1
|
Giaccio M, Monaco A, Galiano L, Parente A, Borzacchiello L, Rubino R, Klärner FG, Killa D, Perna C, Piccolo P, Marotta M, Pan X, Khijniak M, Siddique I, Schrader T, Pshezhetsky AV, Sorrentino NC, Bitan G, Fraldi A. Anti-amyloid treatment is broadly effective in neuronopathic mucopolysaccharidoses and synergizes with gene therapy in MPS-IIIA. Mol Ther 2024:S1525-0016(24)00654-3. [PMID: 39342429 DOI: 10.1016/j.ymthe.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are childhood diseases caused by inherited deficiencies in glycosaminoglycan degradation. Most MPSs involve neurodegeneration, which to date is untreatable. Currently, most therapeutic strategies aim at correcting the primary genetic defect. Among these strategies, gene therapy has shown great potential, although its clinical application is challenging. We have shown previously in an MPS-IIIA mouse model that the molecular tweezer (MT) CLR01, a potent, broad-spectrum anti-amyloid small molecule, inhibits secondary amyloid storage, facilitates amyloid clearance, and protects against neurodegeneration. Here, we demonstrate that combining CLR01 with adeno-associated virus (AAV)-mediated gene therapy, targeting both the primary and secondary pathologic storage in MPS-IIIA mice, results in a synergistic effect that improves multiple therapeutic outcomes compared to each monotherapy. Moreover, we demonstrate that CLR01 is effective therapeutically in mouse models of other forms of neuronopathic MPS, MPS-I, and MPS-IIIC. These strongly support developing MTs as an effective treatment option for neuronopathic MPSs, both on their own and in combination with gene therapy, to improve therapeutic efficacy and translation into clinical application.
Collapse
Affiliation(s)
- Marianna Giaccio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Antonio Monaco
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Laura Galiano
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Andrea Parente
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Luigi Borzacchiello
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Riccardo Rubino
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Frank-Gerrit Klärner
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Dennis Killa
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Claudia Perna
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy
| | - Marcello Marotta
- Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Marie Khijniak
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas Schrader
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Alexey V Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy; Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandro Fraldi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy.
| |
Collapse
|
2
|
Lau AA, Jin K, Beard H, Windram T, Xie K, O'Brien JA, Neumann D, King BM, Snel MF, Trim PJ, Mitrofanis J, Hemsley KM, Austin PJ. Photobiomodulation in the infrared spectrum reverses the expansion of circulating natural killer cells and brain microglial activation in Sanfilippo mice. J Neurochem 2024; 168:2791-2813. [PMID: 38849324 DOI: 10.1111/jnc.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Sanfilippo syndrome results from inherited mutations in genes encoding lysosomal enzymes that catabolise heparan sulfate (HS), leading to early childhood-onset neurodegeneration. This study explores the therapeutic potential of photobiomodulation (PBM), which is neuroprotective and anti-inflammatory in several neurodegenerative diseases; it is also safe and PBM devices are readily available. We investigated the effects of 10-14 days transcranial PBM at 670 nm (2 or 4 J/cm2/day) or 904 nm (4 J/cm2/day) in young (3 weeks) and older (15 weeks) Sanfilippo or mucopolysaccharidosis type IIIA (MPS IIIA) mice. Although we found no PBM-induced changes in HS accumulation, astrocyte activation, CD206 (an anti-inflammatory marker) and BDNF expression in the brains of Sanfilippo mice, there was a near-normalisation of microglial activation in older MPS IIIA mice by 904 nm PBM, with decreased IBA1 expression and a return of their morphology towards a resting state. Immune cell immunophenotyping of peripheral blood with mass cytometry revealed increased pro-inflammatory signalling through pSTAT1 and p-p38 in NK and T cells in young but not older MPS IIIA mice (5 weeks of age), and expansion of NK, B and CD8+ T cells in older affected mice (17 weeks of age), highlighting the importance of innate and adaptive lymphocytes in Sanfilippo syndrome. Notably, 670 and 904 nm PBM both reversed the Sanfilippo-induced increase in pSTAT1 and p-p38 expression in multiple leukocyte populations in young mice, while 904 nm reversed the increase in NK cells in older mice. In conclusion, this is the first study to demonstrate the beneficial effects of PBM in Sanfilippo mice. The distinct reduction in microglial activation and NK cell pro-inflammatory signalling and number suggests PBM may alleviate neuroinflammation and lymphocyte activation, encouraging further investigation of PBM as a standalone, or complementary therapy in Sanfilippo syndrome.
Collapse
Affiliation(s)
- A A Lau
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Jin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - H Beard
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - T Windram
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Xie
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - J A O'Brien
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - D Neumann
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - B M King
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - M F Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - P J Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - J Mitrofanis
- Fonds Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, UK
| | - K M Hemsley
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - P J Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
3
|
Petrova R, Patil AR, Trinh V, McElroy KE, Bhakta M, Tien J, Wilson DS, Warren L, Stratton JR. Disease pathology signatures in a mouse model of Mucopolysaccharidosis type IIIB. Sci Rep 2023; 13:16699. [PMID: 37794029 PMCID: PMC10550979 DOI: 10.1038/s41598-023-42431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023] Open
Abstract
Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare and devastating childhood-onset lysosomal storage disease caused by complete loss of function of the lysosomal hydrolase α-N-acetylglucosaminidase. The lack of functional enzyme in MPS IIIB patients leads to the progressive accumulation of heparan sulfate throughout the body and triggers a cascade of neuroinflammatory and other biochemical processes ultimately resulting in severe mental impairment and early death in adolescence or young adulthood. The low prevalence and severity of the disease has necessitated the use of animal models to improve our knowledge of the pathophysiology and for the development of therapeutic treatments. In this study, we took a systematic approach to characterizing a classical mouse model of MPS IIIB. Using a series of histological, biochemical, proteomic and behavioral assays, we tested MPS IIIB mice at two stages: during the pre-symptomatic and early symptomatic phases of disease development, in order to validate previously described phenotypes, explore new mechanisms of disease pathology and uncover biomarkers for MPS IIIB. Along with previous findings, this study helps provide a deeper understanding of the pathology landscape of this rare disease with high unmet medical need and serves as an important resource to the scientific community.
Collapse
Affiliation(s)
- Ralitsa Petrova
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA.
| | - Abhijeet R Patil
- Genomics and Computational Biology, Teva Pharmaceutical Industries Ltd, West Chester, PA, USA
| | - Vivian Trinh
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Kathryn E McElroy
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Minoti Bhakta
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Jason Tien
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - David S Wilson
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Liling Warren
- Genomics and Computational Biology, Teva Pharmaceutical Industries Ltd, West Chester, PA, USA
| | - Jennifer R Stratton
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA.
| |
Collapse
|
4
|
do Valle DA, Santos MLSF, Telles BA, Cordeiro ML. Neurological, neurobehavioral, and radiological alterations in patients with mucopolysaccharidosis III (Sanfilippo's syndrome) in Brazil. Front Neurol 2022; 13:968297. [PMID: 36468061 PMCID: PMC9714604 DOI: 10.3389/fneur.2022.968297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2023] Open
Abstract
Mucopolysaccharidosis type III (MPS III) or Sanfilippo syndrome is the most common form of MPS, in which neurological involvement in all stages of the disease is prominent. The current study aimed to comprehensively describe the neurological profile of children and adolescents with MPS III who visited the largest pediatric hospital in South America. A prospective/retrospective cohort analysis was performed on 10 patients with MPS III from eight unrelated families. Most patients <12 months of age had achieved development milestones within the expected range for their age, with delay in walking independently and first single word acquisition. Behavioral symptoms were reported in seven patients. Eight patients (80%) developed profound intellectual disabilities. Six patients (60%) had epilepsy, among whom 75% had their first seizure between 2 and 4 years of age; the frequency of which increased with age. Monotherapy was effective in 60% of patients. Two patients, both aged <8 years, had normal baseline electroencephalographic activity. Epileptiform activity was observed in three patients. Cortical atrophy was visualized using magnetic resonance imaging in 71% patients; all but one of these patients were aged >6 years. Neurological abnormalities increased in prevalence and severity with age. Anti-seizure drug resistance was uncommon. Dysmorphological and systemic manifestations were uncommon and mild and did not correlate with neurological involvement. Despite high allelic heterogeneity, neurodegeneration was similar among all patients. Overall, these data contribute to the scarce literature from developing countries.
Collapse
Affiliation(s)
- Daniel Almeida do Valle
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Department of Child Neurology Hospital Pequeno Príncipe, Curitiba, PR, Brazil
| | | | | | - Mara L. Cordeiro
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Department of Psychiatry and Biological Behavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2020; 269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
The parenteral administration of protein therapeutics is increasingly gaining importance for the treatment of human diseases. However, the presence of practically impermeable blood-brain barriers greatly restricts access of such pharmaceutics to the brain. Treating brain disorders with proteins thus remains a great challenge, and the slow clinical translation of these therapeutics may be largely ascribed to the lack of appropriate brain delivery system. Exploring new approaches to deliver proteins to the brain by circumventing physiological barriers is thus of great interest. Moreover, parallel advances in the molecular neurosciences are important for better characterizing blood-brain interfaces, particularly under different pathological conditions (e.g., stroke, multiple sclerosis, Parkinson's disease, and Alzheimer's disease). This review presents the current state of knowledge of the structure and the function of the main physiological barriers of the brain, the mechanisms of transport across these interfaces, as well as alterations to these concomitant with brain disorders. Further, the different strategies to promote protein delivery into the brain are presented, including the use of molecular Trojan horses, the formulation of nanosystems conjugated/loaded with proteins, protein-engineering technologies, the conjugation of proteins to polymers, and the modulation of intercellular junctions. Additionally, therapeutic approaches for brain diseases that do not involve targeting to the brain are presented (i.e., sink and scavenging mechanisms).
Collapse
Affiliation(s)
- A Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada
| | - J Drouin-Ouellet
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Brambilla
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - M A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
6
|
Altered microglia and neurovasculature in the Alzheimer's disease cerebellum. Neurobiol Dis 2019; 132:104589. [PMID: 31454549 DOI: 10.1016/j.nbd.2019.104589] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally regarded to coordinate movement, the cerebellum also exerts non-motor functions including the regulation of cognitive and behavioral processing, suggesting a potential role in neurodegenerative conditions affecting cognition, such as Alzheimer's disease (AD). This study aims to investigate neuropathology and AD-related molecular changes within the neocerebellum using post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was conducted on neocerebellar paraffin-embedded TMAs from 24 AD and 24 matched control cases, and free-floating neocerebellar sections from 6 AD and 6 controls. Immunoreactivity was compared between control and AD groups for neuropathological hallmarks (amyloid-β, tau, ubiquitin), Purkinje cells (calbindin), microglia (IBA1, HLA-DR), astrocytes (GFAP) basement-membrane associated molecules (fibronectin, collagen IV), endothelial cells (CD31/PECAM-1) and mural cells (PDGFRβ, αSMA). Amyloid-β expression (total immunolabel intensity) and load (area of immunolabel) was increased by >4-fold within the AD cerebellum. Purkinje cell counts, ubiquitin and tau immunoreactivity were unchanged in AD. IBA1 expression and load was increased by 91% and 69%, respectively, in AD, with no change in IBA1-positive cell number. IBA1-positive cell process length and branching was reduced by 22% and 41%, respectively, in AD. HLA-DR and GFAP immunoreactivity was unchanged in AD. HLA-DR-positive cell process length and branching was reduced by 33% and 49%, respectively, in AD. Fibronectin expression was increased by 27% in AD. Collagen IV, PDGFRβ and αSMA immunoreactivity was unchanged in AD. The number of CD31-positive vessels was increased by 98% in AD, suggesting the increase in CD31 expression and load in AD is due to greater vessel number. The PDGFRβ/CD31 load ratio was reduced by 59% in AD. These findings provide evidence of molecular changes affecting microglia and the neurovasculature within the AD neocerebellum. These changes, occurring without overt neuropathology, support the hypothesis of microglial and neurovascular dysfunction as drivers of AD, which has implications on the neocerebellar contribution to AD symptomatology and pathophysiology.
Collapse
|
7
|
Lv Y, Liu W, Ruan Z, Xu Z, Fu L. Myosin IIA Regulated Tight Junction in Oxygen Glucose-Deprived Brain Endothelial Cells Via Activation of TLR4/PI3K/Akt/JNK1/2/14-3-3ε/NF-κB/MMP9 Signal Transduction Pathway. Cell Mol Neurobiol 2019; 39:301-319. [PMID: 30666520 DOI: 10.1007/s10571-019-00654-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Non-muscle myosin heavy chain IIA (NMMHC IIA), a member of Myosin II family, plays a critical role in various cellular physiological processes. Our previous research had suggested that NMMHC IIA could participate in regulating tight junction morphological changes induced by ischemia stroke. Thus, in the current study, we attempted to uncover the regulation pattern of NMMHC IIA on tight junction dysfunction in oxygen glucose-deprived (OGD) mouse brain bEND.3 endothelial cells. The regulation of NMMHC IIA on tight junction in OGD-stimulated bEND.3 cells was evaluated by western blotting assay. Morphologic change of occludin, claudin-5, and ZO-1 tight junction proteins was compared with pretreatment with NMMHC II inhibitor blebbistatin via immunohistochemical staining. Detection of activation of NMMHC IIA on OGD-mediated tight junction transduction pathway was investigated via Koch's postulate using corresponding protein inhibitor. Our results showed that NMMHC IIA was activated in OGD-stimulated bEND.3 endothelial cells. The inhibition of NMMHC IIA could attenuate the morphologic change of occludin, claudin-5, and ZO-1 tight junction proteins. NMMHC IIA participated in regulating downstream transduction pathway TLR4, phosphatidylinositol 3-kinase (PI3K), Akt, JNK1/2, 14-3-3ε, nuclear factor kappa B (NF-кB) and matrix metalloprotein 9 (MMP9). Blocking of these pathways using indicated inhibitors demonstrated that NMMHC IIA destroyed the connection of tight junction via the activation of TLR4/PI3K/Akt/JNK1/2/14-3-3ε/NF-κB/MMP9 pathway. Our study described the key role of NMMHC IIA in OGD-stimulated mouse brain bEND.3 endothelial cells, while also exhibited the molecule effect on tight junction dysfunction via TLR4/PI3K/Akt/JNK1/2/14-3-3ε/NF-κB/MMP9 signal transduction pathway.
Collapse
Affiliation(s)
- Yanni Lv
- Pharmacy department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Wen Liu
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Zhaohui Ruan
- Pharmacy department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zixuan Xu
- Pharmacy department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Longsheng Fu
- Pharmacy department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
8
|
Bigger BW, Begley DJ, Virgintino D, Pshezhetsky AV. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol Genet Metab 2018; 125:322-331. [PMID: 30145178 DOI: 10.1016/j.ymgme.2018.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Abstract
Mucopolysaccharidosis (MPS) disorders are caused by deficiencies in lysosomal enzymes, leading to impaired glycosaminoglycan (GAG) degradation. The resulting GAG accumulation in cells and connective tissues ultimately results in widespread tissue and organ dysfunction. The seven MPS types currently described are heterogeneous and progressive disorders, with somatic and neurological manifestations depending on the type of accumulating GAG. Heparan sulfate (HS) is one of the GAGs stored in patients with MPS I, II, and VII and the main GAG stored in patients with MPS III. These disorders are associated with significant central nervous system (CNS) abnormalities that can manifest as impaired cognition, hyperactive and/or aggressive behavior, epilepsy, hydrocephalus, and sleeping problems. This review discusses the anatomical and pathophysiological CNS changes accompanying HS accumulation as well as the mechanisms believed to cause CNS abnormalities in MPS patients. The content of this review is based on presentations and discussions on these topics during a meeting on the brain in MPS attended by an international group of MPS experts.
Collapse
Affiliation(s)
- Brian W Bigger
- Stem Cell & Neurotherapies Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - David J Begley
- Drug Delivery Group, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, Bari University School of Medicine, Bari, Italy
| | - Alexey V Pshezhetsky
- Departments of Pediatrics and Biochemistry, CHU Sainte-Justine, Research Center, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Guo N, DeAngelis V, Zhu C, Schuchman EH, Simonaro CM. Pentosan Polysulfate Treatment of Mucopolysaccharidosis Type IIIA Mice. JIMD Rep 2018; 43:37-52. [PMID: 29654542 PMCID: PMC6323024 DOI: 10.1007/8904_2018_96] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023] Open
Abstract
Overall Goal: This study was designed to evaluate the impact of pentosan polysulfate (PPS) treatment on mice with mucopolysaccharidosis (MPS) type IIIA (Sanfilippo A syndrome; OMIM 252900). Protocol: Three groups of MPS IIIA mice were evaluated: 1-week-old mice treated with subcutaneous (subQ) PPS at 25 mg/kg once weekly for 31 weeks (group 1); 5-month-old mice treated with subQ PPS once weekly at 50 mg/kg for 12 weeks (group 2); and 5-week-old mice treated by continual intracerebroventricular (ICV) PPS infusion for 11 weeks (60 μg/kg/day). Treated MPS IIIA mice and controls were assessed by measuring plasma cytokine levels, histologic analyses of systemic organs, and analyses of various neuroinflammatory, neurodegenerative, and lysosomal disease markers in their brains. Neurobehavioral testing also was carried out. Results: As seen in other MPS animal models, subQ PPS treatment reduced plasma cytokine levels and macrophage infiltration in systemic tissues. ICV administration did not elicit these systemic effects. SubQ PPS administration also significantly impacted brain neuropathology, inflammation, and behavior. The effect of early subQ treatment was more significant than dose. Surprisingly, ICV PPS treatment had intermediate effects on most of these brain markers, perhaps due to the limited dose and/or duration of treatment. Consistent with these neuropathological findings, we also observed significant improvements in the hyperactivity/anxiety and learning behaviors of the MPS IIIA mice treated with early subQ PPS.
Collapse
Affiliation(s)
- Ningning Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victor DeAngelis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changzhi Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Calogera M Simonaro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Whole Body and CNS Biodistribution of rhHNS in Cynomolgus Monkeys after Intrathecal Lumbar Administration: Treatment Implications for Patients with MPS IIIA. Int J Mol Sci 2017; 18:ijms18122594. [PMID: 29194406 PMCID: PMC5751197 DOI: 10.3390/ijms18122594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidosis III type A (MPS IIIA; Sanfilippo syndrome), a genetic lysosomal disorder causing a deficiency of heparan N-sulfatase (HNS), leads to progressive cognitive decline from an early age. An effective enzyme replacement therapy (ERT) for MPS IIIA requires central nervous system (CNS) biodistribution. Recombinant human heparan N-sulfatase (rhHNS), an investigatory ERT for MPS IIIA, has been formulated for intrathecal (IT) administration since intravenous (IV) administration cannot cross the blood brain barrier (BBB) in sufficient amounts to have a therapeutic effect. In this study, systemic and CNS distribution of rhHNS in cynomolgus monkeys following IV and IT administration was evaluated by quantitation of rhHNS in serum, cerebral spinal fluid (CSF) and various tissues, and positron emission tomography (PET) imaging of live animals. Following IV administration, rhHNS levels were low to non-detectable in the CSF, and systemic clearance was rapid (≤2 h). With IT administration, rhHNS was observable in CNS tissues in ≤1 h, with varying Tmax (1-24 h). Appreciable systemic distribution was observed up to 7 days. This provides evidence that in this animal model, intrathecal administration of rhHNS delivers the replacement enzyme to therapeutically relevant tissues for the treatment of Sanfilippo Syndrome type A. Penetration into grey matter and cortex was 3-4 times greater than concentrations in white matter and deeper parenchymal regions, suggesting some limitations of this ERT strategy.
Collapse
|
11
|
van der Meulen PM, Barendregt AM, Cuadrado E, Magro-Checa C, Steup-Beekman GM, Schonenberg-Meinema D, Van den Berg JM, Li QZ, Baars PA, Wouters D, Voskuyl AE, Ten Berge IRJM, Huizinga TWJ, Kuijpers TW. Protein array autoantibody profiles to determine diagnostic markers for neuropsychiatric systemic lupus erythematosus. Rheumatology (Oxford) 2017; 56:1407-1416. [PMID: 28460084 DOI: 10.1093/rheumatology/kex073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Objective The aim was to investigate the association between autoantibodies (autoAbs) and neuropsychiatric (NP) involvement in patients with SLE and to evaluate whether any autoAb or a combination of these autoAbs could indicate the underlying pathogenic process. Methods Using a multiplexed protein array for 94 antigens, we compared the serum autoAb profiles of 69 NPSLE patients, 203 SLE patients without NP involvement (non-NPSLE) and 51 healthy controls. Furthermore, we compared the profiles of NPSLE patients with clinical inflammatory (n = 38) and ischaemic (n = 31) NP involvement. Results In total, 75 IgG and 47 IgM autoAbs were associated with SLE patients in comparison with healthy controls. Comparing NPSLE with non-NPSLE and healthy control sera, 9 IgG (amyloid, cardiolipin, glycoprotein 2, glycoprotein 210, heparin, heparan sulphate, histone H2A, prothrombin protein and vimentin) and 12 IgM (amyloid, cardiolipin, centromere protein A, collagen II, histones H2A and H2B, heparan sulphate, heparin, mitochondrial 2, nuclear Mi-2, nucleoporin 62 and vimentin) autoAbs were present at significantly different levels in NPSLE. The combination of IgG autoAbs against heparan sulphate, histone H2B and vimentin could differentiate NPSLE from non-NPSLE (area under the curve 0.845, 99.97% CI: 0.756, 0.933; P < 0.0001). Compared with non-NPSLE, four IgG and seven IgM autoAbs were significantly associated with inflammatory NPSLE. In ischaemic NPSLE, three IgG and three IgM autoAbs were significantly different from non-NPSLE patients. Conclusion In our cohort, the presence of high levels of anti-heparan sulphate and anti-histone H2B combined with low levels of anti-vimentin IgG autoAbs is highly suggestive of NPSLE. These results need to be validated in external cohorts.
Collapse
Affiliation(s)
- Pomme M van der Meulen
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - Anouk M Barendregt
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - Eloy Cuadrado
- Astrocyte Biology and Neurodegeneration Group, Netherlands Institute for Neuroscience, Amsterdam
| | - César Magro-Checa
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerda M Steup-Beekman
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dieneke Schonenberg-Meinema
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - J Merlijn Van den Berg
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul A Baars
- Department of Experimental Immunology, Academic Medical Center, Amsterdam
| | | | | | - Ineke R J M Ten Berge
- Department of Internal Medicine, Clinical Immunology & Nephrology, Academic Medical Center, Amsterdam, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| |
Collapse
|
12
|
Salvalaio M, Rigon L, Belletti D, D'Avanzo F, Pederzoli F, Ruozi B, Marin O, Vandelli MA, Forni F, Scarpa M, Tomanin R, Tosi G. Targeted Polymeric Nanoparticles for Brain Delivery of High Molecular Weight Molecules in Lysosomal Storage Disorders. PLoS One 2016; 11:e0156452. [PMID: 27228099 PMCID: PMC4881964 DOI: 10.1371/journal.pone.0156452] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/13/2016] [Indexed: 12/25/2022] Open
Abstract
Lysosomal Storage Disorders (LSDs) are a group of metabolic syndromes, each one due to the deficit of one lysosomal enzyme. Many LSDs affect most of the organ systems and overall about 75% of the patients present neurological impairment. Enzyme Replacement Therapy, although determining some systemic clinical improvements, is ineffective on the CNS disease, due to enzymes' inability to cross the blood-brain barrier (BBB). With the aim to deliver the therapeutic enzymes across the BBB, we here assayed biodegradable and biocompatible PLGA-nanoparticles (NPs) in two murine models for LSDs, Mucopolysaccharidosis type I and II (MPS I and MPS II). PLGA-NPs were modified with a 7-aminoacid glycopeptide (g7), yet demonstrated to be able to deliver low molecular weight (MW) molecules across the BBB in rodents. We specifically investigated, for the first time, the g7-NPs ability to transfer a model drug (FITC-albumin) with a high MW, comparable to the enzymes to be delivered for LSDs brain therapy. In vivo experiments, conducted on wild-type mice and knockout mouse models for MPS I and II, also included a whole series of control injections to obtain a broad preliminary view of the procedure efficiency. Results clearly showed efficient BBB crossing of albumin in all injected mice, underlying the ability of NPs to deliver high MW molecules to the brain. These results encourage successful experiments with enzyme-loaded g7-NPs to deliver sufficient amounts of the drug to the brain district on LSDs, where exerting a corrective effect on the pathological phenotype.
Collapse
Affiliation(s)
- Marika Salvalaio
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Pediatric Research Institute "Città della Speranza", Padova, Italy
| | - Laura Rigon
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Daniela Belletti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca D'Avanzo
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Brains for Brain Foundation-Onlus, Padova, Italy
| | - Francesca Pederzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Pediatric Research Institute "Città della Speranza", Padova, Italy
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | | | - Flavio Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Scarpa
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Brains for Brain Foundation-Onlus, Padova, Italy
| | - Rosella Tomanin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Guarany NR, Vanz AP, Wilke MVMB, Bender DD, Borges MD, Giugliani R, Schwartz IVD. Mucopolysaccharidosis. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2015. [DOI: 10.1177/2326409815613804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Nicole Ruas Guarany
- Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Occupational Therapy, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Ana Paula Vanz
- Graduate Program in Children and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Daniele Dorneles Bender
- Undergraduate of School Occupational Therapy, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mariana Dumer Borges
- Undergraduate of School Occupational Therapy, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roberto Giugliani
- Service of Medical Genetics, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Service of Medical Genetics, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|