1
|
Leow EH, Chong SL, Tan ES, Koh AL, Cham BWM, Yap CJY, Ng YH. Adenine phosphoribosyl transferase (APRT) deficiency and a novel sequence variant in APRT with phenotypic diversity and a literature review. Nephrology (Carlton) 2023; 28:649-654. [PMID: 37619970 DOI: 10.1111/nep.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Adenine phosphoribosyl transferase (APRT) deficiency is an autosomal recessive disorder and a rare cause of urolithiasis due to mutations in APRT (OMIM #102600). APRT deficiency results in increased urinary excretion of 2,8-dihydroxyadenine (DHA) which can cause urolithiasis and kidney failure. However, with prompt diagnosis, patients with APRT deficiency can be treated with xanthine oxidoreductase inhibitors which decrease urinary DHA excretion and improve outcomes. We report a pair of siblings, an 11-year-old brother and his 14-year-old sister with compound heterozygous variants c.270del (p.Lys91Serfs*46) and c.484_486del (p.Leu162del) in APRT with variable clinical presentation of APRT deficiency. The brother presented at 17 months of age with urolithiasis and severe acute kidney injury. His elder sister remained well and asymptomatic with normal kidney function and did not develop renal calculi. Brownish disk or sphere-like crystals with both concentric and radial markings were reported on urine microscopy in the sister on screening. The sister's diagnosis was confirmed with further laboratory evidence of absent red cell lysate APRT activity with corresponding elevated levels of urinary DHA. In conclusion, we identified a novel mutation in the APRT gene in a pair of siblings with greater phenotypic severity in the male.
Collapse
Affiliation(s)
- Esther Huimin Leow
- Nephrology Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Siew Le Chong
- Nephrology Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ee Shien Tan
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ai Ling Koh
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Breana Wen Min Cham
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Celeste Jia Ying Yap
- Nephrology Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yong Hong Ng
- Nephrology Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
2
|
Zilberzwige-Tal S, Gazit D, Adsi H, Gartner M, Behl R, Laor Bar-Yosef D, Gazit E. Engineered Riboswitch Nanocarriers as a Possible Disease-Modifying Treatment for Metabolic Disorders. ACS NANO 2022; 16:11733-11741. [PMID: 35815521 DOI: 10.1021/acsnano.2c02802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both DNA- and RNA-based nanotechnologies are remarkably useful for the engineering of molecular devices in vitro and are applied in a vast collection of applications. Yet, the ability to integrate functional nucleic acid nanostructures in applications outside of the lab requires overcoming their inherent degradation sensitivity and subsequent loss of function. Viruses are minimalistic yet sophisticated supramolecular assemblies, capable of shielding their nucleic acid content in nuclease-rich environments. Inspired by this natural ability, we engineered RNA-virus-like particles (VLPs) nanocarriers (NCs). We showed that the VLPs can function as an exceptional protective shell against nuclease-mediated degradation. We then harnessed biological recognition elements and demonstrated how engineered riboswitch NCs can act as a possible disease-modifying treatment for genetic metabolic disorders. The functional riboswitch is capable of selectively and specifically binding metabolites and preventing their self-assembly process and its downstream effects. When applying the riboswitch nanocarriers to an in vivo yeast model of adenine accumulation and self-assembly, significant inhibition of the sensitivity to adenine feeding was observed. In addition, using an amyloid-specific dye, we proved the riboswitch nanocarriers' ability to reduce the level of intracellular amyloid-like metabolite cytotoxic structures. The potential of this RNA therapeutic technology does not apply only to metabolic disorders, as it can be easily fine-tuned to be applied to other conditions and diseases.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Danielle Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hanaa Adsi
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Myra Gartner
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rahat Behl
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Rashid I, Verma A, Tiwari P, D’Cruz S. A deficiência de adenina fosforibosiltransferase leva à disfunção do aloenxerto renal em receptores de transplante renal: uma revisão sistemática. J Bras Nefrol 2022. [DOI: 10.1590/2175-8239-jbn-2021-0283pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Antecedentes: A deficiência de adenina fosforibosiltransferase (APRT) tem grandes implicações na sobrevida do enxerto em pacientes transplantados renais. Esta revisão sistemática investigou o padrão diagnóstico, a abordagem de tratamento e os desfechos do transplante renal entre pacientes transplantados renais com deficiência de adenina fosforibosiltransferase. Material e métodos: Os artigos que relatam sobre a enzima APRT e a disfunção do aloenxerto renal foram recuperados do PubMed/Medline, ScienceDirect, Biblioteca Cochrane e bancos de dados do Google Acadêmico. Utilizou-se a análise descritiva para extrair inferências. Resultados: Foram incluídos participantes que receberam 39 enxertos, a maioria dos quais provenientes de doadores vivos seguidos por doadores falecidos e doadores cadáveres. Foi relatado tempo de sobrevida do enxerto superior a 6 meses em 23 (76,7%) pacientes, enquanto outros 7 (23,3%) pacientes tiveram tempo de sobrevida do enxerto inferior a 6 meses. Apenas 4 (13,3%) pacientes apresentaram deficiência de APRT antes do transplante. Após acompanhamento, um terço dos pacientes, 10 (33,3%) apresentaram função do enxerto estável, 1 paciente teve perda do aloenxerto, 8 (26,6%) pacientes apresentaram função retardada do enxerto, enquanto os 11 (36,6%) pacientes restantes tiveram disfunção crônica do enxerto renal. Conclusões: A deficiência de APRT é uma causa subestimada e reversível de nefropatia cristalina que leva à disfunção do aloenxerto renal ou à perda total do aloenxerto. Os resultados deste estudo pedem a inclusão desta condição no diagnóstico diferencial de nefropatia cristalina, mesmo na ausência de um histórico de nefrolitíase.
Collapse
Affiliation(s)
- Ishfaq Rashid
- National Institute of Pharmaceutical Education and Research, India
| | - Ashish Verma
- National Institute of Pharmaceutical Education and Research, India
| | - Pramil Tiwari
- National Institute of Pharmaceutical Education and Research, India
| | | |
Collapse
|
4
|
Rashid I, Verma A, Tiwari P, D’Cruz S. Adenine phosphoribosyl transferase deficiency leads to renal allograft dysfunction in kidney transplant recipients: a systematic review. J Bras Nefrol 2022; 44:403-416. [PMID: 35635787 PMCID: PMC9518620 DOI: 10.1590/2175-8239-jbn-2021-0283en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Adenine phosphoribosyl transferase (APRT) deficiency has great implications on graft survival in kidney transplant patients. This systematic review investigated the diagnostic pattern, treatment approach, and kidney transplant outcomes among kidney transplant patients with adenine phosphoribosyl transferase deficiency. Material and methods: Articles reporting the APRT enzyme deficiency and kidney allograft dysfunction were retrieved from PubMed/Medline, ScienceDirect, Cochrane library and Google scholar databases. Descriptive analysis was used to draw inferences. Results: The results from 20 selected studies covering 30 patients receiving 39 grafts had an average age of 46.37 years are presented. Graft survival time of more than 6 months was reported in 23 (76.7%) patients, while other 7 (23.3%) patients had graft survival time of less than 6 months. Only 4 (13.3%) patients had APRT deficiency before transplantation. After follow-up, one-third of the patients 10 (33.3%) had stable graft function, 1 patient had allograft loss, 8 (26.6%) patients had delayed graft function while the remaining 11 (36.6%) patients had chronic kidney graft dysfunction. Conclusions: APRT deficiency is an under-recognized, treatable condition that causes reversible crystalline nephropathy, leading to loss of allograft or allograft dysfunction. The study results showed that inclusion of genetic determination of APRT deficiency in the differential diagnosis of crystalline nephropathy, even in the absence of a history of nephrolithiasis, can improve renal outcomes and may improve allograft survival.
Collapse
Affiliation(s)
- Ishfaq Rashid
- National Institute of Pharmaceutical Education and Research, India
| | - Ashish Verma
- National Institute of Pharmaceutical Education and Research, India
| | - Pramil Tiwari
- National Institute of Pharmaceutical Education and Research, India
| | | |
Collapse
|
5
|
Sharma M, Gowrishankar S, Jeloka TK. A Rare Case of APRT Deficiency with End-stage Renal Failure and Successful Renal Transplant. Indian J Nephrol 2021; 31:57-60. [PMID: 33994690 PMCID: PMC8101663 DOI: 10.4103/ijn.ijn_202_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/05/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022] Open
Abstract
Renal calculus disease is a common cause of renal injury. However, crystal nephropathy (uric acid, oxalate, and dihydroxyadenine) can present as chronic kidney disease without any evidence of renal stones. If left undiagnosed, there is a potential chance of recurrence in the allograft leading to graft failure after transplantation. Pretransplant identification and management can avoid such complications. Here, we describe a case of APRT deficiency leading to crystal nephropathy and end-stage renal failure in a patient who underwent a successful kidney transplant.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Nephrology, Aditya Birla Memorial Hospital, Pune, Maharashtra, India
| | | | - Tarun K Jeloka
- Department of Nephrology, Aditya Birla Memorial Hospital, Pune, Maharashtra, India
| |
Collapse
|
6
|
A virtuous diagnostic and therapeutic roadmap triggered by a motivated and skilful urinary sediment examination. Clin Chim Acta 2019; 492:23-25. [DOI: 10.1016/j.cca.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 11/23/2022]
|
7
|
Jiménez Herrero MC, Petkov Stoyanov V, Gutiérrez Sánchez MJ, Martín Navarro JA. Litiasis due to 2,8-dihydroxyadenine, usefulness of the genetic study. Nefrologia 2019; 39:206-207. [PMID: 30389108 DOI: 10.1016/j.nefro.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/07/2018] [Accepted: 08/02/2018] [Indexed: 11/28/2022] Open
|
8
|
Laor D, Sade D, Shaham-Niv S, Zaguri D, Gartner M, Basavalingappa V, Raveh A, Pichinuk E, Engel H, Iwasaki K, Yamamoto T, Noothalapati H, Gazit E. Fibril formation and therapeutic targeting of amyloid-like structures in a yeast model of adenine accumulation. Nat Commun 2019; 10:62. [PMID: 30622276 PMCID: PMC6325136 DOI: 10.1038/s41467-018-07966-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
The extension of the amyloid hypothesis to include non-protein metabolite assemblies invokes a paradigm for the pathology of inborn error of metabolism disorders. However, a direct demonstration of the assembly of metabolite amyloid-like structures has so far been provided only in vitro. Here, we established an in vivo model of adenine self-assembly in yeast, in which toxicity is associated with intracellular accumulation of the metabolite. Using a strain blocked in the enzymatic pathway downstream to adenine, we observed a non-linear dose-dependent growth inhibition. Both the staining with an indicative amyloid dye and anti-adenine assemblies antibodies demonstrated the accumulation of adenine amyloid-like structures, which were eliminated by lowering the supplied adenine levels. Treatment with a polyphenol inhibitor reduced the occurrence of amyloid-like structures while not affecting the dramatic increase in intracellular adenine concentration, resulting in inhibition of cytotoxicity, further supporting the notion that toxicity is triggered by adenine assemblies. Small molecule metabolites like phenylalanine can form amyloid-like structures but so far this has only been demonstrated in vitro. Here the authors generate a yeast in vivo model of adenine self-assembly and characterize the adenine assemblies in cells by indicative amyloid dye and anti-adenine assemblies antibodies.
Collapse
Affiliation(s)
- Dana Laor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Dorin Sade
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Dor Zaguri
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Myra Gartner
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Vasantha Basavalingappa
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Avi Raveh
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Edward Pichinuk
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Hamutal Engel
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Keita Iwasaki
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan
| | - Tatsuyuki Yamamoto
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan.,Raman Center for Medical and Biological Applications, Shimane University, Matsue, 690-8504, Japan
| | - Hemanth Noothalapati
- Raman Center for Medical and Biological Applications, Shimane University, Matsue, 690-8504, Japan
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel. .,BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, 6997801, Tel Aviv, Israel. .,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
9
|
In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer. Sci Rep 2017; 7:14358. [PMID: 29084986 PMCID: PMC5662602 DOI: 10.1038/s41598-017-14067-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022] Open
Abstract
Constraint-based modeling for genome-scale metabolic networks has emerged in the last years as a promising approach to elucidate drug targets in cancer. Beyond the canonical biosynthetic routes to produce biomass, it is of key importance to focus on metabolic routes that sustain the proliferative capacity through the regulation of other biological means in order to improve in-silico gene essentiality analyses. Polyamines are polycations with central roles in cancer cell proliferation, through the regulation of transcription and translation among other things, but are typically neglected in in silico cancer metabolic models. In this study, we analysed essential genes for the biosynthesis of polyamines. Our analysis corroborates the importance of previously known regulators of the pathway, such as Adenosylmethionine Decarboxylase 1 (AMD1) and uncovers novel enzymes predicted to be relevant for polyamine homeostasis. We focused on Adenine Phosphoribosyltransferase (APRT) and demonstrated the detrimental consequence of APRT gene silencing on different leukaemia cell lines. Our results highlight the importance of revisiting the metabolic models used for in-silico gene essentiality analyses in order to maximize the potential for drug target identification in cancer.
Collapse
|
10
|
Firestone RS, Cameron SA, Karp JM, Arcus VL, Schramm VL. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase. ACS Chem Biol 2017; 12:464-473. [PMID: 28026167 PMCID: PMC5462123 DOI: 10.1021/acschembio.6b00885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human 5'-methylthioadenosine phosphorylase (MTAP) catalyzes the phosphorolysis of 5'-methylthioadenosine (MTA). Its action regulates cellular MTA and links polyamine synthesis to S-adenosylmethionine (AdoMet) salvage. Transition state analogues with picomolar dissociation constants bind to MTAP in an entropically driven process at physiological temperatures, suggesting increased hydrophobic character or dynamic structure for the complexes. Inhibitor binding exhibits a negative heat capacity change (-ΔCp), and thus the changes in enthalpy and entropy upon binding are strongly temperature-dependent. The ΔCp of inhibitor binding by isothermal titration calorimetry does not follow conventional trends and is contrary to that expected from the hydrophobic effect. Thus, ligands of increasing hydrophobicity bind with increasing values of ΔCp. Crystal structures of MTAP complexed to transition-state analogues MT-DADMe-ImmA, BT-DADMe-ImmA, PrT-ImmA, and a substrate analogue, MT-tubercidin, reveal similar active site contacts and overall protein structural parameters, despite large differences in ΔCp for binding. In addition, ΔCp values are not correlated with Kd values. Temperature dependence of presteady state kinetics revealed the chemical step for the MTAP reaction to have a negative heat capacity for transition state formation (-ΔCp‡). A comparison of the ΔCp‡ for MTAP presteady state chemistry and ΔCp for inhibitor binding revealed those transition-state analogues most structurally and thermodynamically similar to the transition state. Molecular dynamics simulations of MTAP apoenzyme and complexes with MT-DADMe-ImmA and MT-tubercidin show small, but increased dynamic motion in the inhibited complexes. Variable temperature CD spectroscopy studies for MTAP-inhibitor complexes indicate remarkable protein thermal stability (to Tm = 99 °C) in complexes with transition-state analogues.
Collapse
Affiliation(s)
- Ross S. Firestone
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Scott A. Cameron
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Jerome M. Karp
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vickery L. Arcus
- Faculty of Science and Engineering, Department of Biological Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States,Corresponding Author: Phone: 718-430-2813.
| |
Collapse
|
11
|
Nanmoku K, Kurosawa A, Shinzato T, Shimizu T, Kimura T, Yagisawa T. Febuxostat for the Prevention of Recurrent 2,8-dihydroxyadenine Nephropathy due to Adenine Phosphoribosyltransferase Deficiency Following Kidney Transplantation. Intern Med 2017; 56:1387-1391. [PMID: 28566603 PMCID: PMC5498204 DOI: 10.2169/internalmedicine.56.8142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder that results in irreversible renal damage due to 2,8-dihydroxyadenine (DHA) nephropathy. A 28-year-old man underwent living-related kidney transplantation for chronic kidney disease of unknown etiology. Numerous spherical brownish crystals observed in his urinary sediment on postoperative day 3 and were observed within the tubular lumen of renal allograft biopsy specimens on postoperative day 7. After a genetic diagnosis, febuxostat treatment was started on postoperative day 7, with the dosage gradually increased to 80 mg/day until complete the disappearance of 2,8-DHA crystals. Febuxostat prevented secondary 2,8-DHA nephropathy after kidney transplantation.
Collapse
Affiliation(s)
- Koji Nanmoku
- Surgical Branch, Institute of Kidney Diseases, Jichi Medical University Hospital, Japan
| | - Akira Kurosawa
- Surgical Branch, Institute of Kidney Diseases, Jichi Medical University Hospital, Japan
| | - Takahiro Shinzato
- Surgical Branch, Institute of Kidney Diseases, Jichi Medical University Hospital, Japan
| | - Toshihiro Shimizu
- Surgical Branch, Institute of Kidney Diseases, Jichi Medical University Hospital, Japan
| | - Takaaki Kimura
- Surgical Branch, Institute of Kidney Diseases, Jichi Medical University Hospital, Japan
| | - Takashi Yagisawa
- Surgical Branch, Institute of Kidney Diseases, Jichi Medical University Hospital, Japan
| |
Collapse
|
12
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|