1
|
Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, Wang Y, Zheng Y, Khan A, Han H, Li X. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10:6. [PMID: 38245564 PMCID: PMC10799920 DOI: 10.1038/s41522-024-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Tavakoli Pirzaman A, Aghajanian S, Mansoori R, Al-E-Ahmad A, Ebrahimzadeh M, Moghadamnia AA, Kazemi S. Interaction of quercetin and 5-fluorouracil: cellular and pharmacokinetic study. Toxicol Mech Methods 2023:1-10. [PMID: 36912048 DOI: 10.1080/15376516.2023.2188928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
5-fluorouracil (5-FU) is a widely used chemotherapeutic agent, and its uncontrolled blood levels contribute to toxicity. Quercetin, as an important flavonoid, has many biological effects, including anti-tumor and anti-inflammatory features. The current study investigated the synergistic effect between 5-FU and quercetin using HT-29 cell line and fibroblast cells. Rats were assigned to two groups. The 5-FU/quercetin group received intraperitoneal quercetin (10 mg/kg) and the Tween was injected to the control group for 14 consecutive days. On the 15th day, both groups received 50 mg/kg of 5-FU. Upon the final injection, blood samples were obtained at different times. Pharmacokinetic parameters were evaluated using high-performance liquid chromatography (HPLC). The mean (±SD) of maximum plasma concentration (Cmax) of 5-FU in combination therapy group was 3.10 ± 0.18 μg/ml and the area under the curve (AUC) was 153.89 ± 21.36, which increased by 113% and 128% compared to control group, respectively. Quercetin increased anti-tumor activity of 5-FU and enhanced Cmax and AUC of 5-FU. These findings confirm the synergistic effects between quercetin and 5-FU at the usual doses in cancer treatment, which may lead to reduced toxicity.
Collapse
Affiliation(s)
- Ali Tavakoli Pirzaman
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Soheyla Aghajanian
- Department of Pharmacology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Razieh Mansoori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Atiyeh Al-E-Ahmad
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Manijeh Ebrahimzadeh
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
Chung Y, Ryu Y, An BC, Yoon YS, Choi O, Kim TY, Yoon J, Ahn JY, Park HJ, Kwon SK, Kim JF, Chung MJ. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. MICROBIOME 2021; 9:122. [PMID: 34039418 PMCID: PMC8157686 DOI: 10.1186/s40168-021-01071-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Successful chemoprevention or chemotherapy is achieved through targeted delivery of prophylactic agents during initial phases of carcinogenesis or therapeutic agents to malignant tumors. Bacteria can be used as anticancer agents, but efforts to utilize attenuated pathogenic bacteria suffer from the risk of toxicity or infection. Lactic acid bacteria are safe to eat and often confer health benefits, making them ideal candidates for live vehicles engineered to deliver anticancer drugs. RESULTS In this study, we developed an effective bacterial drug delivery system for colorectal cancer (CRC) therapy using the lactic acid bacterium Pediococcus pentosaceus. It is equipped with dual gene cassettes driven by a strong inducible promoter that encode the therapeutic protein P8 fused to a secretion signal peptide and a complementation system. In an inducible CRC cell-derived xenograft mouse model, our synthetic probiotic significantly reduced tumor volume and inhibited tumor growth relative to the control. Mice with colitis-associated CRC induced by azoxymethane and dextran sodium sulfate exhibited polyp regression and recovered taxonomic diversity when the engineered bacterium was orally administered. Further, the synthetic probiotic modulated gut microbiota and alleviated the chemically induced dysbiosis. Correlation analysis demonstrated that specific bacterial taxa potentially associated with eubiosis or dysbiosis, such as Akkermansia or Turicibacter, have positive or negative relationships with other microbial members. CONCLUSIONS Taken together, our work illustrates that an effective and stable synthetic probiotic composed of P. pentosaceus and the P8 therapeutic protein can reduce CRC and contribute to rebiosis, and the validity and feasibility of cell-based designer biopharmaceuticals for both treating CRC and ameliorating impaired microbiota. Video abstract.
Collapse
Affiliation(s)
- Yusook Chung
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yongku Ryu
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Byung Chull An
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Yeo-Sang Yoon
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Oksik Choi
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Tai Yeub Kim
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Jaekyung Yoon
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jun Young Ahn
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Ho Jin Park
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Soon-Kyeong Kwon
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Division of Applied Life Science (BK21), Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Myung Jun Chung
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea.
| |
Collapse
|
4
|
Shirakami Y, Nakanishi T, Ozawa N, Ideta T, Kochi T, Kubota M, Sakai H, Ibuka T, Tanaka T, Shimizu M. Inhibitory effects of a selective prostaglandin E2 receptor antagonist RQ-15986 on inflammation-related colon tumorigenesis in APC-mutant rats. PLoS One 2021; 16:e0251942. [PMID: 34003864 PMCID: PMC8130959 DOI: 10.1371/journal.pone.0251942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 12/04/2022] Open
Abstract
Prostaglandin E2 receptor EP4 is involved in inflammation and related tumorigenesis in the colorectum. This study aimed to investigate the chemopreventive ability of RQ-15986, a selective EP4 antagonist, in colitis-related colorectal tumorigenesis. Male Kyoto APC delta rats, which have APC mutations, were treated with azoxymethane and dextran sulfate sodium and subsequently administered RQ-15986 for eight weeks. At the end of the experiment, the development of colorectal tumor was significantly inhibited in the RQ-15986-treated group. The cell proliferation of the crypts and tumors in the colorectum was decreased following RQ-15986 treatment. RQ-15986 also suppressed the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, interleukin-18, and monocyte chemotactic protein-1, in the colon mucosa. In addition, the expression levels of indoleamine 2,3-dioxygenase, which is involved in immune tolerance, were decreased in the colorectal epithelium and tumors of the RQ-15986-treated group. These findings indicate that RQ-15986 inhibits colitis-associated colorectal tumorigenesis by attenuating inflammation, suppressing cell proliferation, and modulating the expression of indoleamine 2,3-dioxygenase. Targeting prostaglandin E2/EP4 signaling might be a useful strategy for chemoprevention of inflammation-related colorectal cancer.
Collapse
Affiliation(s)
- Yohei Shirakami
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| | - Takayuki Nakanishi
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Noritaka Ozawa
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takayasu Ideta
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiro Kochi
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masaya Kubota
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyasu Sakai
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Ibuka
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuji Tanaka
- Department of Pathological Diagnosis, Gifu Municipal Hospital, Gifu, Japan
| | - Masahito Shimizu
- Departments of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
5
|
Bioinformatic analysis of CCA-1.1, a novel curcumin analog, uncovers furthermost noticeable target genes in colon cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Zhang J, Xie Y, Fan Q, Wang C. Effects of karanjin on dimethylhydrazine induced colon carcinoma and aberrant crypt foci are facilitated by alteration of the p53/Bcl2/BAX pathway for apoptosis. Biotech Histochem 2020; 96:202-212. [PMID: 32580584 DOI: 10.1080/10520295.2020.1781258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We investigated the effects of karanjin on dimethylhydrazine (DMH) induced colon cancer in rats. Male Wistar rats were injected with DMH followed by dextran sodium sulfate in drinking water for 7 days. Karanjin at doses of 50,100 and 200 mg/kg was administered orally for 18 weeks. Colon tissues were investigated using TUNEL analysis of apoptosis; histopathological assessment including number of aberrant crypt foci (ACF); immunohistochemical staining for Bcl-2-associated X protein (BAX), B-cell lymphoma 2 (Bcl2), p53 and proliferating cell nuclear antigen (PCNA); and antioxidant assay in vivo. We found that treatment with karanjin inhibited formation of ACF in the colon mucosa and reduced colon lesions. Karanjin treatment also increased the antioxidants, catalase, glutathione and superoxide dismutase. Immunostaining showed that karanjin treatment reduced BAX, p53 and PCNA levels and increased Bcl2 expression. The TUNEL assay revealed that karanjin induced apoptosis in the colon mucosa. Our findings suggest that karanjin can ameliorate colon carcinogenesis in rats by regulating BAX, Bcl2 and p53 pathways.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yandong Xie
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qingling Fan
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Cheng Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Aboismaiel MG, El-Mesery M, El-Karef A, El-Shishtawy MM. Hesperetin upregulates Fas/FasL expression and potentiates the antitumor effect of 5-fluorouracil in rat model of hepatocellular carcinoma. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/2314808x.2019.1707627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Merna G. Aboismaiel
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
8
|
Chartier LC, Howarth GS, Mashtoub S. Chemotherapy-induced mucositis development in a murine model of colitis-associated colorectal cancer. Scand J Gastroenterol 2020; 55:47-54. [PMID: 31825688 DOI: 10.1080/00365521.2019.1699601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objectives: Ulcerative colitis is an incurable inflammatory bowel disease that increases the risk of colorectal cancer (CRC). 5-Fluorouracil (5-FU) is the predominant chemotherapy for CRC patients; however, undesirable side-effects, including mucositis, are common. This study utilised 5-FU-treatment in a model of colitis-associated CRC to develop a pre-clinical setting of intestinal mucositis coincident with manifestation of CRC.Materials/methods: On day 0, female C57BL/6 mice (n = 10/group); (1) saline control, (2) AOM/DSS control, or (3) AOM/DSS + 5-FU were injected with saline or AOM (i.p; 7.4 mg/kg). Groups 2 and 3 underwent cycles of seven days 2%w/v DSS followed by 14 days plain water. After three cycles, 5-FU was administered weekly (i.p; 75 mg/kg) to group 3 for five weeks. Clinical indicators were measured daily and colonoscopy performed at four time-points. Mice were euthanized at 13 weeks (day 91). Intestinal sections were collected for histological and biochemical analyses. p < .05 was considered significant.Results: AOM/DSS resulted in bodyweight loss, increased disease activity index, colitis-severity and tumour number compared to saline controls (p < .05). 5-FU-treatment in AOM/DSS mice decreased bodyweight and disease activity index at selected time-points compared to AOM/DSS controls (p < .05). 5-FU did not impact colitis-severity or overall tumour burden; although, resulted in fewer small tumours compared to AOM/DSS controls (<2mm; p < .05). AOM/DSS increased histological severity scores in intestinal sections (p < .05), however, 5-FU-treatment did not further increase histologically-assessed disease severity (p > .05).Conclusion: Weekly 5-FU administration at a dose of 75 mg/kg was insufficient to reduce overall tumour burden or induce intestinal mucositis in the AOM/DSS mouse model.
Collapse
Affiliation(s)
- Lauren C Chartier
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.,Gastroenterology Department, Women's and Children's Hospital, North Adelaide, Australia
| | - Gordon S Howarth
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.,Gastroenterology Department, Women's and Children's Hospital, North Adelaide, Australia.,School of Animal & Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Suzanne Mashtoub
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.,Gastroenterology Department, Women's and Children's Hospital, North Adelaide, Australia.,School of Medicine, The University of Western Australia, Murdoch, Australia
| |
Collapse
|
9
|
Inhibitory effects of pentoxifylline on inflammation-related tumorigenesis in rat colon. Oncotarget 2018; 9:33972-33981. [PMID: 30338039 PMCID: PMC6188053 DOI: 10.18632/oncotarget.26119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/04/2018] [Indexed: 01/14/2023] Open
Abstract
Chronic inflammation in the colorectum increases the risk of colorectal cancer development. Pentoxifylline, a medicine used for improving the circulation, has been reported to inhibit TNF-α production and to ameliorate inflammatory bowel disease and non-alcoholic steatohepatitis. In this study, we investigated the effects of pentoxifylline on inflammation-related colon tumorigenesis in a rodent model using Kyoto APC delta rats, which have APC mutation and are susceptible to colon carcinogenesis. Male Kyoto APC delta rats were treated with azoxymethane and dextran sodium sulfate, and were subsequently administered water, with or without pentoxifylline. At the end of the experiment, the development of colorectal tumor was significantly inhibited in the pentoxifylline group. The pentoxifylline treatment also lowered the levels of oxidative stress markers and mRNAs of pro-inflammatory cytokines, including TNF-α and IL-6, in the colon mucosa. The PCNA labeling index and the inflammation score were also decreased in the colon of rats in the pentoxifylline -treated group. We also used an endoscopy to observe the tumor progression and inflammation in the colon of rats, revealing that inflammation grade was significantly lower in pentoxifylline-treated group at several points during the experiment. These findings suggest that pentoxifylline treatment might be useful for chemoprevention of inflammation-related colon cancer.
Collapse
|
10
|
Roy S, Das R, Ghosh B, Chakraborty T. Deciphering the biochemical and molecular mechanism underlying the in vitro and in vivo chemotherapeutic efficacy of ruthenium quercetin complex in colon cancer. Mol Carcinog 2018; 57:700-721. [PMID: 29442390 DOI: 10.1002/mc.22792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
Flavonoids are the most investigated phytochemicals due to their pharmacological and therapeutic activities. Their ability to chelate with metal ions has resulted in the emergence of a new category of molecules with a broader spectrum of pharmacological activities. In this study, the ruthenium quercetin complex has been synthesized and anticancer activity has been evaluated on a well-defined model of DMH followed by DSS induced rat colon cancer and on human colon cancer cell line HT-29. The characterizations accomplished through UV-visible, NMR, IR, Mass spectra and XRD techniques, and antioxidant activity was assessed by DPPH, FRAP, and ABTS methods. In vitro study confirmed that the complex increased p53 expression, reduced VEGF and mTOR expression, apoptosis induction, and DNA fragmentation in the HT-29 cells. Acute and subacute toxicity study was also assessed and results from in vivo study revealed that complex was efficient to suppress ACF multiplicity and hyperplastic lesions and elevated the CAT, SOD, and glutathione levels. Furthermore, the complex was found to decrease cell proliferation and increased apoptotic events in tumor cells correlates upregulation of p53 and Bax and downregulation of Bcl2 expression. Our findings from the in vitro and in vivo study support the continued investigation of ruthenium quercetin complex possesses a potential chemotherapeutic activity against colon cancer and was efficient in reducing ACF multiplicity, hyperplastic lesions in the colon tissues of rats by inducing apoptosis.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Rituparna Das
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Tania Chakraborty
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Involvement of mitophagy-mediated cell death in colon cancer cells by folate-appended methyl-β-cyclodextrin. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0757-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Lawsone suppresses azoxymethane mediated colon cancer in rats and reduces proliferation of DLD-1 cells via NF-κB pathway. Biomed Pharmacother 2017; 89:152-161. [PMID: 28222396 DOI: 10.1016/j.biopha.2017.01.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
Lawsone (LS) a colored napthoquinone compound obtained from the plant Lawsonia inermis L. (Lythraceae) is known for its usefulness of being a precursor for synthesis of some anticancer compounds. Literatures support potent anticancer activity of napthoquinone derivatives in human colon cancer, present study evaluates the effect and mechanism of LS on chemical induced colon cancerous rats and human colon cancer DLD-1 cells, the study was supported by endoscopy, histological and immunohistochemistry analysis. KAD rats were subjected to colon cancer mediated by Azoxymethane (AOM) injections followed Dextran sodium sulfate (DSS) orally in drinking water. After endoscopic confirmation the rats were given LS (200mg/ml) orally for 8 weeks. Presence of aberrant foci, types of tumors and the proliferative effect on tumor lesions was studied by macroscopic, histological and immunohistochemical analysis. To establish the mechanism, human colon DLD-1 cancer cells were exposed to LS and its effect on proliferation were studied. LS reduced aberrant crypt without affecting tumor pathology. Histological study of colon suggested decrease in numbers of adenomas and lesions. Immunohistochemistry confirmed the antiproliferative activity in adenocarcinomas without affecting the cells of normal colon mucosa. Results on human DLD-1 cells showed LS delayed progression of cell cycle by decreasing expression of cyclin B1 as well as cdk1 by inactivating NF-κB without inducing apoptosis. The study concluded role of LS in suppressing cell proliferation of colon tumors. The suppressive activity on DLD-1 cells was not by apoptosis but by decreased NF-κB activity resulting in suppression of expression levels of cyclin B1 and cdk1.
Collapse
|
13
|
Das D, Preet R, Mohapatra P, Satapathy SR, Siddharth S, Tamir T, Jain V, Bharatam PV, Wyatt MD, Kundu CN. 5-Fluorouracil mediated anti-cancer activity in colon cancer cells is through the induction of Adenomatous Polyposis Coli: Implication of the long-patch base excision repair pathway. DNA Repair (Amst) 2015; 24:15-25. [PMID: 25460919 DOI: 10.1016/j.dnarep.2014.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) patients with APC mutations do not benefit from 5-FU therapy. It was reported that APC physically interacts with POLβ and FEN1, thus blocking LP-BER via APC's DNA repair inhibitory (DRI) domain in vitro. The aim of this study was to elucidate how APC status affects BER and the response of CRC to 5-FU. HCT-116, HT-29, and LOVO cells varying in APC status were treated with 5-FU to evaluate expression, repair, and survival responses. HCT-116 expresses wild-type APC; HT-29 expresses an APC mutant that contains DRI domain; LOVO expresses an APC mutant lacking DRI domain. 5-FU increased the expression of APC and decreased the expression of FEN1 in HCT-116 and HT-29 cells, which were sensitized to 5-FU when compared to LOVO cells. Knockdown of APC in HCT-116 rendered cells resistant to 5-FU, and FEN1 levels remained unchanged. Re-expression of full-length APC in LOVO cells caused sensitivity to 5-FU, and decreased expression of FEN1. These knockdown and addback studies confirmed that the DRI domain is necessary for the APC-mediated reduction in LP-BER and 5-FU. Modelling studies showed that 5-FU can interact with the DRI domain of APC via hydrogen bonding and hydrophobic interactions. 5-FU resistance in CRC occurs with mutations in APC that disrupt or eliminate the DRI domain's interaction with LP-BER. Understanding the type of APC mutation should better predict 5-FU resistance in CRC than simply characterizing APC status as wild-type or mutant.
Collapse
Affiliation(s)
- Dipon Das
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Ranjan Preet
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Purusottam Mohapatra
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Shakti Ranjan Satapathy
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Sumit Siddharth
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Tigist Tamir
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Vaibhav Jain
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Chanakya Nath Kundu
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India.
| |
Collapse
|
14
|
Irving AA, Yoshimi K, Hart ML, Parker T, Clipson L, Ford MR, Kuramoto T, Dove WF, Amos-Landgraf JM. The utility of Apc-mutant rats in modeling human colon cancer. Dis Model Mech 2014; 7:1215-25. [PMID: 25288683 PMCID: PMC4213726 DOI: 10.1242/dmm.016980] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prior to the advent of genetic engineering in the mouse, the rat was the model of choice for investigating the etiology of cancer. Now, recent advances in the manipulation of the rat genome, combined with a growing recognition of the physiological differences between mice and rats, have reignited interest in the rat as a model of human cancer. Two recently developed rat models, the polyposis in the rat colon (Pirc) and Kyoto Apc Delta (KAD) strains, each carry mutations in the intestinal-cancer-associated adenomatous polyposis coli (Apc) gene. In contrast to mouse models carrying Apc mutations, in which cancers develop mainly in the small intestine rather than in the colon and there is no gender bias, these rat models exhibit colonic predisposition and gender-specific susceptibility, as seen in human colon cancer. The rat also provides other experimental resources as a model organism that are not provided by the mouse: the structure of its chromosomes facilitates the analysis of genomic events, the size of its colon permits longitudinal analysis of tumor growth, and the size of biological samples from the animal facilitates multiplexed molecular analyses of the tumor and its host. Thus, the underlying biology and experimental resources of these rat models provide important avenues for investigation. We anticipate that advances in disease modeling in the rat will synergize with resources that are being developed in the mouse to provide a deeper understanding of human colon cancer.
Collapse
Affiliation(s)
- Amy A Irving
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kazuto Yoshimi
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Marcia L Hart
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Taybor Parker
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Madeline R Ford
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - James M Amos-Landgraf
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA. Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
15
|
Tanaka T, Shimizu M, Kochi T, Shirakami Y, Mori T, Watanabe N, Naiki T, Moriwaki H, Yoshimi K, Serikawa T, Kuramoto T. Apc-Mutant Kyoto Apc Delta (KAD) Rats Are Susceptible to 4-NQO-Induced Tongue Carcinogenesis. Cancers (Basel) 2014; 6:1522-39. [PMID: 25050571 PMCID: PMC4190553 DOI: 10.3390/cancers6031522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 12/21/2022] Open
Abstract
Despite widening interest in the possible association between infection/inflammation and cancer development, knowledge of this issue in relation to oral cancer remains inadequate. This study aimed to determine the susceptibility of Apc-mutant Kyoto Apc Delta (KAD) rats, which are vulnerable to developing inflammation-associated colorectal carcinogenesis, to 4-nitroquinoline 1-oxide (4-NQO)-induced tongue carcinogenesis in order to clarify the role of inflammation in oral cancer. KAD (20 males and 22 females) and F344/NS1c (22 males and 23 females) rats received drinking water with or without 4-NQO (20 ppm) for eight weeks. Histopathological and immunohistochemical analyses of the tongue were performed at week 20. Additionally, the mRNA expression of inflammatory cytokines in the tongue mucosa was determined at week 8. Tongue squamous cell carcinoma (SCC) developed in the KAD and F344/NS1c rats that received 4-NQO. Regardless of gender, the incidence and multiplicity of tongue SCC were greater in the KAD rats than in the F344/NS1c rats. In addition, the multiplicity of tongue SCC in the female KAD rats was significantly greater than that observed in the male KAD (p < 0.01) and female F344/NS1c rats (p < 0.05). The levels of inflammation and the mRNA expression of inflammatory cytokines in the tongue in the 4-NQO-treated female KAD rats were the highest among the rats given 4-NQO. These results show that KAD rats, particularly females, are susceptible to 4-NQO-induced tongue carcinogenesis, suggesting the utility of models employing KAD rats for investigating the pathobiology of oral (tongue) carcinogenesis associated with inflammation.
Collapse
Affiliation(s)
- Takuji Tanaka
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513, Japan.
| | - Masahito Shimizu
- Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Takahiro Kochi
- Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yohei Shirakami
- Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Takayuki Mori
- Department of Pharmacy, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki 503-8502, Japan.
| | - Naoki Watanabe
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513, Japan.
| | - Takafumi Naiki
- Department of Clinical Laboratory, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513, Japan.
| | - Hisataka Moriwaki
- Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kazuto Yoshimi
- The Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Tadao Serikawa
- The Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Takashi Kuramoto
- The Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Tumor suppressor APC protein is essential in mucosal repair from colonic inflammation through angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1263-74. [PMID: 23395091 DOI: 10.1016/j.ajpath.2012.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/30/2012] [Accepted: 12/24/2012] [Indexed: 12/23/2022]
Abstract
Mucosal repair after acute colonic inflammation is central to maintaining mucosal homeostasis. Failure of mucosal repair often leads to chronic inflammation, sometimes associated with inflammatory bowel disease (IBD). The adenomatous polyposis coli (APC) tumor suppressor gene regulates the Wnt signaling pathway, which is essential for epithelial development, and inactivation of APC facilitates colorectal cancer. Our previous study suggested that APC is involved in pathogenesis of colonic inflammation; however, its role in mucosal repair remains unknown. In this article, we report that colitis induced by dextran sodium sulfate persisted with delayed mucosal repair in Kyoto Apc Delta (KAD) rats lacking the APC C terminus. Defects in the repair process were accompanied by an absence of a fibrin layer covering damaged mucosa and reduced microvessel angiogenesis. APC was up-regulated in vascular endothelial cells (VECs) in inflamed mucosa in KAD and F344 (control) rats. The VECs of KAD rats revealed elevated cell adhesion and low-branched and short-length tube formation. We also found that DLG5, which is associated with IBD pathogenesis, was up-regulated in VECs in inflamed mucosa and interacted with the C terminus of APC. This finding suggests that loss of interaction between the APC C terminus and DLG5 affects VEC morphology and function and leads to persistence of colitis. Therefore, APC is essential for maintenance of intestinal mucosal homeostasis and can consequently contribute to IBD pathogenesis.
Collapse
|