1
|
Shah AA, Daud A, Bukhari A, Alshemaimri B, Ahsan M, Younis R. DEL-Thyroid: deep ensemble learning framework for detection of thyroid cancer progression through genomic mutation. BMC Med Inform Decis Mak 2024; 24:198. [PMID: 39039464 PMCID: PMC11533268 DOI: 10.1186/s12911-024-02604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Genes, expressed as sequences of nucleotides, are susceptible to mutations, some of which can lead to cancer. Machine learning and deep learning methods have emerged as vital tools in identifying mutations associated with cancer. Thyroid cancer ranks as the 5th most prevalent cancer in the USA, with thousands diagnosed annually. This paper presents an ensemble learning model leveraging deep learning techniques such as Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), and Bi-directional LSTM (Bi-LSTM) to detect thyroid cancer mutations early. The model is trained on a dataset sourced from asia.ensembl.org and IntOGen.org, consisting of 633 samples with 969 mutations across 41 genes, collected from individuals of various demographics. Feature extraction encompasses techniques including Hahn moments, central moments, raw moments, and various matrix-based methods. Evaluation employs three testing methods: self-consistency test (SCT), independent set test (IST), and 10-fold cross-validation test (10-FCVT). The proposed ensemble learning model demonstrates promising performance, achieving 96% accuracy in the independent set test (IST). Statistical measures such as training accuracy, testing accuracy, recall, sensitivity, specificity, Mathew's Correlation Coefficient (MCC), loss, training accuracy, F1 Score, and Cohen's kappa are utilized for comprehensive evaluation.
Collapse
Affiliation(s)
- Asghar Ali Shah
- Center of Excellence in Artificial Intelligence (CoE-AI), Department of Computer Science, Bahria University, Islamabad, 04408, Pakistan
| | - Ali Daud
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates.
| | - Amal Bukhari
- Department of Information Systems and Technology, Collage of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Bader Alshemaimri
- Software Engineering Department, College of Computing and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Ahsan
- Department of Computer Science, University of Alabama at Birmingham, 1402 10th Avenue S, Birmingham, AL, 35294, USA
| | - Rehmana Younis
- College of Letters and Sciences, Graduate Student of Robotics Engineering, Columbus State University, Columbus, USA
| |
Collapse
|
2
|
Molecular, Morphological and Clinical Characteristics of Spontaneous Canine Colorectal Cancer – A Review. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
Cross-species comparison analysis studies are of immense importance in veterinary and human oncological research. Of the various non-rodent species available, dogs have gained most attention as potential animal models for the study of colorectal cancer. Domestic dogs developed evolutionally through a mutually beneficial relationship with humans. Because dogs share the same environment as humans, they are exposed to the same potentially harmful substances which may act as carcinogens in both species. Intestinal adenocarcinomas in dogs are naturally occurring heterogeneous tumours, which have the characteristics of sporadic human malignancies and therefore are more suitable for detailed oncological study than most xenograft or genetically modified rodent models. Furthermore, the canine genome has been comprehensively analysed and sequenced to a 7.6-fold coverage, and a very accurate version of this sequencing is available for study. The purpose of this manuscript is to present a comprehensive review of published data related to colorectal cancer in dogs. In addition, data regarding interspecies comparison of molecular events driving canine and human intestinal carcinogenesis is presented.
Collapse
|
3
|
Ali H, Bitar MS, Al Madhoun A, Marafie M, Al-Mulla F. Functionally-focused algorithmic analysis of high resolution microarray-CGH genomic landscapes demonstrates comparable genomic copy number aberrations in MSI and MSS sporadic colorectal cancer. PLoS One 2017; 12:e0171690. [PMID: 28231327 PMCID: PMC5322957 DOI: 10.1371/journal.pone.0171690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Array-based comparative genomic hybridization (aCGH) emerged as a powerful technology for studying copy number variations at higher resolution in many cancers including colorectal cancer. However, the lack of standardized systematic protocols including bioinformatic algorithms to obtain and analyze genomic data resulted in significant variation in the reported copy number aberration (CNA) data. Here, we present genomic aCGH data obtained using highly stringent and functionally relevant statistical algorithms from 116 well-defined microsatellites instable (MSI) and microsatellite stable (MSS) colorectal cancers. We utilized aCGH to characterize genomic CNAs in 116 well-defined sets of colorectal cancer (CRC) cases. We further applied the significance testing for aberrant copy number (STAC) and Genomic Identification of Significant Targets in Cancer (GISTIC) algorithms to identify functionally relevant (nonrandom) chromosomal aberrations in the analyzed colorectal cancer samples. Our results produced high resolution genomic landscapes of both, MSI and MSS sporadic CRC. We found that CNAs in MSI and MSS CRCs are heterogeneous in nature but may be divided into 3 distinct genomic patterns. Moreover, we show that although CNAs in MSI and MSS CRCs differ with respect to their size, number and chromosomal distribution, the functional copy number aberrations obtained from MSI and MSS CRCs were in fact comparable but not identical. These unifying CNAs were verified by MLPA tumor-loss gene panel, which spans 15 different chromosomal locations and contains 50 probes for at least 20 tumor suppressor genes. Consistently, deletion/amplification in these frequently cancer altered genes were identical in MSS and MSI CRCs. Our results suggest that MSI and MSS copy number aberrations driving CRC may be functionally comparable.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriya, Kuwait
- Research Division, Immunology Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- * E-mail: (HA); (FA)
| | - Milad S. Bitar
- Research Division, Immunology Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ashraf Al Madhoun
- Research Division, Immunology Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | | | - Fahd Al-Mulla
- Molecular Pathology Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Research Division, Genomics Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- * E-mail: (HA); (FA)
| |
Collapse
|
4
|
Roa I, Garcia H, Game A, de Toro G, de Aretxabala X, Javle M. Somatic Mutations of PI3K in Early and Advanced Gallbladder Cancer. J Mol Diagn 2016; 18:388-394. [DOI: 10.1016/j.jmoldx.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
|
5
|
Zhang W, Edwards A, Fan W, Flemington EK, Zhang K. The modularity and dynamicity of miRNA-mRNA interactions in high-grade serous ovarian carcinomas and the prognostic implication. Comput Biol Chem 2016; 63:3-14. [PMID: 26949157 DOI: 10.1016/j.compbiolchem.2016.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Ovarian carcinoma is the fifth-leading cause of cancer death among women in the United States. Major reasons for this persistent mortality include the poor understanding of the underlying biology and a lack of reliable biomarkers. Previous studies have shown that aberrantly expressed MicroRNAs (miRNAs) are involved in carcinogenesis and tumor progression by post-transcriptionally regulating gene expression. However, the interference of miRNAs in tumorigenesis is quite complicated and far from being fully understood. In this work, by an integrative analysis of mRNA expression, miRNA expression and clinical data published by The Cancer Genome Atlas (TCGA), we studied the modularity and dynamicity of miRNA-mRNA interactions and the prognostic implications in high-grade serous ovarian carcinomas. With the top transcriptional correlations (Bonferroni-adjusted p-value<0.01) as inputs, we identified five miRNA-mRNA module pairs (MPs), each of which included one positive-connection (correlation) module and one negative-connection (correlation) module. The number of miRNAs or mRNAs in each module varied from 3 to 7 or from 2 to 873. Among the four major negative-connection modules, three fit well with the widely accepted miRNA-mediated post-transcriptional regulation theory. These modules were enriched with the genes relevant to cell cycle and immune response. Moreover, we proposed two novel algorithms to reveal the group or sample specific dynamic regulations between these two RNA classes. The obtained miRNA-mRNA dynamic network contains 3350 interactions captured across different cancer progression stages or tumor grades. We found that those dynamic interactions tended to concentrate on a few miRNAs (e.g. miRNA-936), and were more likely present on the miRNA-mRNA pairs outside the discovered modules. In addition, we also pinpointed a robust prognostic signature consisting of 56 modular protein-coding genes, whose co-expression patterns were predictive for the survival time of ovarian cancer patients in multiple independent cohorts.
Collapse
Affiliation(s)
- Wensheng Zhang
- Department of Computer Science, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States.
| | - Andrea Edwards
- Department of Computer Science, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States.
| | - Wei Fan
- Big Data Lab, Baidu Research, 1195 Bordeaux Dr., Sunnyvale, CA 94089, United States.
| | - Erik K Flemington
- Tulane Health Sciences Center, Tulane Cancer Center, Tulane University, 1700 Tulane Ave, New Orleans, LA 70112, United States.
| | - Kun Zhang
- Department of Computer Science, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States.
| |
Collapse
|
6
|
Galac S. Cortisol-secreting adrenocortical tumours in dogs and their relevance for human medicine. Mol Cell Endocrinol 2016; 421:34-9. [PMID: 26123587 DOI: 10.1016/j.mce.2015.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Spontaneous cortisol-secreting adrenocortical tumours in pet dogs are an attractive animal model for their human counterparts. Adrenal morphology and function are similar in dogs and humans, and adrenocortical tumours have comparable clinical and pathological characteristics. Their relatively high incidence in pet dogs represents a potential source of adrenocortical tumour tissue to facilitate research. The molecular characteristics of canine cortisol-secreting adrenocortical tumours suggest that they will be useful for the study of angiogenesis, the cAMP/protein kinase A pathway, and the role of Steroidogenic Factor-1 in adrenal tumourigenesis. Pet dogs with spontaneous cortisol-secreting adrenocortical tumours may also be useful in clinical testing of new drugs and in investigating the molecular background of adrenocortical tumours.
Collapse
Affiliation(s)
- Sara Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
7
|
Allan CM, Procaccia S, Tran D, Tu Y, Barnes RH, Larsson M, Allan BB, Young LC, Hong C, Tontonoz P, Fong LG, Young SG, Beigneux AP. Palmoplantar Keratoderma in Slurp2-Deficient Mice. J Invest Dermatol 2015; 136:436-443. [PMID: 26967477 PMCID: PMC4789766 DOI: 10.1016/j.jid.2015.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 01/13/2023]
Abstract
SLURP1, a member of the Ly6 protein family, is secreted by suprabasal keratinocytes. Mutations in SLURP1 cause a palmoplantar keratoderma (PPK) known as mal de Meleda. Another secreted Ly6 protein, SLURP2, is encoded by a gene located ~20 kb downstream from SLURP1. SLURP2 is produced by suprabasal keratinocytes. To investigate the importance of SLURP2, we first examined Slurp2 knockout mice in which exon 2–3 sequences had been replaced with lacZ and neo cassettes. Slurp2−/− mice exhibited hyperkeratosis on the volar surface of the paws (i.e., PPK), increased keratinocyte proliferation, and an accumulation of lipid droplets in the stratum corneum. They also exhibited reduced body weight and hind limb clasping. These phenotypes are very similar to those of Slurp1−/− mice. To solidify a link between Slurp2 deficiency and PPK and to be confident that the disease phenotypes in Slurp2−/− mice were not secondary to the effects of the lacZ and neo cassettes on Slurp1 expression, we created a new line of Slurp2 knockout mice (Slurp2X−/−) in which Slurp2 was inactivated with a simple nonsense mutation. Slurp2X−/− mice exhibited the same disease phenotypes. Thus, Slurp2 deficiency and Slurp1 deficiencies cause the same disease phenotypes.
Collapse
Affiliation(s)
- Christopher M Allan
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Shiri Procaccia
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Deanna Tran
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yiping Tu
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Richard H Barnes
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Mikael Larsson
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Bernard B Allan
- Department of Molecular Biology, Genentech, South San Francisco, California, USA
| | - Lorraine C Young
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Howard Hughes Medical Institute, University of California, Los Angeles, California, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Howard Hughes Medical Institute, University of California, Los Angeles, California, USA
| | - Loren G Fong
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Stephen G Young
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Anne P Beigneux
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
8
|
Roa I, de Toro G, Fernández F, Game A, Muñoz S, de Aretxabala X, Javle M. Inactivation of tumor suppressor gene pten in early and advanced gallbladder cancer. Diagn Pathol 2015; 10:148. [PMID: 26294099 PMCID: PMC4546176 DOI: 10.1186/s13000-015-0381-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/13/2015] [Indexed: 01/01/2023] Open
Abstract
Background PTEN is a tumor suppressor gene that regulates the PTEN/PI3k/AKT/mTOR pathway, which is frequently altered in human cancers including gallbladder cancer (GBC). To determine the frequency of PTEN expression in GBC and to establish its relation to clinical and morphological parameters and survival in GBC. Methods The immunohistochemical expression of PTEN was studied in 108 GBC. All the cases included areas of non-tumor mucosa adjacent to the tumor. Results The group was comprised of 108 patients, 91 women (84.3 %) and 17 men (15.7 %) with an average age of 65.2 years (SD ± 12.3 years). Thirty-five cases (33 %) were early carcinomas (EC) and the remaining 73 (67 %) were advanced cases (AC). All the internal controls were positive (moderate or intense in 96.3 %). Only in three AC (4.1 %) was there a complete absence of PTEN immunohistochemical expression. There were no significant differences in relation between PTEN expression and tumor infiltration or degree of differentiation. The three patients with PTEN inactivation died before 10 months; however, the other patients with AC had a survival of 53 % at 10 months. Discussion Loss of PTEN expression was observed in 4.1 % of the advanced GBC. All the patients with this alteration died before 10 months. PTEN inactivation could be a rare event, but with a poor prognosis in advanced GBC.
Collapse
Affiliation(s)
- Iván Roa
- Creative Bioscience Santiago, Avenida Del Valle Norte 857. Oficina 102, Ciudad Empresarial, Huechuraba Santiago, 8580702, Chile.
| | - Gonzalo de Toro
- Servicio de Anatomía Patológica Hospital de Puerto Montt, Puerto Montt, Chile.
| | | | - Anakaren Game
- Facultad de Medicina, Universidad del Desarrollo, Santiago, Chile.
| | - Sergio Muñoz
- Departamento de Salud Pública, CIGES, Facultad de Medicina, Universidad de la Frontera, Temuco, Chile.
| | | | - Milind Javle
- Javle, Milind UT-MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Gallbladder cancer (GBC) should be considered an orphan disease in oncology and represent a unique carcinogenetic model. This review will analyse some of the current aspects of GBC. RECENT FINDINGS Chile has the highest incidence and mortality of GBC in the world. Most patients are diagnosed in advanced stages with few treatment options. During the last two decades, little progress has been made in early diagnosis and treatment. At the molecular level, recent access to next-generation sequencing and other techniques for detecting the mutations of multiple genes have made advances in this area. SUMMARY The use of therapies targeted according to the detection of specific molecular alterations is in the early stages of evaluation and could represent a significant advance in the treatment of a large number of patients from developing countries.
Collapse
|
10
|
Sarajlić A, Janjić V, Stojković N, Radak D, Pržulj N. Network topology reveals key cardiovascular disease genes. PLoS One 2013; 8:e71537. [PMID: 23977067 PMCID: PMC3744556 DOI: 10.1371/journal.pone.0071537] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022] Open
Abstract
The structure of protein-protein interaction (PPI) networks has already been successfully used as a source of new biological information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many CVD genes still await discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug targets and "driver genes." We seek such genes, since driver genes have been proposed to drive onset and progression of a disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our methodology identifies "key" genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over 70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs.
Collapse
Affiliation(s)
- Anida Sarajlić
- Department of Computing, Imperial College London, London, United Kingdom
| | - Vuk Janjić
- Department of Computing, Imperial College London, London, United Kingdom
| | - Neda Stojković
- Institute for Cardiovascular Disease “Dedinje,” University of Belgrade, Belgrade, Serbia
| | - Djordje Radak
- Institute for Cardiovascular Disease “Dedinje,” University of Belgrade, Belgrade, Serbia
| | - Nataša Pržulj
- Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Karim BO, Huso DL. Mouse models for colorectal cancer. Am J Cancer Res 2013; 3:240-50. [PMID: 23841024 PMCID: PMC3696531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States, with the number of affected people increasing. There are many risk factors that increase CRC risk, including family or personal history of CRC, smoking, consumption of red meat, obesity, and alcohol consumption. Conversely, increased screening, maintaining healthy body weight, not smoking, and limiting intake of red meat are all associated with reduced CRC morbidity and mortality. Mouse models of CRC were first used in 1928 and have played an important role in understanding CRC biology and treatment and have long been instrumental in clarifying the pathobiology of CRC formation and inhibition. This review focuses on advancements in modeling CRC in mice.
Collapse
Affiliation(s)
- Baktiar O Karim
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University Baltimore, MD 21205, USA
| | | |
Collapse
|
12
|
Cancer driver-passenger distinction via sporadic human and dog cancer comparison: a proof-of-principle study with colorectal cancer. Oncogene 2013; 33:814-22. [PMID: 23416983 PMCID: PMC3932186 DOI: 10.1038/onc.2013.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/20/2012] [Accepted: 12/25/2012] [Indexed: 01/09/2023]
Abstract
Herein we report a proof of principle study illustrating a novel dog-human comparison strategy that addresses a central aim of cancer research, namely cancer driver–passenger distinction. We previously demonstrated that sporadic canine colorectal cancers (CRCs) share similar molecular pathogenesis mechanisms as their human counterparts. In this study, we compared the genome-wide copy number abnormalities between 29 human- and 10 canine sporadic CRCs. This led to the identification of 73 driver candidate genes (DCGs), altered in both species and with 27 from the whole genome and 46 from dog-human genomic rearrangement breakpoint (GRB) regions, as well as 38 passenger candidate genes (PCGs), altered in humans only and located in GRB regions. We noted that DCGs significantly differ from PCGs in every analysis conducted to assess their cancer relevance and biological functions. Importantly, while PCGs are not enriched in any specific functions, DCGs possess significantly enhanced functionality closely associated with cell proliferation and death regulation, as well as with epithelial cell apicobasal polarity establishment/maintenance. These observations support the notion that, in sporadic CRCs of both species, cell polarity genes not only contribute in preventing cancer cell invasion and spreading, but also likely serve as tumor suppressors by modulating cell growth. This pilot study validates our novel strategy and has uncovered four new potential cell polarity and colorectal tumor suppressor genes (RASA3, NUPL1, DENND5A, and AVL9). Expansion of this study would make more driver-passenger distinctions for cancers with large genomic amplifications or deletions, and address key questions regarding the relationship between cancer pathogenesis and epithelial cell polarity control in mammals.
Collapse
|
13
|
Abstract
Large amounts of protein-protein interaction (PPI) data are available. The human PPI network currently contains over 56 000 interactions between 11 100 proteins. It has been demonstrated that the structure of this network is not random and that the same wiring patterns in it underlie the same biological processes and diseases. In this paper, we ask if there exists a subnetwork of the human PPI network such that its topology is the key to disease formation and hence should be the primary object of therapeutic intervention. We demonstrate that such a subnetwork exists and can be obtained purely computationally. In particular, by successively pruning the entire human PPI network, we are left with a "core" subnetwork that is not only topologically and functionally homogeneous, but is also enriched in disease genes, drug targets, and it contains genes that are known to drive disease formation. We call this subnetwork the Core Diseasome. Furthermore, we show that the topology of the Core Diseasome is unique in the human PPI network suggesting that it may be the wiring of this network that governs the mutagenesis that leads to disease. Explaining the mechanisms behind this phenomenon and exploiting them remains a challenge.
Collapse
Affiliation(s)
- Vuk Janjić
- Department of Computing, Imperial College London, London, SW7 2AZ, UK.
| | | |
Collapse
|
14
|
Youmans L, Taylor C, Shin E, Harrell A, Ellis AE, Séguin B, Ji X, Zhao S. Frequent alteration of the tumor suppressor gene APC in sporadic canine colorectal tumors. PLoS One 2012; 7:e50813. [PMID: 23251390 PMCID: PMC3519478 DOI: 10.1371/journal.pone.0050813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Sporadic canine colorectal cancers (CRCs) should make excellent models for studying the corresponding human cancers. To molecularly characterize canine CRC, we investigated exonic sequence mutations of adenomatous polyposis coli (APC), the best known tumor suppressor gene of human CRC, in 23 sporadic canine colorectal tumors, including 8 adenomas and 15 adenocarcinomas, via exon-resequencing analysis. As a comparison, we also performed the same sequencing analysis on 10 other genes, either located at human 5q22 (the same locus as APC) or 18q21 (also frequently altered in human CRC), or known to play a role in human carcinogenesis. We noted that APC was the most significantly mutated gene in both canine adenomas and adenocarcinomas among the 11 genes examined. Significantly, we detected large deletions of ≥10 bases, many clustered near the mutation cluster region, as well as single or two base deletions in ∼70% canine tumors of both subtypes. These observations indicate that like in the human, APC is also frequently altered in sporadic colorectal tumors in the dog and its alteration is an early event in canine colorectal tumorigenesis. Our study provides further evidence demonstrating the molecular similarity in pathogenesis between sporadic human and canine CRCs. This work, along with our previous copy number abnormality study, supports that sporadic canine CRCs are valid models of human CRCs at the molecular level.
Collapse
Affiliation(s)
- Lydia Youmans
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Cynthia Taylor
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Edwin Shin
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Adrienne Harrell
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Angela E. Ellis
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Bernard Séguin
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Xinglai Ji
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
Molecular network data are increasingly becoming available, necessitating the development of well performing computational tools for their analyses. Such tools enabled conceptually different approaches for exploring human diseases to be undertaken, in particular, those that study the relationship between a multitude of biomolecules within a cell. Hence, a new field of network biology has emerged as part of systems biology, aiming to untangle the complexity of cellular network organization. We survey current network analysis methods that aim to give insight into human disease.
Collapse
Affiliation(s)
- Vuk Janjić
- Department of Computing, Imperial College London, 180 Queen's Gate, SW7 2AZ London, UK
| | | |
Collapse
|
16
|
miRNA-mRNA correlation-network modules in human prostate cancer and the differences between primary and metastatic tumor subtypes. PLoS One 2012; 7:e40130. [PMID: 22768240 PMCID: PMC3387006 DOI: 10.1371/journal.pone.0040130] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/01/2012] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown the contribution of miRNAs to cancer pathogenesis. Prostate cancer is the most commonly diagnosed cancer in men. Unlike other major types of cancer, no single gene has been identified as being mutated in the majority of prostate tumors. This implies that the expression profiling of genes, including the non-coding miRNAs, may substantially vary across individual cases of this cancer. The within-class variability makes it possible to reconstruct or infer disease-specific miRNA-mRNA correlation and regulatory modular networks using high-dimensional microarray data of prostate tumor samples. Furthermore, since miRNAs and tumor suppressor genes are usually tissue specific, miRNA-mRNA modules could potentially differ between primary prostate cancer (PPC) and metastatic prostate cancer (MPC). We herein performed an in silico analysis to explore the miRNA-mRNA correlation network modules in the two tumor subtypes. Our analysis identified 5 miRNA-mRNA module pairs (MPs) for PPC and MPC, respectively. Each MP includes one positive-connection (correlation) module and one negative-connection (correlation) module. The number of miRNAs or mRNAs (genes) in each module varies from 2 to 8 or from 6 to 622. The modules discovered for PPC are more informative than those for MPC in terms of the implicated biological insights. In particular, one negative-connection module in PPC fits well with the popularly recognized miRNA-mediated post-transcriptional regulation theory. That is, the 3′UTR sequences of the involved mRNAs (∼620) are enriched with the target site motifs of the 7 modular miRNAs, has-miR-106b, -191, -19b, -92a, -92b, -93, and -141. About 330 GO terms and KEGG pathways, including TGF-beta signaling pathway that maintains tissue homeostasis and plays a crucial role in the suppression of the proliferation of cancer cells, are over-represented (adj.p<0.05) in the modular gene list. These computationally identified modules provide remarkable biological evidence for the interference of miRNAs in the development of prostate cancers and warrant additional follow-up in independent laboratory studies.
Collapse
|
17
|
Cui J, Miner BM, Eldredge JB, Warrenfeltz SW, Dam P, Xu Y, Puett D. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation. BMC Cancer 2011; 11:280. [PMID: 21711548 PMCID: PMC3141782 DOI: 10.1186/1471-2407-11-280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive mediation of ovarian cancer growth. Conclusion Overall, the present study elucidates the extensive transcriptomic changes of ovarian cancer cells in response to LH receptor activation, which provides a comprehensive and objective assessment for determining new cancer therapies and potential serum markers, of which over 100 are suggested.
Collapse
Affiliation(s)
- Juan Cui
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|