed in multiple forms of neurodevelopmental disorders (NDDs), such as intellectual disability (ID), epilepsy and autism spectrum disorder (ASD). We previously demonstrated that the NDD genes encoding lysine-specific demethylase 5C (KDM5C) and its transcriptional regulators Aristaless related-homeobox (ARX), PHD Finger Protein 8 (PHF8) and Zinc Finger Protein 711 (ZNF711) are functionally connected. Here, we show their relation to each other with respect to the expression levels in human and mouse datasets and in vivo mouse analysis indicating that the coexpression of these syntenic X-chromosomal genes is temporally regulated in brain areas and cellular sub-types. In co-immunoprecipitation assays, we found that the homeotic transcription factor ARX interacts with the histone demethylase PHF8, indicating that this transcriptional axis is highly intersected. Furthermore, the functional impact of pathogenic mutations of ARX, KDM5C, PHF8 and ZNF711 was tested in lymphoblastoid cell lines (LCLs) derived from children with varying levels of syndromic ID establishing the direct correlation between defects in the KDM5C-H3K4me3 pathway and ID severity. These findings reveal novel insights into epigenetic processes underpinning NDD pathogenesis and provide new avenues for assessing developmental timing and critical windows for potential treatments.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy;
- Department of Science, University of Basilicata, 85100 Potenza, Italy;
- Correspondence: (L.P.); (M.G.M.); Tel.: +39-(0)-816132261/445 (M.G.M.)
| | - Agnese Padula
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy;
| | | | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy;
- Correspondence: (L.P.); (M.G.M.); Tel.: +39-(0)-816132261/445 (M.G.M.)
| |
Collapse
|
5
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Poeta L, Padula A, Attianese B, Valentino M, Verrillo L, Filosa S, Shoubridge C, Barra A, Schwartz CE, Christensen J, van Bokhoven H, Helin K, Lioi MB, Collombat P, Gecz J, Altucci L, Di Schiavi E, Miano MG. Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders. Hum Mol Genet 2020; 28:4089-4102. [PMID: 31691806 DOI: 10.1093/hmg/ddz254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Agnese Padula
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy.,University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Mariaelena Valentino
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy.,University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefania Filosa
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy.,Istituto Neurologico Mediterraneo (Neuromed), Pozzilli, Isernia, Italy
| | - Cheryl Shoubridge
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Adriano Barra
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | | | - Jesper Christensen
- University of Copenhagen, Biotech Research and Innovation Centre (BRIC), Copenhagen, Denmark.,University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), Copenhagen, Denmark
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Behaviour and Cognition, Radboudumc, Nijmegen, The Netherlands
| | - Kristian Helin
- University of Copenhagen, Biotech Research and Innovation Centre (BRIC), Copenhagen, Denmark.,University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), Copenhagen, Denmark
| | | | | | - Jozef Gecz
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Lucia Altucci
- University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| |
Collapse
|
7
|
Poeta L, Drongitis D, Verrillo L, Miano MG. DNA Hypermethylation and Unstable Repeat Diseases: A Paradigm of Transcriptional Silencing to Decipher the Basis of Pathogenic Mechanisms. Genes (Basel) 2020; 11:E684. [PMID: 32580525 PMCID: PMC7348995 DOI: 10.3390/genes11060684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Unstable repeat disorders comprise a variable group of incurable human neurological and neuromuscular diseases caused by an increase in the copy number of tandem repeats located in various regions of their resident genes. It has become clear that dense DNA methylation in hyperexpanded non-coding repeats induces transcriptional silencing and, subsequently, insufficient protein synthesis. However, the ramifications of this paradigm reveal a far more profound role in disease pathogenesis. This review will summarize the significant progress made in a subset of non-coding repeat diseases demonstrating the role of dense landscapes of 5-methylcytosine (5mC) as a common disease modifier. However, the emerging findings suggest context-dependent models of 5mC-mediated silencing with distinct effects of excessive DNA methylation. An in-depth understanding of the molecular mechanisms underlying this peculiar group of human diseases constitutes a prerequisite that could help to discover novel pathogenic repeat loci, as well as to determine potential therapeutic targets. In this regard, we report on a brief description of advanced strategies in DNA methylation profiling for the identification of unstable Guanine-Cytosine (GC)-rich regions and on promising examples of molecular targeted therapies for Fragile X disease (FXS) and Friedrich ataxia (FRDA) that could pave the way for the application of this technique in other hypermethylated expansion disorders.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| | - Denise Drongitis
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| | - Lucia Verrillo
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| |
Collapse
|
8
|
Wu Y, Zhang H, Liu X, Shi Z, Li H, Wang Z, Jie X, Huang S, Zhang F, Li J, Zhang K, Gao X. Mutations of ARX and non-syndromic intellectual disability in Chinese population. Genes Genomics 2018; 41:125-131. [PMID: 30255221 DOI: 10.1007/s13258-018-0745-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/15/2018] [Indexed: 02/08/2023]
Abstract
Mutations of Aristaless-related homeobox (ARX) gene were looked as the third cause of non-syndromic intellectual disability (NSID), while the boundary between true disease-causing mutations and non-disease-causing variants within this gene remains elusive. To investigate the relationship between ARX mutations and NSID, a panel comprising six reported causal mutations of the ARX was detected in 369 sporadic NSID patients and 550 random participants in Chinese. Two mutations, c.428_451 dup and p.G286S, may be disease-causing mutations for NSID, while p.Q163R and p.P353L showed a great predictive value in female NSID diagnosis with significant associations (X2 = 19.60, p = 9.54e-6 for p.Q163R; X2 = 25.70, p = 4.00e-07 for p.P353L), carriers of these mutations had an increased risk of NSID of more than fourfold. Detection of this panel also predicted significant associations between genetic variants of the ARX gene and NSID (p = 3.73e-4). The present study emphasized the higher genetic burden of the ARX gene on NSID in the Chinese population, molecular analysis of this gene should be considered for patients presenting NSID of unknown etiology.
Collapse
Affiliation(s)
- Yufei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Huan Zhang
- The 2nd Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaofen Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Zhangyan Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Hongling Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Zhibin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Xiaoyong Jie
- Xi'an Cangning Psychiatric Hospital, Xi'an, 710114, China
| | - Shaoping Huang
- The 2nd Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Fuchang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China.,College of Public Management, Institute of Application Psychology, Northwest University, Xi'an, 710127, China
| | - Junlin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Kejin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China.
| | - Xiaocai Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China. .,College of Public Management, Institute of Application Psychology, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
9
|
Lumaka A, Race V, Peeters H, Corveleyn A, Coban-Akdemir Z, Jhangiani SN, Song X, Mubungu G, Posey J, Lupski JR, Vermeesch JR, Lukusa P, Devriendt K. A comprehensive clinical and genetic study in 127 patients with ID in Kinshasa, DR Congo. Am J Med Genet A 2018; 176:1897-1909. [PMID: 30088852 DOI: 10.1002/ajmg.a.40382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Pathogenic variants account for 4 to 41% of patients with intellectual disability (ID) or developmental delay (DD). In Sub-Saharan Africa, the prevalence of ID is thought to be higher, but data in Central Africa are limited to some case reports. In addition, clinical descriptions of some syndromes are not available for this population. This study aimed at providing an estimate for the fraction of ID/DD for which an underlying etiological genetic cause may be elucidated and provide insights into their clinical presentation in special institutions in a Central African country. A total of 127 patients (33 females and 94 males, mean age 10.03 ± 4.68 years), were recruited from six institutions across Kinshasa. A clinical diagnosis was achieved in 44 but molecular confirmation was achieved in 21 of the 22 patients with expected genetic defect (95% clinical sensitivity). Identified diseases included Down syndrome (15%), submicroscopic copy number variants (9%), aminoacylase deficiency (0.8%), Partington syndrome in one patient (0.8%) and his similarly affected brother, X-linked syndromic Mental Retardation type 33 (0.8%), and two conditions without clear underlying molecular genetic etiologies (Oculo-Auriculo-Vertebral and Amniotic Bands Sequence). We have shown that genetic etiologies, similar to those reported in Caucasian subjects, are a common etiologic cause of ID in African patients from Africa. We have confirmed the diagnostic utility of clinical characterization prior to genetic testing. Finally, our clinical descriptions provide insights into the presentation of these genetic diseases in African patients.
Collapse
Affiliation(s)
- Aimé Lumaka
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo.,Département des Sciences Biomédicales et Précliniques, GIGA-R, Laboratoire de Génétique Humaine, University of Liège, Liège, Belgium.,Institut National de Recherche Biomédicale, Kinshasa, DR, Congo.,Department of Pediatrics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo
| | - Valerie Race
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Hilde Peeters
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Gerrye Mubungu
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo.,Institut National de Recherche Biomédicale, Kinshasa, DR, Congo.,Department of Pediatrics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo.,Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Jennifer Posey
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Genetics Clinic service, Texas Children's Hospital, Houston, Texas
| | - Joris R Vermeesch
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Prosper Lukusa
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo.,Département des Sciences Biomédicales et Précliniques, GIGA-R, Laboratoire de Génétique Humaine, University of Liège, Liège, Belgium.,Institut National de Recherche Biomédicale, Kinshasa, DR, Congo.,Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Jackson MR, Lee K, Mattiske T, Jaehne EJ, Ozturk E, Baune BT, O'Brien TJ, Jones N, Shoubridge C. Extensive phenotyping of two ARX polyalanine expansion mutation mouse models that span clinical spectrum of intellectual disability and epilepsy. Neurobiol Dis 2017; 105:245-256. [DOI: 10.1016/j.nbd.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/30/2017] [Accepted: 05/29/2017] [Indexed: 11/17/2022] Open
|
11
|
Casey JP, Støve SI, McGorrian C, Galvin J, Blenski M, Dunne A, Ennis S, Brett F, King MD, Arnesen T, Lynch SA. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment. Sci Rep 2015; 5:16022. [PMID: 26522270 PMCID: PMC4629191 DOI: 10.1038/srep16022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/08/2015] [Indexed: 12/03/2022] Open
Abstract
We report two brothers from a non-consanguineous Irish family presenting with a novel syndrome characterised by intellectual disability, facial dysmorphism, scoliosis and long QT. Their mother has a milder phenotype including long QT. X-linked inheritance was suspected. Whole exome sequencing identified a novel missense variant (c.128 A > C; p.Tyr43Ser) in NAA10 (X chromosome) as the cause of the family’s disorder. Sanger sequencing confirmed that the mutation arose de novo in the carrier mother. NAA10 encodes the catalytic subunit of the major human N-terminal acetylation complex NatA. In vitro assays for the p.Tyr43Ser mutant enzyme showed a significant decrease in catalytic activity and reduced stability compared to wild-type Naa10 protein. NAA10 has previously been associated with Ogden syndrome, Lenz microphthalmia syndrome and non-syndromic developmental delay. Our findings expand the clinical spectrum of NAA10 and suggest that the proposed correlation between mutant Naa10 enzyme activity and phenotype severity is more complex than anticipated; the p.Tyr43Ser mutant enzyme has less catalytic activity than the p.Ser37Pro mutant associated with lethal Ogden syndrome but results in a milder phenotype. Importantly, we highlight the need for cardiac assessment in males and females with NAA10 variants as both patients and carriers can have long QT.
Collapse
Affiliation(s)
- Jillian P Casey
- Clinical Genetics, Temple Street Children's University Hospital, Temple Street, Dublin 1, Ireland.,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Svein I Støve
- Department of Molecular Biology, University of Bergen, Norway
| | - Catherine McGorrian
- Department of Cardiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland.,School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Joseph Galvin
- Department of Cardiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Marina Blenski
- Department of Molecular Biology, University of Bergen, Norway
| | - Aimee Dunne
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Sean Ennis
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Francesca Brett
- Department of Neuropathology, Beaumont Hospital, Dublin 9, Ireland
| | - Mary D King
- Department of Paediatric Neurology &Clinical Neurophysiology, Temple Street Children's University Hospital, Dublin 1, Ireland.,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Norway
| | - Sally Ann Lynch
- Clinical Genetics, Temple Street Children's University Hospital, Temple Street, Dublin 1, Ireland.,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| |
Collapse
|
12
|
Jorge P, Oliveira B, Marques I, Santos R. Development and validation of a multiplex-PCR assay for X-linked intellectual disability. BMC MEDICAL GENETICS 2013; 14:80. [PMID: 23914978 PMCID: PMC3751858 DOI: 10.1186/1471-2350-14-80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/07/2013] [Indexed: 12/03/2022]
Abstract
Background X-linked intellectual disability is a common cause of inherited cognitive deficit affecting mostly males. There are several genetic causes implicated in this condition, which has hampered the establishment of an accurate diagnosis. We developed a multiplex-PCR assay for the mutational hotspot regions of the FMR1, AFF2 and ARX genes. Methods The multiplex-PCR was validated in a cohort of 100 males selected to include known alleles for the FMR1 repetitive region: five full mutations (250–650 CGGs), ten premutations (70–165 CGGs) and eighty-five in the normal range (19–42 CGGs). Sequencing or Southern blotting was used to confirm the results, depending on the allele class. In this cohort, with the exception of one sample showing an AFF2 intermediate-sized allele, all other samples were normal (8–34 CCGs). No ARX variant was found besides the c.429_452dup. The validated assay was applied to 5000 samples (64.4% males and 35.6% females). Results The normal-allelic range of both FMR1 and AFF2 genes as well as the nature of ARX variants identified was similar in both genders. The rate of homozygosity observed in female samples, 27.5% for FMR1 and 17.8% for AFF2 alleles, is comparable to that published by others. Two FMR1 premutations were identified, in a male (58 CGGs) and a female case [(CGG)47/(CGG)61], as well as several FMR1 or AFF2 intermediate-sized alleles. One AFF2 premutation (68 CCGs) and two putative full expansions were picked up in male subjects, which seems relevant considering the rarity of reported AFF2 mutations found in the absence of a family history. Conclusions We developed a robust multiplex-PCR that can be used to screen the mutational hotspot regions of FMR1, AFF2 and ARX genes. Moreover, this strategy led to the identification of variants in all three genes, representing not only an improvement in allele-sizing but also in achieving a differential diagnosis. Although the distinction between females who are truly homozygous and those with a second pre- or full mutation sized allele, as well as a definitive diagnosis, requires a specific downstream technique, the use of this multiplex-PCR for initial screening is a cost-effective approach which widens the scope of detection.
Collapse
Affiliation(s)
- Paula Jorge
- Centro de Genética Médica Dr, Jacinto Magalhães, CHP, Praça Pedro Nunes 88, 4099-028, Porto, Portugal.
| | | | | | | |
Collapse
|
13
|
Poeta L, Fusco F, Drongitis D, Shoubridge C, Manganelli G, Filosa S, Paciolla M, Courtney M, Collombat P, Lioi M, Gecz J, Ursini M, Miano M. A regulatory path associated with X-linked intellectual disability and epilepsy links KDM5C to the polyalanine expansions in ARX. Am J Hum Genet 2013; 92:114-25. [PMID: 23246292 DOI: 10.1016/j.ajhg.2012.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/07/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022] Open
Abstract
Intellectual disability (ID) and epilepsy often occur together and have a dramatic impact on the development and quality of life of the affected children. Polyalanine (polyA)-expansion-encoding mutations of aristaless-related homeobox (ARX) cause a spectrum of X-linked ID (XLID) diseases and chronic epilepsy, including infantile spasms. We show that lysine-specific demethylase 5C (KDM5C), a gene known to be mutated in XLID-affected children and involved in chromatin remodeling, is directly regulated by ARX through the binding in a conserved noncoding element. We have studied altered ARX carrying various polyA elongations in individuals with XLID and/or epilepsy. The changes in polyA repeats cause hypomorphic ARX alterations, which exhibit a decreased trans-activity and reduced, but not abolished, binding to the KDM5C regulatory region. The altered functioning of the mutants tested is likely to correlate with the severity of XLID and/or epilepsy. By quantitative RT-PCR, we observed a dramatic Kdm5c mRNA downregulation in murine Arx-knockout embryonic and neural stem cells. Such Kdm5c mRNA diminution led to a severe decrease in the KDM5C content during in vitro neuronal differentiation, which inversely correlated with an increase in H3K4me3 signal. We established that ARX polyA alterations damage the regulation of KDM5C expression, and we propose a potential ARX-dependent path acting via chromatin remodeling.
Collapse
|
14
|
Oegema R, Maat-Kievit A, Lequin MH, Schot R, Nanninga-van den Neste VMH, Doornbos ME, de Wit MCY, Halley DJ, Mancini GMS. Asymmetric polymicrogyria and periventricular nodular heterotopia due to mutation in ARX. Am J Med Genet A 2012; 158A:1472-6. [PMID: 22585566 DOI: 10.1002/ajmg.a.35365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/05/2012] [Indexed: 12/22/2022]
Abstract
Mutations in the ARX gene, at Xp22.3, cause several disorders, including infantile spasms, X-linked lissencephaly with abnormal genitalia (XLAG), callosal agenesis and isolated intellectual disability. Genotype/phenotype studies suggested that polyalanine tract expansion is associated with non-malformative phenotypes, while missense and nonsense mutations cause cerebral malformations, however, patients with structural normal brain and missense mutations have been reported. We report on a male patient born with cleft lip and palate who presented with infantile spasms and hemiplegia. MRI showed agenesis of corpus callosum (ACC), an interhemispheric cyst, periventricular nodular heterotopia (PVNH), and extensive left frontal polymicrogyria (PMG). Sequencing of the ARX gene in the patient identified a six basepair insertion (c.335ins6, exon 2). The insertion leads to a two-residue expansion of the first polyalanine tract and was described previously in a family with non-syndromic X-linked mental retardation. To our knowledge, ARX mutation causing PMG and PVNH is unique, but the spasms and ACC are common in ARX mutations. Clinicians should be aware of the broad clinical range of ARX mutations, and further studies are necessary to investigate the association with PMG and PVNH and to identify possible modifying factors.
Collapse
Affiliation(s)
- Renske Oegema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Is there a Mendelian transmission ratio distortion of the c.429_452dup(24bp) polyalanine tract ARX mutation? Eur J Hum Genet 2012; 20:1311-4. [PMID: 22490986 DOI: 10.1038/ejhg.2012.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Intellectual disability is common. Aristaless-related homeobox (ARX) gene is one of the most frequently mutated and pleiotropic genes, implicated in 10 different phenotypes. More than half of ~100 reported cases with ARX mutations are due to a recurrent duplication of 24 bp, c.429_452dup, which leads to polyalanine tract expansion. The excess of affected males among the offspring of the obligate carrier females raised the possibility of transmission ratio distortion for the c.429_452dup mutation. We found a significant deviation from the expected Mendelian 1:1 ratio of transmission in favour of the c.429_452dup ARX mutation. We hypothesise that the preferential transmission of the c.429_452dup mutation may be due to asymmetry of meiosis in the oocyte. Our findings may have implications for genetic counselling of families segregating the c.429_452dup mutation and allude to putative role of ARX in oocyte biology.
Collapse
|
16
|
Fullston T, Finnis M, Hackett A, Hodgson B, Brueton L, Baynam G, Norman A, Reish O, Shoubridge C, Gecz J. Screening and cell-based assessment of mutations in the Aristaless-related homeobox (ARX) gene. Clin Genet 2011; 80:510-22. [PMID: 21496008 DOI: 10.1111/j.1399-0004.2011.01685.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ARX mutations cause a diverse spectrum of human disorders, ranging from severe brain and genital malformations to non-syndromic intellectual disability (ID). ARX is a transcription factor with multiple domains that include four polyalanine (pA) tracts, the first two of which are frequently expanded by mutations. We progressively screened DNA samples from 613 individuals with ID initially for the most frequent ARX mutations (c.304ins(GCG)(7)'expansion' of pA1 and c.429_452dup 'dup24bp' of pA2). Five hundred samples without pA1 or pA2 mutations had the entire ARX ORF screened by single stranded polymorphism conformation (SSCP) and/or denaturing high pressure liquid chromatography (dHPLC) analysis. Overall, eight families with six mutations in ARX were identified (1.31%): five duplication mutations in pA2 (0.82%) with three new clinical reports of families with the dup24bp and two duplications larger than the dup24bp mutation discovered (dup27bp, dup33bp); and three point mutations (0.6%), including one novel mutation in the homeodomain (c.1074G>T). Four ultraconserved regions distal to ARX (uc466-469) were also screened in a subset of 94 patients, with three unique nucleotide changes identified in two (uc466, uc467). The subcellular localization of full length ARX proteins was assessed for 11 variants. Protein mislocalization increased as a function of pA2 tract length and phenotypic severity, as has been previously suggested for pA1. Similarly, protein mislocalization of the homeodomain mutations also correlated with clinical severity, suggesting an emerging genotype vs cellular phenotype correlation.
Collapse
Affiliation(s)
- T Fullston
- Neurogenetics Laboratory, Genetics and Molecular Pathology, SA Pathology at the Women's and Children's Hospital, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shoubridge C, Fullston T, Gécz J. ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 2010; 31:889-900. [PMID: 20506206 DOI: 10.1002/humu.21288] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Aristaless-related homeobox gene (ARX) is one of the most frequently mutated genes in a spectrum of X-chromosome phenotypes with intellectual disability (ID) as their cardinal feature. To date, close to 100 families and isolated cases have been reported to carry 44 different mutations, the majority of these (59%) being a result of polyalanine tract expansions. At least 10 well-defined clinical entities, including Ohtahara, Partington, and Proud syndromes, X-linked infantile spasms, X-linked lissencephaly with ambiguous genitalia, X-linked myoclonic epilepsy and nonsyndromic intellectual disability have been ascertained from among the patients with ARX mutations. The striking intra- and interfamilial pleiotropy together with genetic heterogeneity (same clinical entities associated with different ARX mutations) are becoming a hallmark of ARX mutations. Although males are predominantly affected, some mutations associated with malformation phenotypes in males also show a phenotype in carrier females. Recent progress in the study of the effect of ARX mutations through sophisticated animal (mice) and cellular models begins to provide crucial insights into the molecular function of ARX and associated molecular pathology, thus guiding future inquiries into therapeutic interventions.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Department of Genetics and Molecular Pathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia.
| | | | | |
Collapse
|
18
|
Friocourt G, Parnavelas JG. Mutations in ARX Result in Several Defects Involving GABAergic Neurons. Front Cell Neurosci 2010; 4:4. [PMID: 20300201 PMCID: PMC2841486 DOI: 10.3389/fncel.2010.00004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/24/2010] [Indexed: 01/15/2023] Open
Abstract
Genetic investigations of X-linked mental retardation have demonstrated the implication of ARX in a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities, but with associated features of dystonia and epilepsy. These investigations have in recent years directed attention to the role of this gene in brain development. Analysis of its spatio-temporal localization profile revealed expression in telencephalic structures at all stages of development, mainly restricted to populations of GABA-containing neurons. Furthermore, studies of the effects of ARX loss of function either in humans or in lines of mutant mice revealed varying defects, suggesting multiple roles of this gene during development. In particular, Arx has been shown to contribute to almost all fundamental processes of brain development: patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. In this review, we will present and discuss recent findings concerning the role of ARX in brain development and how this information will be useful to better understand the pathophysiological mechanisms of mental retardation and epilepsy associated with ARX mutations.
Collapse
Affiliation(s)
- Gaëlle Friocourt
- U613, Institut National de la Santé et de la Recherche Médicale Brest, France
| | | |
Collapse
|
19
|
Shoubridge C, Tan MH, Fullston T, Cloosterman D, Coman D, McGillivray G, Mancini GM, Kleefstra T, Gécz J. Mutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division. PATHOGENETICS 2010; 3:1. [PMID: 20148114 PMCID: PMC2819251 DOI: 10.1186/1755-8417-3-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/05/2010] [Indexed: 01/21/2023]
Abstract
Background Aristaless related homeobox (ARX) is a paired-type homeobox gene. ARX function is frequently affected by naturally occurring mutations. Nonsense mutations, polyalanine tract expansions and missense mutations in ARX cause a range of intellectual disability and epilepsy phenotypes with or without additional features including hand dystonia, lissencephaly, autism or dysarthria. Severe malformation phenotypes, such as X-linked lissencephaly with ambiguous genitalia (XLAG), are frequently observed in individuals with protein truncating or missense mutations clustered in the highly conserved paired-type homeodomain. Results We have identified two novel point mutations in the R379 residue of the ARX homeodomain; c.1135C>A, p.R379S in a patient with infantile spasms and intellectual disability and c.1136G>T, p.R379L in a patient with XLAG. We investigated these and other missense mutations (R332P, R332H, R332C, T333N: associated with XLAG and Proud syndrome) predicted to affect the nuclear localisation sequences (NLS) flanking either end of the ARX homeodomain. The NLS regions are required for correct nuclear import facilitated by Importin 13 (IPO13). We demonstrate that missense mutations in either the N- or C-terminal NLS regions of the homeodomain cause significant disruption to nuclear localisation of the ARX protein in vitro. Surprisingly, none of these mutations abolished the binding of ARX to IPO13. This was confirmed by co-immunoprecipitation and immmuno fluorescence studies. Instead, tagged and endogenous IPO13 remained bound to the mutant ARX proteins, even in the RanGTP rich nuclear environment. We also identify the microtubule protein TUBA1A as a novel interacting protein for ARX and show cells expressing mutant ARX protein accumulate in mitosis, indicating normal cell division may be disrupted. Conclusions We show that the most likely, common pathogenic mechanism of the missense mutations in NLS regions of the ARX homeodomain is inadequate accumulation and distribution of the ARX transcription factor within the nucleus due to sequestration of ARX with IPO13.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Department of Genetics and Molecular Pathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Reish O, Fullston T, Regev M, Heyman E, Gecz J. A novel de novo 27 bp duplication of the ARX gene, resulting from postzygotic mosaicism and leading to three severely affected males in two generations. Am J Med Genet A 2009; 149A:1655-60. [PMID: 19606478 DOI: 10.1002/ajmg.a.32842] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Aristaless Related Homeobox (ARX) gene is a Q(50) paired homeobox gene. These genes are important regulators of essential events during vertebrate embryogenesis, including the development of the central and peripheral nervous system. Mutations in ARX have been identified in at least 82 different families and sporadic cases, and are responsible for at least 8 clinically distinct disorders. The recurrent 24 bp duplication (dup) mutation, c.429_452dup(24 bp), is the most frequent ARX mutation, which accounts for 45% of all cases reported to date. Here we report a novel de novo, familial dup mutation of 27 bp, c.430_456dup(27 bp), which involves the same region of the ARX gene in exon 2, as the dup24 bp mutation. The female progenitor of this dup27 bp allele exhibits mosaicism, likely resulting from a postmitotic de novo mutation event early in embryonic development. Three males with the dup27 bp mutation presented with infantile spasms, two of whom died early in life. Their phenotype appeared more severe, when compared to the spectrum of clinical presentations associated with the dup24 bp mutation. We propose that this might be at least partly due to the single, extra alanine residue (A) (21A in dup27 vs. 20A in dup24), which takes polyalanine tract 2 of ARX beyond the maximum, naturally occurring limit of 20A found in the human genome.
Collapse
Affiliation(s)
- Orit Reish
- Genetic Institute, Assaf Harofeh Medical Center, Zerifin, Israel
| | | | | | | | | |
Collapse
|