1
|
Li X, Guo S, Sun Y, Ding J, Chen C, Wu Y, Li P, Sun T, Wang X. GABRG2 mutations in genetic epilepsy with febrile seizures plus: structure, roles, and molecular genetics. J Transl Med 2024; 22:767. [PMID: 39143639 PMCID: PMC11323400 DOI: 10.1186/s12967-024-05387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Shengnan Guo
- Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China
| | - Jiangwei Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peidong Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
2
|
Imai N. Molecular and Cellular Neurobiology of Circadian and Circannual Rhythms in Migraine: A Narrative Review. Int J Mol Sci 2023; 24:10092. [PMID: 37373239 DOI: 10.3390/ijms241210092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine-a primary headache-has circadian and circannual rhythms in the onset of attacks. The circadian and circannual rhythms involve the hypothalamus, which is strongly associated with pain processing in migraines. Moreover, the role of melatonin in circadian rhythms has been implied in the pathophysiology of migraines. However, the prophylactic effect of melatonin in migraines is controversial. Calcitonin gene-related peptide (CGRP) has recently attracted attention in the pathophysiology and treatment of migraines. Pituitary adenylate cyclase-activating peptide (PACAP)-a neuropeptide identical to CGRP-is a potential therapeutic target after CGRP. PACAP is involved in the regulation of circadian entrainment to light. This review provides an overview of circadian and circannual rhythms in the hypothalamus and describes the relationship between migraines and the molecular and cellular neurobiology of circadian and circannual rhythms. Furthermore, the potential clinical applications of PACAP are presented.
Collapse
Affiliation(s)
- Noboru Imai
- Department of Neurology and Headache Center, Japanese Red Cross Shizuoka Hospital, Shizuoka 420-0853, Japan
| |
Collapse
|
3
|
Role of Omics in Migraine Research and Management: A Narrative Review. Mol Neurobiol 2022; 59:5809-5834. [PMID: 35796901 DOI: 10.1007/s12035-022-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Migraine is a neurological disorder defined by episodic attacks of chronic pain associated with nausea, photophobia, and phonophobia. It is known to be a complex disease with several environmental and genetic factors contributing to its susceptibility. Risk factors for migraine include head or neck injury (Arnold, Cephalalgia 38(1):1-211, 2018). Stress and high temperature are known to trigger migraine, while sleep disorders and anxiety are considered to be the comorbid conditions with migraine. Studies have reported various biomarkers, including genetic variants, proteins, and metabolites implicated in migraine's pathophysiology. Using the "omics" approach, which deals with genetics, transcriptomics, proteomics, and metabolomics, more specific biomarkers for various migraine can be identified. On account of its multifactorial nature, migraine is an ideal study model focusing on integrated omics approaches, including genomics, transcriptomics, proteomics, and metabolomics. The current review has been compiled with an aim to focus on the genomic alterations especially involved in the regulation of glutamatergic neurotransmission, cortical excitability, ion channels, solute carrier proteins, or receptors; their expression in migraine patients and also specific proteins and metabolites, including some inflammatory biomarkers that might represent the migraine phenotype at the molecular level. The systems biology approach holds the promise to understand the pathophysiology of the disease at length and also to identify the specific therapeutic targets for novel interventions.
Collapse
|
4
|
Whitsel BL, Vierck CJ, Waters RS, Tommerdahl M, Favorov OV. Contributions of Nociresponsive Area 3a to Normal and Abnormal Somatosensory Perception. THE JOURNAL OF PAIN 2019; 20:405-419. [PMID: 30227224 PMCID: PMC6420406 DOI: 10.1016/j.jpain.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 12/29/2022]
Abstract
Traditionally, cytoarchitectonic area 3a of primary somatosensory cortex (SI) has been regarded as a proprioceptive relay to motor cortex. However, neuronal spike-train recordings and optical intrinsic signal imaging, obtained from nonhuman sensorimotor cortex, show that neuronal activity in some of the cortical columns in area 3a can be readily triggered by a C-nociceptor afferent drive. These findings indicate that area 3a is a critical link in cerebral cortical encoding of secondary/slow pain. Also, area 3a contributes to abnormal pain processing in the presence of activity-dependent reversal of gamma-aminobutyric acid A receptor-mediated inhibition. Accordingly, abnormal processing within area 3a may contribute mechanistically to generation of clinical pain conditions. PERSPECTIVE: Optical imaging and neurophysiological mapping of area 3a of SI has revealed substantial driving from unmyelinated cutaneous nociceptors, complementing input to areas 3b and 1 of SI from myelinated nociceptors and non-nociceptors. These and related findings force a reconsideration of mechanisms for SI processing of pain.
Collapse
Affiliation(s)
- Barry L Whitsel
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Charles J Vierck
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Robert S Waters
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Oleg V Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
5
|
WITHDRAWN: Combined calcitonin gene-related peptide receptor antagonist, MK-8825, and caffeine as potential therapeutic target in the nitroglycerin-induced rat migraine model (MK-8825 and caffeine in migraine). ALEXANDRIA JOURNAL OF MEDICINE 2018. [DOI: 10.1016/j.ajme.2016.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Bathel A, Schweizer L, Stude P, Glaubitz B, Wulms N, Delice S, Schmidt-Wilcke T. Increased thalamic glutamate/glutamine levels in migraineurs. J Headache Pain 2018; 19:55. [PMID: 30019230 PMCID: PMC6049847 DOI: 10.1186/s10194-018-0885-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Increased cortical excitability has been hypothesized to play a critical role in various neurological disorders, such as restless legs syndrome, epilepsy and migraine. Particularly for migraine, local hyperexcitability has been reported. Levels of regional excitatory and inhibitory neurotransmitters are related to cortical excitability and hence may play a role in the origin of the disease. Consequently, a mismatch of the excitatory-inhibitory neurotransmitter network might contribute to local hyperexcitability and the onset of migraine attacks. In this study we sought to assess local levels of glutamate / glutamine (GLX) and gamma-aminobutyric acid (GABA) in the occipital cortex and right thalamus of migraineurs and healthy subjects. METHODS We measured interictally local biochemical concentrations in the occipital lobe and the right thalamus in patients with migraine (without aura) and healthy controls (HCs) using proton magnetic resonance spectroscopy at 3 T. GLX levels were acquired using PRESS and GABA levels using the GABA-sensitive editing sequence MEGA-PRESS. Regional GLX and GABA levels were compared between groups. RESULTS Statistical analyses revealed significantly increased GLX levels in both the primary occipital cortex and thalamus. However, we found no group differences in GABA levels for these two regions. Correlation analyses within the migraine group revealed no significant correlations between pain intensity and levels of GLX or GABA in either of the two brain regions. CONCLUSIONS Further research is needed to investigate the role of GABA/GLX ratios in greater depth and to measure changes in neurotransmitter levels over time, i.e. during migraine attacks and interictally.
Collapse
Affiliation(s)
- Adina Bathel
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
- Department of Anesthesiology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Lauren Schweizer
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
| | - Philipp Stude
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
| | - Benjamin Glaubitz
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
| | - Niklas Wulms
- Department of Neurology, St. Mauritius Therapieklinik, Meerbusch, Germany
| | - Sibel Delice
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
| | - Tobias Schmidt-Wilcke
- Department of Neurology, St. Mauritius Therapieklinik, Meerbusch, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Liao J, Tian X, Wang H, Xiao Z. Epilepsy and migraine-Are they comorbidity? Genes Dis 2018; 5:112-118. [PMID: 30258939 PMCID: PMC6146266 DOI: 10.1016/j.gendis.2018.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
Epilepsy and migraine often co-occur. From the clinical symptoms, they often have some signs of symptoms before onset; from the pathogenesis of epilepsy and migraine, both of them have a high degree of neuronal excitement and ion channel abnormalities; in terms of treatment, many antiepileptic drugs are work in migraine. All of this indicates that they interact with each other. But it is undeniable that there are interactions and relationships between them, and there are also some differences such as the different clinical episodes, the different ways of neuronal haperexcitability and the different drug treatment programs. And are they comorbidity? If we can better understand the correlation between seizures and migraines, then this will help develop better guidelines for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jin Liao
- Neurology Department at Chongqing Medical University, Chongqing, China
| | - Xin Tian
- Neurology Department at Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Neurology Department at Chongqing Medical University, Chongqing, China
| | - Zheng Xiao
- Neurology Department at the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Street, Yuanjiagang, Yuzhong District, Chongqing, China
| |
Collapse
|
8
|
García-Martín E, Esguevillas G, Serrador M, Alonso-Navarro H, Navacerrada F, Amo G, García-Albea E, Agúndez JAG, Jiménez-Jiménez FJ. Gamma-aminobutyric acid (GABA) receptors GABRA4, GABRE, and GABRQ gene polymorphisms and risk for migraine. J Neural Transm (Vienna) 2018; 125:689-698. [DOI: 10.1007/s00702-017-1834-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
|
9
|
García-Martín E, Martínez C, Serrador M, Alonso-Navarro H, Navacerrada F, Esguevillas G, García-Albea E, Agúndez JAG, Jiménez-Jiménez FJ. Gamma-Aminobutyric Acid (Gaba) Receptors Rho (Gabrr)
Gene Polymorphisms and Risk for Migraine. Headache 2017; 57:1118-1135. [DOI: 10.1111/head.13122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Elena García-Martín
- Department of Pharmacology; University of Extremadura; Cáceres Spain
- Red de Investigación de reacciones adversas a alergenos y fármacos; Instituto de Salud Carlos III; Madrid Spain
- AMGenomics, Edificio Tajo; Avda. de la Universidad s/n Cáceres Spain
| | - Carmen Martínez
- Red de Investigación de reacciones adversas a alergenos y fármacos; Instituto de Salud Carlos III; Madrid Spain
- Department of Pharmacology; University of Extremadura; Badajoz Spain
| | - Mercedes Serrador
- Department of Family Medicine; Hospital “Príncipe de Asturias,”, Universidad de Alcalá; Alcalá de Henares Madrid Spain
| | - Hortensia Alonso-Navarro
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
- Department of Medicine-Neurology; Hospital “Príncipe de Asturias,” Universidad de Alcalá; Alcalá de Henares Madrid Spain
| | - Francisco Navacerrada
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
- Service of Neurology; Hospital “Ramón y Cajal,”, Universidad de Alcalá; Madrid Spain
| | - Gara Esguevillas
- Department of Pharmacology; University of Extremadura; Cáceres Spain
| | - Esteban García-Albea
- Department of Medicine-Neurology; Hospital “Príncipe de Asturias,” Universidad de Alcalá; Alcalá de Henares Madrid Spain
| | - José A. G. Agúndez
- Department of Pharmacology; University of Extremadura; Cáceres Spain
- Red de Investigación de reacciones adversas a alergenos y fármacos; Instituto de Salud Carlos III; Madrid Spain
- AMGenomics, Edificio Tajo; Avda. de la Universidad s/n Cáceres Spain
| | - Félix Javier Jiménez-Jiménez
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
- Department of Medicine-Neurology; Hospital “Príncipe de Asturias,” Universidad de Alcalá; Alcalá de Henares Madrid Spain
| |
Collapse
|
10
|
Gasparini CF, Smith RA, Griffiths LR. Genetic insights into migraine and glutamate: a protagonist driving the headache. J Neurol Sci 2016; 367:258-68. [PMID: 27423601 DOI: 10.1016/j.jns.2016.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/11/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
Abstract
Migraine is a complex polygenic disorder that continues to be a great source of morbidity in the developed world with a prevalence of 12% in the Caucasian population. Genetic and pharmacological studies have implicated the glutamate pathway in migraine pathophysiology. Glutamate profoundly impacts brain circuits that regulate core symptom domains in a range of neuropsychiatric conditions and thus remains a "hot" target for drug discovery. Glutamate has been implicated in cortical spreading depression (CSD), the phenomenon responsible for migraine with aura and in animal models carrying FHM mutations. Genotyping case-control studies have shown an association between glutamate receptor genes, namely, GRIA1 and GRIA3 with migraine with indirect supporting evidence from GWAS. New evidence localizes PRRT2 at glutamatergic synapses and shows it affects glutamate signalling and glutamate receptor activity via interactions with GRIA1. Glutamate-system defects have also been recently implicated in a novel FHM2 ATP1A2 disease-mutation mouse model. Adding to the growing evidence neurophysiological findings support a role for glutamate in cortical excitability. In addition to the existence of multiple genes to choreograph the functions of fast-signalling glutamatergic neurons, glutamate receptor diversity and regulation is further increased by the post-translational mechanisms of RNA editing and miRNAs. Ongoing genetic studies, GWAS and meta-analysis implicate neurogenic mechanisms in migraine pathology and the first genome-wide associated locus for migraine on chromosome X. Finally, in addition to glutamate modulating therapies, the kynurenine pathway has emerged as a candidate for involvement in migraine pathophysiology. In this review we discuss recent genetic evidence and glutamate modulating therapies that bear on the hypothesis that a glutamatergic mechanism may be involved in migraine susceptibility.
Collapse
Affiliation(s)
- Claudia F Gasparini
- Menzies Health Institute Queensland, Griffith University Gold Coast, Parklands Drive, Southport, QLD 4222, Australia
| | - Robert A Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
11
|
Yang Y, Ligthart L, Terwindt GM, Boomsma DI, Rodriguez-Acevedo AJ, Nyholt DR. Genetic epidemiology of migraine and depression. Cephalalgia 2016; 36:679-91. [DOI: 10.1177/0333102416638520] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
Background Migraine and major depressive disorder (commonly referred to as depression) are both common disorders with a significant impact on society. Studies in both clinical and community-based settings have demonstrated a strong relationship between migraine and depression. In addition to complicating the diagnosis, depression that is comorbid with migraine may lower treatment adherence, increase risk of medication overuse and is associated with migraine chronification, thus leading to higher direct and indirect costs and poorer health-related outcomes with increased disability. Aim The aim of this review is to summarise the current knowledge on the genetic epidemiology of migraine and depression and the possible biological mechanisms underlying their comorbidity. Methods We present a narrative review reporting on the current literature. Results and conclusions Epidemiological findings indicate that there is a bidirectional relationship between migraine and depression, with one disorder increasing the risk for the other and vice versa, suggesting shared biological mechanisms. Twin and family studies indicate that this bidirectional relationship can be explained, at least partly, by shared underlying genetically determined disease mechanisms. Although no genes have been robustly associated with the aetiology of both migraine and depression, genes from serotonergic, dopaminergic and GABAergic systems together with variants in the MTHFR and BDNF genes remain strong candidates.
Collapse
Affiliation(s)
- Yuanhao Yang
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| | - Lannie Ligthart
- Department of Biological Psychology, VU University, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University Medical Centre, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University, The Netherlands
| | - Astrid J Rodriguez-Acevedo
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| |
Collapse
|
12
|
Sokolov AY, Lyubashina OA, Amelin AV, Panteleev SS. The role of gamma-aminobutyric acid in migraine pathogenesis. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Wei L, Lian B, Zhang Y, Li W, Gu J, He X, Xie L. Application of microRNA and mRNA expression profiling on prognostic biomarker discovery for hepatocellular carcinoma. BMC Genomics 2014; 15 Suppl 1:S13. [PMID: 24564407 PMCID: PMC4046763 DOI: 10.1186/1471-2164-15-s1-s13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most highly malignant and lethal cancers of the world. Its pathogenesis has been reported to be multi-factorial, and the molecular carcinogenesis of HCC can not be attributed to just a few individual genes. Based on the microRNA and mRNA expression profiling of normal liver tissues, pericancerous hepatocellular tissues and hepatocellular carcinoma tissues, we attempted to find prognosis related gene sets for HCC patients. Results We identified differentially expressed genes (DEG) from three comparisons: Cancer/Normal, Cancer/Pericancerous and Pericancerous/Normal. GSEA (gene set enrichment analysis) were performed. Based on the enriched gene sets of GO terms, pathways and transcription factor targets, it was found that the genome instability and cell proliferation increased while the metabolism and differentiation decreased in HCC tissues. The expression profile of DEGs in each enriched gene set was used to correlate to the postoperative survival time of HCC patients. Nine gene sets were found to prognostic correlation. Furthermore, after substituting DEG-targeting-microRNA for DEG members of each gene set, two gene sets with the microRNA expression profiles were obtained that had prognostic potential. Conclusions The malignancy of HCC could be represented by gene sets, and pericancerous liver exhibits important characteristics of liver cancer. The expression level of gene sets not only in HCC but also in the pericancerous liver showed potential for prognosis implying an option for HCC prognosis at an early stage. Additionally, the gene-targeting-microRNA expression profiles also showed prognostic potential, demonstrating that the multi-factorial molecular pathogenesis of HCC is contributed by various genes and microRNAs. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-S1-S13) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Quintas M, Neto JL, Pereira-Monteiro J, Barros J, Sequeiros J, Sousa A, Alonso I, Lemos C. Interaction between γ-aminobutyric acid A receptor genes: new evidence in migraine susceptibility. PLoS One 2013; 8:e74087. [PMID: 24040174 PMCID: PMC3764027 DOI: 10.1371/journal.pone.0074087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/26/2013] [Indexed: 01/07/2023] Open
Abstract
Migraine is a common neurological episodic disorder with a female-to-male prevalence 3- to 4-fold higher, suggesting a possible X-linked genetic component. Our aims were to assess the role of common variants of gamma-aminobutyric acid A receptor (GABAAR) genes, located in the X-chromosome, in migraine susceptibility and the possible interaction between them. An association study with 188 unrelated cases and 286 migraine-free controls age- and ethnic matched was performed. Twenty-three tagging SNPs were selected in three genes (GABRE, GABRA3 and GABRQ). Allelic, genotypic and haplotypic frequencies were compared between cases and controls. We also focused on gene-gene interactions. The AT genotype of rs3810651 of GABRQ gene was associated with an increased risk for migraine (OR: 4.07; 95% CI: 1.71-9.73, p=0.002), while the CT genotype of rs3902802 (OR: 0.41; 95% CI: 0.21-0.78, p=0.006) and GA genotype of rs2131190 of GABRA3 gene (OR: 0.53; 95% CI: 0.32-0.88, p=0.013) seem to be protective factors. All associations were found in the female group and maintained significance after Bonferroni correction. We also found three nominal associations in the allelic analyses although there were no significant results in the haplotypic analyses. Strikingly, we found strong interactions between six SNPs encoding for different subunits of GABAAR, all significant after permutation correction. To our knowledge, we show for the first time, the putative involvement of polymorphisms in GABAAR genes in migraine susceptibility and more importantly we unraveled a role for novel gene-gene interactions opening new perspectives for the development of more effective treatments.
Collapse
Affiliation(s)
- Marlene Quintas
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
| | - João Luís Neto
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Pereira-Monteiro
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Serviço de Neurologia, CHP-HSA, Centro Hospitalar do Porto, Hospital de Santo António. Abel Salazar, Porto, Portugal
| | - José Barros
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Serviço de Neurologia, CHP-HSA, Centro Hospitalar do Porto, Hospital de Santo António. Abel Salazar, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
15
|
Bauer PR, Carpay JA, Terwindt GM, Sander JW, Thijs RJ, Haan J, Visser GH. Headache and Epilepsy. Curr Pain Headache Rep 2013; 17:351. [DOI: 10.1007/s11916-013-0351-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
mRNA and protein expression for novel GABAA receptors θ and ρ2 are altered in schizophrenia and mood disorders; relevance to FMRP-mGluR5 signaling pathway. Transl Psychiatry 2013; 3:e271. [PMID: 23778581 PMCID: PMC3693405 DOI: 10.1038/tp.2013.46] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that targets ∼5% of all mRNAs expressed in the brain. Previous work by our laboratory demonstrated significantly lower protein levels for FMRP in lateral cerebella of subjects with schizophrenia, bipolar disorder and major depression when compared with controls. Absence of FMRP expression in animal models of fragile X syndrome (FXS) has been shown to reduce expression of gamma-aminobutyric acid A (GABAA) receptor mRNAs. Previous work by our laboratory has found reduced expression of FMRP, as well as multiple GABAA and GABAB receptor subunits in subjects with autism. Less is known about levels for GABAA subunit protein expression in brains of subjects with schizophrenia and mood disorders. In the current study, we have expanded our previous studies to examine the protein and mRNA expression of two novel GABAA receptors, theta (GABRθ) and rho 2 (GABRρ2) as well as FMRP, and metabotropic glutamate receptor 5 (mGluR5) in lateral cerebella of subjects with schizophrenia, bipolar disorder, major depression and healthy controls, and in superior frontal cortex (Brodmann Area 9 (BA9)) of subjects with schizophrenia, bipolar disorder and healthy controls. We observed multiple statistically significant mRNA and protein changes in levels of GABRθ, GABRρ2, mGluR5 and FMRP molecules including concordant reductions in mRNA and proteins for GABRθ and mGluR5 in lateral cerebella of subjects with schizophrenia; for increased mRNA and protein for GABRρ2 in lateral cerebella of subjects with bipolar disorder; and for reduced mRNA and protein for mGluR5 in BA9 of subjects with bipolar disorder. There were no significant effects of confounds on any of the results.
Collapse
|
17
|
Chen T, Murrell M, Fowdar J, Roy B, Grealy R, Griffiths LR. Investigation of the role of the GABRG2 gene variant in migraine. J Neurol Sci 2012; 318:112-4. [PMID: 22572707 DOI: 10.1016/j.jns.2012.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 03/07/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
Migraine is the most common neurological disorder worldwide affecting about 12% of the worldwide population. This disorder has been classed into two main types of migraine-with and without aura. While a number of factors can influence the onset of migraine, a major factor is that of genetics. The GABAA gene encodes for the GABAA receptor. Along with other receptors, the GABAA receptor is involved in the mediation of neuronal activities. In this study, a GABRG2 gene (GABAA receptor gamma-2-subunit) SNP (rs211037) was genotyped on a migraine case-control population of 546 (273 affected and an equal number of healthy) individuals. Using specifically designed primers, a high resolution melt (HRM) assay was carried out in the genotyping process. After genotyping, results were compared in the case and control populations. Analysis of results showed no significant differences in the allele frequencies between case and control populations. Similarly no differences were detected for subtypes or for a specific gender of migraine (p>0.05). Although this gene has been previously found to be involved in febrile seizures and there is some co-morbidity between epilepsy and migraine, we decided to investigate this marker for involvement in migraine. The results did not support a role for the tested GABRG2 variant in migraine.
Collapse
Affiliation(s)
- Timothy Chen
- Griffith Health Institute, Genomics Research Centre, Griffith University, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Identification of molecular genetic factors that influence migraine. Mol Genet Genomics 2011; 285:433-46. [DOI: 10.1007/s00438-011-0622-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/08/2011] [Indexed: 01/04/2023]
|
19
|
Formicola D, Aloia A, Sampaolo S, Farina O, Diodato D, Griffiths LR, Gianfrancesco F, Di Iorio G, Esposito T. Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility. BMC MEDICAL GENETICS 2010; 11:103. [PMID: 20579352 PMCID: PMC2909201 DOI: 10.1186/1471-2350-11-103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 06/25/2010] [Indexed: 01/24/2023]
Abstract
Background Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors) or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated. Methods The association of polymorphic variants of GRIA1-GRIA4 genes which encode for the four subunits (GluR1-GluR4) of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor for glutamate was tested in migraineurs with and without aura (MA and MO) and healthy controls. Results Two variants in the regulative regions of GRIA1 (rs2195450) and GRIA3 (rs3761555) genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively), but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in GRIA1 gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of GRIA1 and GRIA3 genes in different conditions. Conclusions This study represents the first genetic evidence of a link between glutamate receptors and migraine.
Collapse
Affiliation(s)
- Daniela Formicola
- Institute of Genetics and Biophysics, Italian National Research Council, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gómez Ravetti M, Rosso OA, Berretta R, Moscato P. Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus' gene expression profiles in Alzheimer's disease. PLoS One 2010; 5:e10153. [PMID: 20405009 PMCID: PMC2854141 DOI: 10.1371/journal.pone.0010153] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a neurodegenerative progression that alters cognition. On a phenotypical level, cognition is evaluated by means of the MiniMental State Examination (MMSE) and the post-mortem examination of Neurofibrillary Tangle count (NFT) helps to confirm an AD diagnostic. The MMSE evaluates different aspects of cognition including orientation, short-term memory (retention and recall), attention and language. As there is a normal cognitive decline with aging, and death is the final state on which NFT can be counted, the identification of brain gene expression biomarkers from these phenotypical measures has been elusive. METHODOLOGY/PRINCIPAL FINDINGS We have reanalysed a microarray dataset contributed in 2004 by Blalock et al. of 31 samples corresponding to hippocampus gene expression from 22 AD subjects of varying degree of severity and 9 controls. Instead of only relying on correlations of gene expression with the associated MMSE and NFT measures, and by using modern bioinformatics methods based on information theory and combinatorial optimization, we uncovered a 1,372-probe gene expression signature that presents a high-consensus with established markers of progression in AD. The signature reveals alterations in calcium, insulin, phosphatidylinositol and wnt-signalling. Among the most correlated gene probes with AD severity we found those linked to synaptic function, neurofilament bundle assembly and neuronal plasticity. CONCLUSIONS/SIGNIFICANCE A transcription factors analysis of 1,372-probe signature reveals significant associations with the EGR/KROX family of proteins, MAZ, and E2F1. The gene homologous of EGR1, zif268, Egr-1 or Zenk, together with other members of the EGR family, are consolidating a key role in the neuronal plasticity in the brain. These results indicate a degree of commonality between putative genes involved in AD and prion-induced neurodegenerative processes that warrants further investigation.
Collapse
Affiliation(s)
- Martín Gómez Ravetti
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Information Based Medicine Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
| | - Osvaldo A. Rosso
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Information Based Medicine Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Information Based Medicine Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Information Based Medicine Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
| |
Collapse
|
21
|
de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AMJM. Molecular genetics of migraine. Hum Genet 2009; 126:115-32. [PMID: 19455354 DOI: 10.1007/s00439-009-0684-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/07/2009] [Indexed: 12/11/2022]
Abstract
Migraine is an episodic neurovascular disorder that is clinically divided into two main subtypes that are based on the absence or presence of an aura: migraine without aura (MO) and migraine with aura (MA). Current molecular genetic insight into the pathophysiology of migraine predominantly comes from studies of a rare monogenic subtype of migraine with aura called familial hemiplegic migraine (FHM). Three FHM genes have been identified, which all encode ion transporters, suggesting that disturbances in ion and neurotransmitter balances in the brain are responsible for this migraine type, and possibly the common forms of migraine. Cellular and animal models expressing FHM mutations hint toward neuronal hyperexcitability as the likely underlying disease mechanism. Additional molecular insight into the pathophysiology of migraine may come from other monogenic syndromes (for instance cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, which is caused by NOTCH3 mutations), in which migraine is prominent. Investigating patients with common forms of migraine has had limited successes. Except for 5',10'-methylenetetrahydrolate reductase, an enzyme in folate metabolism, the large majority of reported genetic associations with candidate migraine genes have not been convincingly replicated. Genetic linkage studies using migraine subtypes as an end diagnosis did not yield gene variants thus far. Clinical heterogeneity in migraine diagnosis may have hampered the identification of such variants. Therefore, the recent introduction of more refined methods of phenotyping, such as latent-class analysis and trait component analysis, may be certainly helpful. Combining the new phenotyping methods with genome-wide association studies may be a successful strategy toward identification of migraine susceptibility genes. Likely the identification of reliable biomarkers for migraine diagnosing will make these efforts even more successful.
Collapse
Affiliation(s)
- Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|