1
|
Qian Y, Berryman DE, Basu R, List EO, Okada S, Young JA, Jensen EA, Bell SRC, Kulkarni P, Duran-Ortiz S, Mora-Criollo P, Mathes SC, Brittain AL, Buchman M, Davis E, Funk KR, Bogart J, Ibarra D, Mendez-Gibson I, Slyby J, Terry J, Kopchick JJ. Mice with gene alterations in the GH and IGF family. Pituitary 2022; 25:1-51. [PMID: 34797529 PMCID: PMC8603657 DOI: 10.1007/s11102-021-01191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.
Collapse
Affiliation(s)
- Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Elizabeth A Jensen
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Stephen R C Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | | | - Patricia Mora-Criollo
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Samuel C Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Mat Buchman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Kevin R Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Jolie Bogart
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Isaac Mendez-Gibson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Julie Slyby
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
2
|
Guerrero CH, Gamboa-Loira B, Mérida-Ortega Á, López-Carrillo L. Dietary Glycemic Index and Glycemic Load and Risk of Breast Cancer by Molecular Subtype in Mexican Women. Nutr Cancer 2019; 71:1283-1289. [PMID: 31058544 DOI: 10.1080/01635581.2019.1607408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The objective was to estimate the risk of breast cancer (BC) molecular subtypes in relation to the average glycemic index (GI) and the dietary glycemic load (GL) in Mexican women. From 2007 to 2011, a study of incident cases and population controls was conducted in five states of northern Mexico. A subsample of 509 cases matched 1:1 by age with 509 controls was selected. With a food frequency questionnaire, information about diet was obtained, and GI and GL were calculated. The expression of human epidermal growth factor receptor 2 (HER2), and estrogen (ER) and progesterone (PR) receptors in tumors was obtained from medical records. Patients were classified as luminal A (RE+ and/or PR+/HER2-), HER2+ (RE+ and/or PR+/HER2+ and RE-/PR-/HER2+), or triple negative (TN) (RE-/PR-/HER2-). GI and GL associations with BC molecular subtypes were evaluated using conditional logistic regression models. GI was positively associated with luminal A (OR= 1.12; 95% CI: 1.03, 1.22), HER2+ (OR= 1.15; 95% CI: 1.02, 1.30), and TN (OR= 1.20; 95% CI: 1.03, 1.39) BC. GL was not associated with BC molecular subtypes. These results suggest that the type of carbohydrate consumed is associated with increased BC regardless of the luminal A, HER2+, and TN subtypes.
Collapse
Affiliation(s)
- Christian H Guerrero
- Center for Research in Health and Nutrition, National Institute of Public Health , Cuernavaca , Morelos, Mexico
| | - Brenda Gamboa-Loira
- Center for Population Health Research, National Institute of Public Health , Cuernavaca , Morelos, Mexico
| | - Ángel Mérida-Ortega
- Center for Population Health Research, National Institute of Public Health , Cuernavaca , Morelos, Mexico
| | - Lizbeth López-Carrillo
- Center for Population Health Research, National Institute of Public Health , Cuernavaca , Morelos, Mexico
| |
Collapse
|
3
|
Feng X, Lin J, Xing S, Liu W, Zhang G. Higher IGFBP-1 to IGF-1 serum ratio predicts unfavourable survival in patients with nasopharyngeal carcinoma. BMC Cancer 2017; 17:90. [PMID: 28143425 PMCID: PMC5286734 DOI: 10.1186/s12885-017-3068-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background The insulin-like growth factor (IGF) system plays an important role in the development and progression of cancer. However, little is known about the expression of the IGF system components and their clinicopathological significance and prognostic value in nasopharyngeal carcinoma (NPC). Methods IGF system components (IGF-1, IGF-2, IGF-1SR, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4 and IGFBP-6) were quantified from the plasma of NPC patients and healthy individuals using the RayBio Human Cytokine Antibody Array. IGFBP-1 and IGF-1 mRNA levels were quantified by real-time qPCR, and protein expression was detected by western blot in nine NPC cell lines and four immortalized nasopharyngeal epithelial (NPE) cell lines. Tissue-specific expression of IGFBP-1 and IGF-1 was detected by immunohistochemistry in paraffin-embedded NPC tissues. ELISA analysis was used to measure the serum levels of IGFBP-1 and IGF-1 in 142 NPC patients and 128 healthy controls and determine potential correlation with clinicopathological parameters. Results Significantly higher levels of circulating IGFBP-1 and lower levels of IGF-1 and IGF-2 were detected in NPC patients compared to healthy controls by Cytokine Antibody Array analyses (P = 0.034, 0.012, 0.046, respectively). IGFBP-1 expression was detected in the majority of NPC cell lines, but not in NPE cell lines, and was shown to localize to the nucleus of tumour cells, in contrast to the cytoplasmic staining observed in normal cells. Importantly, IGFBP-1 expression was stronger in NPC tumour tissues compared to peritumoural tissues. In contrast, IGF-1 expression was weak or absent in NPC and NPE cell lines, with the exception of the EBV-infected C666 cell line, and was found to be expressed at lower levels in tumour tissues compared to tumour-adjacent normal tissue. Levels of serum IGFBP-1 were shown to be significantly higher in patients with NPCs compared to healthy control individuals (55.23 ± 41.25 μg/L vs. 32.08 ± 29.73 μg/L, P < 0.001), whereas serum levels of IGF-1 were significantly lower in NPC patients compared to healthy controls (98.14 ± 71.48 μg/L vs. 164.01 ± 92.08 μg/L, P = 0.001). Consistently, the IGFBP-1/IGF-1 serum ratio was shown to be significantly higher in NPC patients compared to healthy control individuals (P = 0.002). Serum levels of IGFBP-1 and the IGFBP-1/IGF-1 ratio significantly correlated with age (P = 0.020; P = 0.016), WHO histological classification (P = 0.044; P = 0.048), titre of EA (EB Virus Capsid Antigen-IgA) and NPC (P = 0.015; P = 0.016). In contrast, higher IGFBP-1 serum levels and IGFBP-1/IGF-1 ratio significantly correlated with poor RFS (P = 0.046; P = 0.037) and OS (P = 0.038; P = 0.009). Multivariate analysis revealed that the IGFBP-1/IGF-1 ratio, but not serum IGFBP-1 level, represents an independent risk factor for poor RFS (P = 0.044) and OS (P = 0.035). Conclusions A higher IGFBP-1/IGF-1 serum ratio is significantly associated with poor prognosis in NPC patients.
Collapse
Affiliation(s)
- Xinwei Feng
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Waihuandong Road, University Town, Guangzhou, 510006, China
| | - Jianhua Lin
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shan Xing
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanli Liu
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Waihuandong Road, University Town, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 2015; 14:43. [PMID: 25743390 PMCID: PMC4335664 DOI: 10.1186/s12943-015-0291-7] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/07/2015] [Indexed: 02/06/2023] Open
Abstract
IGF-1 is a potent mitogen of major importance in the mammary gland. IGF-1 binding to the cognate receptor, IGF-1R, triggers a signaling cascade leading to proliferative and anti-apoptotic events. Although many of the relevant molecular pathways and intracellular cascades remain to be elucidated, a growing body of evidence points to the important role of the IGF-1 system in breast cancer development, progression and metastasis. IGF-1 is a point of convergence for major signaling pathways implicated in breast cancer growth. In this review, we provide an overview and concise update on the function and regulation of IGF-1 as well as the role it plays in breast malignancies.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| | - Pavlos Msaouel
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| |
Collapse
|
5
|
Gahete MD, Córdoba-Chacón J, Lantvit DD, Ortega-Salas R, Sanchez-Sanchez R, Pérez-Jiménez F, López-Miranda J, Swanson SM, Castaño JP, Luque RM, Kineman RD. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice. Carcinogenesis 2014; 35:2467-73. [PMID: 25085903 DOI: 10.1093/carcin/bgu161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growth hormone (GH) and/or insulin-like growth factor I (IGF-I) are thought to promote breast cancer based on reports showing circulating IGF-I levels correlate, in epidemiological studies, with breast cancer risk. Also, mouse models with developmental GH/IGF-I deficiency/resistance are less susceptible to genetic- or chemical-induced mammary tumorigenesis. However, given the metabolic properties of GH, medical strategies have been considered to raise GH to improve body composition and metabolic function in elderly and obese patients. Since hyperlipidemia, inflammation, insulin resistance and obesity increase breast cancer risk, elevating GH may serve to exacerbate cancer progression. To better understand the role GH/IGF-I plays in tumor formation, this study used unique mouse models to determine if reducing GH/IGF-I in adults protects against 7,12-dimethylbenz[α]anthracene (DMBA)-induced mammary tumor development, and if moderate elevations in endogenous GH/IGF-I alter DMBA-induced tumorigenesis in mice fed a standard-chow diet or in mice with altered metabolic function due to high-fat feeding. We observed that adult-onset isolated GH-deficient mice, which also have reduced IGF-I levels, were less susceptible to DMBA-treatment. Specifically, fewer adult-onset isolated GH-deficient mice developed mammary tumors compared with GH-replete controls. In contrast, chow-fed mice with elevated endogenous GH/IGF-I (HiGH mice) were not more susceptible to DMBA-treatment. However, high-fat-fed, HiGH mice showed reduced tumor latency and increased tumor incidence compared with diet-matched controls. These results further support a role of GH/IGF-I in regulating mammary tumorigenesis but suggest the ultimate consequences of GH/IGF-I on breast tumor development are dependent on the diet and/or metabolic status.
Collapse
Affiliation(s)
- Manuel D Gahete
- Research and Development Division, Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Ave, Bldg. 11A, Suite 6215, MP151, Chicago, IL 60612, USA, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA, Lipid and Atherosclerosis Research Unit, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Cordoba, Reina Sofia University Hospital, IMIBIC and CIBERObn, Córdoba, Spain
| | - José Córdoba-Chacón
- Research and Development Division, Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Ave, Bldg. 11A, Suite 6215, MP151, Chicago, IL 60612, USA, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel D Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA and
| | - Rosa Ortega-Salas
- Anatomical Pathology Service, Reina Sofia University Hospital, Cordoba, Spain
| | | | - Francisco Pérez-Jiménez
- Lipid and Atherosclerosis Research Unit, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain
| | - José López-Miranda
- Lipid and Atherosclerosis Research Unit, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain
| | - Steven M Swanson
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA and
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Reina Sofia University Hospital, IMIBIC and CIBERObn, Córdoba, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Reina Sofia University Hospital, IMIBIC and CIBERObn, Córdoba, Spain
| | - Rhonda D Kineman
- Research and Development Division, Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Ave, Bldg. 11A, Suite 6215, MP151, Chicago, IL 60612, USA, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA,
| |
Collapse
|
6
|
Abstract
The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
7
|
Lamas B, Nachat‐Kappes R, Goncalves‐Mendes N, Mishellany F, Rossary A, Vasson M, Farges M. Dietary fat without body weight gain increases in vivo MCF‐7 human breast cancer cell growth and decreases natural killer cell cytotoxicity. Mol Carcinog 2013; 54:58-71. [DOI: 10.1002/mc.22074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/22/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Bruno Lamas
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Rachida Nachat‐Kappes
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Nicolas Goncalves‐Mendes
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Florence Mishellany
- EA 4677 ERTICa, Service d'Anatomopathologie, Centre de Lutte Contre le Cancer Jean PerrinClermont‐FerrandFrance
| | - Adrien Rossary
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Marie‐Paule Vasson
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
- Centre de Lutte Contre le Cancer Jean PerrinUnité de NutritionClermont‐FerrandFrance
- CHU Clermont‐Ferrand, Unité de NutritionClermont‐FerrandFrance
| | - Marie‐Chantal Farges
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| |
Collapse
|