1
|
Liu N, Tian H, Zhang G, Sun N, Wang S. Effect of combined treatment with lobaplatin and osthole on inducing apoptosis and inhibiting proliferation in human breast cancer MDA-MB-231 cells. Med Oncol 2021; 39:16. [PMID: 34837558 DOI: 10.1007/s12032-021-01609-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 01/27/2023]
Abstract
The present study investigates the underlying mechanisms of treatment with osthole (OST) combined with lobaplatin in human triple-negative MDA-MB-231 breast cancer cells. Human triple-negative MDA-MB-231 breast cancer cells were treated with different concentrations of OST (0.1, 1, 5, 10, 20, 50, and 100 μM) alone or in combination with 10 μM lobaplatin for 48 h. Cell viability was determined and compared between the treatment groups with the Cell Counting Kit-8 assay. Transcriptome sequencing (Project Number: M-GSGC0250521) was employed to elucidate the gene expression profile of the control group and the OST treatment group, and differentially expressed genes (DEGs) were identified based on the following criteria: log2FC > 0, P < 0.05. KEGG enrichment analysis was employed to determine the biological functions of these DEGs and the related signaling pathways. Finally, flow cytometry and western blotting were used to assess differences in the apoptosis rate and protein expression in MDA-MB-231 cells subjected to different treatments. The findings showed that OST inhibited the growth of MDA-MB-231 cells in a concentration-dependent manner and cell proliferation was significantly inhibited (as indicated by a decrease of 40%) at the OST concentration of 50 μM (P < 0.05). Transcriptome sequencing identified 4712 DEGs, including 2169 upregulated DEGs and 2543 downregulated DEGs. Enrichment analysis indicated that the DEGs played a role in apoptosis, p53 signaling, DNA replication, and cell cycle. In vitro experiments showed that OST and lobaplatin could significantly induce apoptosis in the MDA-MB-231 cells (P < 0.05), as indicated by elevation in the translation level of p53/Bax/caspase-3 p17 and downregulation of the Bcl-2 protein. Finally, combined treatment with OST and lobaplatin had an enhanced anti-tumor effect (P < 0.05) on proliferation and apoptosis, as well as more obvious effects on the related proteins (p53, Bax, Bcl-2, and caspase-3 p17). Thus, OST enhanced the apoptosis-mediated growth inhibitory effect of lobaplatin on breast cancer cells and has potential for the treatment of breast cancer in the future.
Collapse
Affiliation(s)
- Nan Liu
- College of Traditional Chinese Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, People's Republic of China
- Department of Hematology and Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Guoduo Zhang
- Department of Hematology and Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Na Sun
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shumei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, People's Republic of China.
| |
Collapse
|
2
|
Chen X, Liu C, Zhang M, Zhang Y. Maduramicin arrests myocardial cells at G 0/G 1 phase of the cell cycle through inhibiting AKT-Cyclin D1 signaling. 3 Biotech 2021; 11:347. [PMID: 34221817 DOI: 10.1007/s13205-021-02894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022] Open
Abstract
Maduramicin, a polyether ionophore antibiotic used as an anticoccidial feed additive in poultry, is toxic to animals and humans and can cause heart failure. The present study was initiated to explore the underlying mechanism of toxicity in H9c2 myocardial cells. We observed using cell imaging and counting methods that maduramicin inhibited cell growth in a concentration-dependent manner. Furthermore, MTT assays showed that maduramicin inhibited cell proliferation in a concentration- and time-dependent manner, and was also confirmed by the finding that maduramicin time dependently blocked the incorporation of BrdU into DNA in H9c2 myocardial cells. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle and concurrently, there was down regulation of expression of Cyclin D1. In addition, exposure to maduramicin pruned phosphorylation of AKT at both T308 and S473 sites. Finally, we found that pre-treatment of H9c2 myocardial cells with AKT activator SC79, attenuated the inhibitory effects of maduramicin on Cyclin D1 expression and cell proliferation. Collectively, our results suggest that maduramicin-suppressed AKT-Cyclin D1 signaling which results in G0/G1 phase cell cycle arrest, leading to the inhibition of myocardial cell proliferation.
Collapse
|
3
|
Radko L, Olejnik M, Posyniak A. Primary Human Hepatocytes, but Not HepG2 or Balb/c 3T3 Cells, Efficiently Metabolize Salinomycin and Are Resistant to Its Cytotoxicity. Molecules 2020; 25:E1174. [PMID: 32151009 PMCID: PMC7179450 DOI: 10.3390/molecules25051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
Salinomycin is a polyether antibiotic showing anticancer activity. There are many reports of its toxicity to animals but little is known about the potential adverse effects in humans. The action of the drug may be connected to its metabolism. That is why we investigated the cytotoxicity of salinomycin and pathways of its biotransformation using human primary hepatocytes, human hepatoma cells (HepG2), and the mouse fibroblast cell line (Balb/c 3T3). The cytotoxicity of salinomycin was time-dependent, concentration-dependent, and cell-dependent with primary hepatocytes being the most resistant. Among the studied models, primary hepatocytes were the only ones to efficiently metabolize salinomycin but even they were saturated at higher concentrations. The main route of biotransformation was monooxygenation leading to the formation of monohydroxysalinomycin, dihydroxysalinomycin, and trihydroxysalinomycin. Tiamulin, which is a known inhibitor of CYP450 izoenzymes, synergistically induced cytotoxicity of salinomycin in all cell types, including non-metabolising fibroblasts. Therefore, the pharmacokinetic interaction cannot fully explain tiamulin impact on salinomycin toxicity.
Collapse
Affiliation(s)
| | - Małgorzata Olejnik
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland; (L.R.); (A.P.)
| | | |
Collapse
|
4
|
Antoszczak M, Huczyński A. Salinomycin and its derivatives - A new class of multiple-targeted "magic bullets". Eur J Med Chem 2019; 176:208-227. [PMID: 31103901 DOI: 10.1016/j.ejmech.2019.05.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
The history of drug development clearly shows the scale of painstaking effort leading to a finished product - a highly biologically active agent that would be at the same time no or little toxic to human organism. Moreover, the aim of modern drug discovery can move from "one-molecule one-target" concept to more promising "one-molecule multiple-targets" one, particularly in the context of effective fight against cancer and other complex diseases. Gratifyingly, natural compounds are excellent source of potential drug leads. One of such promising naturally-occurring drug candidates is a polyether ionophore - salinomycin (SAL). This compound should be identified as multi-target agent for two reasons. Firstly, SAL combines a broad spectrum of bioactivity, including antibacterial, antifungal, antiviral, antiparasitic and anticancer activity, with high selectivity of action, proving its significant therapeutic potential. Secondly, the multimodal mechanism of action of SAL has been shown to be related to its interactions with multiple molecular targets and signalling pathways that are synergistic for achieving a therapeutic anticancer effect. On the other hand, according to the Paul Ehrlich's "magic bullet" concept, invariably inspiring the scientists working on design of novel target-selective molecules, a very interesting direction of research is rational chemical modification of SAL. Importantly, many of SAL derivatives have been found to be more promising as chemotherapeutics than the native structure. This concise review article is focused both on the possible role of SAL and its selected analogues in future antimicrobial and/or cancer therapy, and on the potential use of SAL as a new class of multiple-targeted "magic bullet" because of its multimodal mechanism of action.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland.
| |
Collapse
|
5
|
A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur J Med Chem 2019; 166:48-64. [DOI: 10.1016/j.ejmech.2019.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
|
6
|
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur J Med Chem 2019; 164:366-377. [DOI: 10.1016/j.ejmech.2018.12.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023]
|
7
|
Tian W, Hao S, Gao B, Jiang Y, Zhang X, Zhang S, Guo L, Zhao J, Zhang G, Chen Y, Li Z, Luo D. Lobaplatin inhibits breast cancer progression, cell proliferation while it induces cell apoptosis by downregulating MTDH expression. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3563-3571. [PMID: 30464390 PMCID: PMC6211578 DOI: 10.2147/dddt.s163157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective Lobaplatin shows antitumor activity against a wide range of tumors, including metastatic breast cancer (BCa). The overexpression of metadherin (MTDH) is associated with poor prognosis of BCa patients. This study was designed to investigate the effect of lobaplatin on MCF-7 cell proliferation and its association with MTDH expression. Patients and methods Clinical treatment for BCa using lobaplatin, in combination with other general chemotherapy drugs, was administered to 32 BCa patients. The safety, effectiveness, and prognosis in lobaplatin-treated BCa patients were compared with those in controls (n=32). In vitro experiments were performed in MCF-7 cells to investigate the effect of lobaplatin on cell proliferation, apoptosis, and MTDH expression. Results We found the intraoperative local chemotherapy using lobaplatin was safe and effective for BCa treatment, in comparison with the patients administered general chemotherapy drugs. Treatment of MCF-7 cell cultures with lobaplatin significantly reduced cell proliferation and increased cell apoptotic percentage. The expression of MTDH and Bcl-2 was inhibited by lobaplatin and that of Bax was increased by lobaplatin. Moreover, we observed the inhibition of MTDH by shRNA reduced cell proliferation and enhanced cell apoptosis. Conclusion Lobaplatin was a safe and effective adjuvant chemotherapy for BCa. The effect of lobaplatin on inhibiting MCF-7 cell proliferation and inducing cell apoptosis might be, as least in part, mediated by suppressing the expression of oncogene MTDH.
Collapse
Affiliation(s)
- Wuguo Tian
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Shuai Hao
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Bo Gao
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Yan Jiang
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Xiaohua Zhang
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Shu Zhang
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Lingji Guo
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Jianjie Zhao
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Gang Zhang
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Yi Chen
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Zhirong Li
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Donglin Luo
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| |
Collapse
|
8
|
Versini A, Saier L, Sindikubwabo F, Müller S, Cañeque T, Rodriguez R. Chemical biology of salinomycin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Radko L, Olejnik M. Cytotoxicity of anticancer candidate salinomycin and identification of its metabolites in rat cell cultures. Toxicol In Vitro 2018; 52:314-320. [PMID: 30012479 DOI: 10.1016/j.tiv.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
Salinomycin (SAL) is a polyether antibiotic, which is commonly used as a coccidiostat and has recently shown to exhibit anticancer activity. The toxic action of the drug may be connected with the extent and routes of its biotransformation. The cytotoxic potential of SAL and its combination with tiamulin and prednisolone was investigated using three cell models from rat: primary hepatocytes, hepatoma cells (FaO) and myoblasts (L6). The four biochemical endpoints were assessed: mitochondrial and lysosomal activity, total cell protein content and membrane integrity. The metabolites of SAL in the medium from cell cultures were determined using LC-MS/MS. The cytotoxicity of SAL was time-, concentration- and cells dependent. The most sensitive endpoint was the inhibition of lysosomal activity. Tiamulin increased SAL cytotoxicity, whereas the opposite results were observed for prednisolone. Primary hepatocytes were the most efficient in SAL biotransformation both in terms of its intensity and number of produced metabolites. The range of the cytotoxicity and mode of salinomycin interaction with tiamulin and prednisolone cannot be explained by the biotransformation alone.
Collapse
Affiliation(s)
- Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Poland
| | - Małgorzata Olejnik
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Poland.
| |
Collapse
|
10
|
Li T, Liu X, Shen Q, Yang W, Huo Z, Liu Q, Jiao H, Chen J. Salinomycin exerts anti-angiogenic and anti-tumorigenic activities by inhibiting vascular endothelial growth factor receptor 2-mediated angiogenesis. Oncotarget 2018; 7:26580-92. [PMID: 27058891 PMCID: PMC5042000 DOI: 10.18632/oncotarget.8555] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/12/2016] [Indexed: 12/12/2022] Open
Abstract
Anti-angiogenesis targeting VEGFR2 has been an attractive strategy for cancer therapy for its role in promoting cancer growth and metastasis. However, the currently available drugs have unexpected side effects. Therefore, development of novel VEGFR2 inhibitors with less toxicity would be of great value. In this study, we describe a novel and safely VEGFR2 inhibitor, Salinomycin (Sal), which was screened from the drug libraries of Food and Drug Administration (FDA) and prohibited the binding of the ATP at its binding pocket of VEGFR2 using molecular docking model. Sal could interfere a series of VEGF-induced angiogenesis processes including proliferation, migration, and tube formation in HUVECS in vitro. Matrigel plug model demonstrated Sal strongly inhibited angiogenesis in vivo. We found that Sal significantly decreased VEGF-induced phosphorylation of VEGFR2 and its downstream STAT3 in dose- and time-dependent manner in HUVECs. Besides, Sal could directly reduce the cell viability and induce apoptosis in SGC-7901 cancer cells in vitro. Sal inhibited constitutive STAT3 activation by blocking its DNA binding and reduced various gene products including Bcl-2, Bcl-xL and VEGF both at mRNA and protein levels. Intra-peritoneal injection of Sal at doses of 3 and 5 mg/kg/day markedly suppressed human gastric cancer xenografts angiogenesis and growth without causing obvious toxicities. Taken together, Sal inhibits tumor angiogenesis and growth of gastric cancer; our results reveal unique characteristics of Sal as a promising anticancer drug candidate.
Collapse
Affiliation(s)
- Tao Li
- Department of Oncology, General Hospital of the Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoxia Liu
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Qin Shen
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Wenjun Yang
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Zhenghao Huo
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Qilun Liu
- Department of Oncology, General Hospital of the Ningxia Medical University, Yinchuan 750004, China
| | - Haiyan Jiao
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Jing Chen
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| |
Collapse
|
11
|
Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells. Biochem Biophys Res Commun 2018; 495:53-59. [DOI: 10.1016/j.bbrc.2017.10.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
|
12
|
Klose J, Guerlevik E, Trostel T, Kühnel F, Schmidt T, Schneider M, Ulrich A. Salinomycin inhibits cholangiocarcinoma growth by inhibition of autophagic flux. Oncotarget 2017; 9:3619-3630. [PMID: 29423070 PMCID: PMC5790487 DOI: 10.18632/oncotarget.23339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction Cholangiocarcinoma is characterized by aggressive tumor growth, high recurrence rates, and resistance against common chemotherapeutical regimes. The polyether-antibiotic Salinomycin is a promising drug in cancer therapy because of its ability to overcome apoptosis resistance of cancer cells and its selectivity against cancer stem cells. Here, we investigated the effectiveness of Salinomycin against cholangiocarcinoma in vivo, and analyzed interference of Salinomycin with autophagic flux in human cholangiocarcinoma cells. Results Salinomycin reduces tumor cell viability, proliferation, migration, invasion, and induced apoptosis in vitro. Subcutaneous and intrahepatic cholangiocarcinoma growth in vivo was inhibited upon Salinomycin treatment. Analysis of autophagy reveals inhibition of autophagic activity. This was accompanied by accumulation of mitochondrial mass and increased generation of reactive oxygen species. Conclusions This study demonstrates the effectiveness of Salinomycin against cholangiocarcinoma in vivo. Inhibition of autophagic flux represents an underlying molecular mechanism of Salinomycin against cholangiocarcinoma. Methods The two murine cholangiocarcinoma cell lines p246 and p254 were used to analyze tumor cell proliferation, viability, migration, invasion, and apoptosis in vitro. For in vivo studies, murine cholangiocarcinoma cells were injected into syngeneic C57-BL/6-mice to initiate subcutaneous cholangiocarcinoma growth. Intrahepatic tumor growth was induced by electroporation of oncogenic transposon-plasmids into the left liver lobe. For mechanistic studies in human cells, TFK-1 and EGI-1 were used, and activation of autophagy was analyzed after exposure to Salinomycin.
Collapse
Affiliation(s)
- Johannes Klose
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Engin Guerlevik
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Tina Trostel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
13
|
Kamlund S, Strand D, Janicke B, Alm K, Oredsson S. Influence of salinomycin treatment on division and movement of individual cancer cells cultured in normoxia or hypoxia evaluated with time-lapse digital holographic microscopy. Cell Cycle 2017; 16:2128-2138. [PMID: 28933990 PMCID: PMC5731424 DOI: 10.1080/15384101.2017.1380131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Most studies on new cancer drugs are based on population-derived data, where the absence of response of a small population may pass unnoticed. Thus, individual longitudinal tracking of cells is important for the future development of efficient cancer treatments. We have used digital holographic microscopy to track individual JIMT-1 human breast cancer cells and L929 mouse fibroblast cultivated in normoxia or hypoxia. In addition, JIMT-1 cells were treated with salinomycin, a cancer stem cell targeting compound. Three-day time-lapse movies were captured and individual cells were analysed with respect to cell division (cell cycle length) and cell movement. Comparing population-doubling time derived from population-based growth curves and individual cell cycle time data from time-lapse movies show that the former hide a sub-population of dividing cells. Salinomycin treatment increased the motility of cells, however, this motility did not result in an increased distant migration i.e. the cells increased their local movement. MCF-7 breast cancer cells showed similar motility behaviour as salinomycin-treated JIMT-1 cells. We suggest that combining features, such as motility and migration, can be used to distinguish cancer cells with mesenchymal (JIMT-1) and epithelial (MCF-7) features. The data clearly emphasize the importance of longitudinal cell tracking to understand the biology of individual cells under different conditions.
Collapse
Affiliation(s)
- Sofia Kamlund
- a Phase Holographic Imaging AB , Lund , Sweden.,b Department of Biology , Lund University , Lund , Sweden
| | - Daniel Strand
- c Department of Chemistry , Centre for Analysis and Synthesis, Lund University , Lund , Sweden
| | | | - Kersti Alm
- a Phase Holographic Imaging AB , Lund , Sweden
| | - Stina Oredsson
- b Department of Biology , Lund University , Lund , Sweden
| |
Collapse
|
14
|
Dewangan J, Srivastava S, Rath SK. Salinomycin: A new paradigm in cancer therapy. Tumour Biol 2017; 39:1010428317695035. [PMID: 28349817 DOI: 10.1177/1010428317695035] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The primary hurdle in the treatment of cancer is acquisition of resistance by the tumor cells toward multiple drugs and selectively targeting the cancer stem cells. This problem was overcome by the chemotherapeutic property of recently discovered drug salinomycin. Exact mechanism of action of salinomycin is not yet known, but there are multiple pathways by which salinomycin inhibits tumor growth. Salinomycin decreases the expression of adenosine triphosphate-binding cassette transporter in multidrug resistance cells and interferes with Akt signaling pathway, Wnt/β-catenin, Hedgehog, and Notch pathways of cancer progression. Salinomycin selectively targets cancer stem cells. The potential of salinomycin to eliminate both cancer stem cells and therapy-resistant cancer cells may characterize the compound as a novel and an efficient chemotherapeutic drug.
Collapse
Affiliation(s)
- Jayant Dewangan
- Genotoxicity Laboratory, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sonal Srivastava
- Genotoxicity Laboratory, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
15
|
Klose J, Eissele J, Volz C, Schmitt S, Ritter A, Ying S, Schmidt T, Heger U, Schneider M, Ulrich A. Salinomycin inhibits metastatic colorectal cancer growth and interferes with Wnt/β-catenin signaling in CD133 + human colorectal cancer cells. BMC Cancer 2016; 16:896. [PMID: 27855654 PMCID: PMC5114842 DOI: 10.1186/s12885-016-2879-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Background The polyether antibiotic Salinomycin (Sal) is regarded as an inhibitor of cancer stem cells. Its effectiveness on human colorectal cancer (CRC) cells in vitro has been demonstrated before. The aim of this study was to establish a murine model to investigate the effectiveness of Sal in vivo. Furthermore, we investigated the impact of Sal on Wnt/β-catenin signaling in human CD133+ CRC cells. Methods The two murine CRC cell lines MC38 and CT26 were used to analyze the impact of Sal on tumor cell proliferation, viability, migration, cell cycle progression and cell death in vitro. For in vivo studies, CT26 cells were injected into syngeneic BALB/c mice to initiate (i) subcutaneous, (ii) orthotopic, or (iii) metastatic CRC growth. Sal was administered daily, 5-Fluoruracil served as a control. For mechanistic studies, the CD133+and CD133- subpopulations of human CRC cells were separated by flow cytometry and separately exposed to increasing concentrations of Sal. The impact on Wnt/β-catenin signaling was determined by Western blotting and quantitative PCR. Results Sal markedly impaired tumor cell viability, proliferation and migration, and induced necrotic cell death in vitro. CRC growth in vivo was likewise inhibited upon Sal treatment. Interference with Wnt signaling and reduced expression of the Wnt target genes Fibronectin and Lgr5 indicates a novel molecular mechanism, mediating anti-tumoral effects of Sal in CRC. Conclusion Sal effectively impairs CRC growth in vivo. Furthermore, Sal acts as an inhibitor of Wnt/β-catenin signaling. Thus, Salinomycin represents a promising candidate for clinical CRC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2879-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Klose
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Jana Eissele
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Claudia Volz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Steffen Schmitt
- German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alina Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Shen Ying
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Ulrike Heger
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Zhang XF, Gurunathan S. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy. Int J Nanomedicine 2016; 11:3655-75. [PMID: 27536105 PMCID: PMC4977082 DOI: 10.2147/ijn.s111279] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is one of the most important malignancies, and the origin, detection, and pathogenesis of epithelial ovarian cancer remain elusive. Although many cancer drugs have been developed to dramatically reduce the size of tumors, most cancers eventually relapse, posing a critical problem to overcome. Hence, it is necessary to identify possible alternative therapeutic approaches to reduce the mortality rate of this devastating disease. To identify alternative approaches, we first synthesized silver nanoparticles (AgNPs) using a novel bacterium called Bacillus clausii. The synthesized AgNPs were homogenous and spherical in shape, with an average size of 16–20 nm, which are known to cause cytotoxicity in various types of human cancer cells, whereas salinomycin (Sal) is able to kill cancer stem cells. Therefore, we selected both Sal and AgNPs to study their combined effect on apoptosis and autophagy in ovarian cancer cells. The cells treated with either Sal or AgNPs showed a dose-dependent effect with inhibitory concentration (IC)-50 values of 6.0 µM and 8 µg/mL for Sal and AgNPs, respectively. To determine the combination effect, we measured the IC25 values of both Sal and AgNPs (3.0 µM and 4 µg/mL), which showed a more dramatic inhibitory effect on cell viability and cell morphology than either Sal or AgNPs alone. The combination of Sal and AgNPs had more pronounced effect on cytotoxicity and expression of apoptotic genes and also significantly induced the accumulation of autophagolysosomes, which was associated with mitochondrial dysfunction and loss of cell viability. Our data show a strong synergistic interaction between Sal and AgNPs in tested cancer cells. The combination treatment increased the therapeutic potential and demonstrated the relevant targeted therapy for the treatment of ovarian cancer. Furthermore, we provide, for the first time, a mode of action for Sal and AgNPs in ovarian cancer cells: enhanced apoptosis and autophagy.
Collapse
Affiliation(s)
- Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | | |
Collapse
|
17
|
Xie F, Zhang S, Liu J, Gong Z, Yang K, Zhang H, Lu Y, Zou H, Yu Y, Chen Y, Sun Z, Wang X, Zhang H, Zhang G, Li W, Li B, Gao J, Zhong Y. Codelivery of salinomycin and chloroquine by liposomes enables synergistic antitumor activity in vitro. Nanomedicine (Lond) 2016; 11:1831-46. [DOI: 10.2217/nnm-2016-0125] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: To improve the suboptimal therapeutic efficacy of salinomycin (SAL) toward liver cancer cells using chloroquine (CQ) combination by the liposomes co-delivering SAL and CQ (SCNL). Materials & methods: The synergy of these two drugs was evaluated in liver cancer cells (HepG2) and liver cancer stem cells (LCSCs) by median-effect analysis. SCNL with optimized ratio were developed. The cytotoxic effect and basal autophagy flux (measure of autophagic degradation activity) of various formulations were evaluated. Results & conclusion: CQ could significantly increase the cytotoxic effect of SAL in HepG2 cells, but not in HepG2-LCSCs, due to the greater basal autophagy flux in HepG2 cells. This combination therapy is promising for liver cancer treatment by eradicating liver cancer cells and LCSCs.
Collapse
Affiliation(s)
- Fangyuan Xie
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Siyue Zhang
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Junjie Liu
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhirong Gong
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Kaixuan Yang
- International Joint Cancer Institute, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - He Zhang
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ying Lu
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hao Zou
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yuan Yu
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yan Chen
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhiguo Sun
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xinxia Wang
- Department of Pharmacy, East Hospital of Hepatobiliary Surgery, 225 Changhai Road, Shanghai 200433, China
| | - Hai Zhang
- Department of Pharmacy, East Hospital of Hepatobiliary Surgery, 225 Changhai Road, Shanghai 200433, China
| | - Guoqing Zhang
- Department of Pharmacy, East Hospital of Hepatobiliary Surgery, 225 Changhai Road, Shanghai 200433, China
| | - Wei Li
- International Joint Cancer Institute, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Bohua Li
- International Joint Cancer Institute, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jie Gao
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- International Joint Cancer Institute, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yanqiang Zhong
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
18
|
Huang X, Borgström B, Kempengren S, Persson L, Hegardt C, Strand D, Oredsson S. Breast cancer stem cell selectivity of synthetic nanomolar-active salinomycin analogs. BMC Cancer 2016; 16:145. [PMID: 26906175 PMCID: PMC4765157 DOI: 10.1186/s12885-016-2142-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/08/2016] [Indexed: 12/28/2022] Open
Abstract
Background Cancer stem cells (CSCs) have been invoked in resistance, recurrence and metastasis of cancer. Consequently, curative cancer treatments may be contingent on CSC selective approaches. Of particular interest in this respect is the ionophore salinomycin, a natural product shown to be 100-fold more active against CSCs than clinically used paclitaxel. We have previously reported that synthetic salinomycin derivatives display increased activity against breast cancer cell lines. Herein we specifically investigate the CSC selectivity of the most active member in each class of C20-O-acylated analogs as well as a C1-methyl ester analog incapable of charge-neutral metal ion transport. Methods JIMT-1 breast cancer cells were treated with three C20-O-acylated analogs, the C1-methyl ester of salinomycin, and salinomycin. The effects of treatment on the CSC-related CD44+/CD24− and the aldehyde dehydrogenase positive (ALDH+) populations were determined using flow cytometry. The survival ability of CSCs after treatment was investigated with a colony formation assay under serum free conditions. The effect of the compounds on cell migration was evaluated using wound-healing and Boyden chamber assays. The expression of vimentin, related to mesenchymal traits and expression of E-cadherin and β-catenin, related to the epithelial traits, were investigated using immunofluorescence microscopy. Results Treatment with each of the three C20-acylated analogs efficiently decreased the putative CSC population as reflected by reduction of the CD44+/CD24− and ALDH+ populations already at a 50 nM concentration. In addition, colony forming efficiency and cell migration were reduced, and the expression of the epithelial markers E-cadherin and β-catenin at the cell surface were increased. In contrast, salinomycin used at the same concentration did not significantly influence the CSC population and the C1-methyl ester was inactive even at a 20 μM concentration. Conclusions Synthetic structural analogs of salinomycin, previously shown to exhibit increased activity against cancer cells, also exhibited improved activity against CSCs across several assays even at nanomolar concentrations where salinomycin was found inactive. The methyl ester analog of salinomycin, incapable of charge-neutral metal ion transport, did not show activity in CSC assays, lending experimental support to ionophoric stress as the molecular initiating event for the CSC effects of salinomycin and related structures. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2142-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Biology, Lund University, Lund, Sweden.
| | - Björn Borgström
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, Lund, Sweden.
| | | | - Lo Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Cecilia Hegardt
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University Cancer Center/Medicon Village, Lund, Sweden.
| | - Daniel Strand
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, Lund, Sweden.
| | | |
Collapse
|
19
|
FU YINGZI, YAN YUANYUAN, HE MIAO, XIAO QINGHUAN, YAO WEIFAN, ZHAO LIN, WU HUIZHE, YU ZHAOJIN, ZHOU MINGYI, LV MUTIAN, ZHANG SHANSHAN, CHEN JIANJUN, WEI MINJIE. Salinomycin induces selective cytotoxicity to MCF-7 mammosphere cells through targeting the Hedgehog signaling pathway. Oncol Rep 2015; 35:912-22. [DOI: 10.3892/or.2015.4434] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/26/2015] [Indexed: 11/06/2022] Open
|
20
|
Bernardo MM, Kaplun A, Dzinic SH, Li X, Irish J, Mujagic A, Jakupovic B, Back JB, Van Buren E, Han X, Dean I, Chen YQ, Heath E, Sakr W, Sheng S. Maspin Expression in Prostate Tumor Cells Averts Stemness and Stratifies Drug Sensitivity. Cancer Res 2015. [PMID: 26208903 DOI: 10.1158/0008-5472.can-15-0234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Future curative cancer chemotherapies have to overcome tumor cell heterogeneity and plasticity. To test the hypothesis that the tumor suppressor maspin may reduce microenvironment-dependent prostate tumor cell plasticity and thereby modulate drug sensitivity, we established a new schematic combination of two-dimensional (2D), three-dimensional (3D), and suspension cultures to enrich prostate cancer cell subpopulations with distinct differentiation potentials. We report here that depending on the level of maspin expression, tumor cells in suspension and 3D collagen I manifest the phenotypes of stem-like and dormant tumor cell populations, respectively. In suspension, the surviving maspin-expressing tumor cells lost the self-renewal capacity, underwent senescence, lost the ability to dedifferentiate in vitro, and failed to generate tumors in vivo. Maspin-nonexpressing tumor cells that survived the suspension culture in compact tumorspheres displayed a higher level of stem cell marker expression, maintained the self-renewal capacity, formed tumorspheres in 3D matrices in vitro, and were tumorigenic in vivo. The drug sensitivities of the distinct cell subpopulations depend on the drug target and the differentiation state of the cells. In 2D, docetaxel, MS275, and salinomycin were all cytotoxic. In suspension, while MS275 and salinomycin were toxic, docetaxel showed no effect. Interestingly, cells adapted to 3D collagen I were only responsive to salinomycin. Maspin expression correlated with higher sensitivity to MS275 in both 2D and suspension and to salinomycin in 2D and 3D collagen I. Our data suggest that maspin reduces prostate tumor cell plasticity and enhances tumor sensitivity to salinomycin, which may hold promise in overcoming tumor cell heterogeneity and plasticity.
Collapse
Affiliation(s)
- M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Alexander Kaplun
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Sijana H Dzinic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Xiaohua Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Jonathan Irish
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Adelina Mujagic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Benjamin Jakupovic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Jessica B Back
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Department of Microscopy, Imaging and Cytometry Resources Core, Wayne State University School of Medicine, Detroit, Michigan
| | - Eric Van Buren
- Department of Microscopy, Imaging and Cytometry Resources Core, Wayne State University School of Medicine, Detroit, Michigan
| | - Xiang Han
- Peking University Health Science Center, Beijing, China
| | - Ivory Dean
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Yong Q Chen
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elisabeth Heath
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Wael Sakr
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
21
|
Geno- and cytotoxicity of salinomycin in human nasal mucosa and peripheral blood lymphocytes. Toxicol In Vitro 2015; 29:813-8. [PMID: 25769976 DOI: 10.1016/j.tiv.2015.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/23/2014] [Accepted: 01/18/2015] [Indexed: 01/03/2023]
Abstract
Salinomycin is usually applied in stock breading but has also been described as a promising agent against cancer stem cells (CSC). However, knowledge about the toxicity of this ionophor substance is incomplete. The aim of this study was to investigate cyto- and genotoxic effects of salinomycin in human non-malignant cells. Primary human nasal mucosa cells (monolayer and mini organ cultures) and peripheral blood lymphocytes from 10 individuals were used to study the cytotoxic effects of salinomycin (0.1-175 μM) by annexin-propidiumiodide- and MTT-test. The comet assay was performed to evaluate DNA damage. Additionally, the secretion of interleukin-8 was analyzed by ELISA. Flow cytometry and MTT assay revealed significant cytotoxic effects in nasal mucosa cells and lymphocytes at low salinomycin concentrations of 10-20 μM. No genotoxic effects could be observed. IL-8 secretion was elevated at 5 μM. Salinomycin-induced cytotoxic and pro-inflammatory effects were seen at concentrations relevant for anti-cancer treatment. Concurrent to the evaluation of salinomycin application in experimental oncology, adverse effects in non-malignant cells need to be monitored and reduced as much as possible. Further studies are also warranted to evaluate the toxic effects in a variety of human cell systems, e.g., liver, kidney and muscle cells.
Collapse
|
22
|
Huczyński A, Antoszczak M, Kleczewska N, Lewandowska M, Maj E, Stefańska J, Wietrzyk J, Janczak J, Celewicz L. Synthesis and biological activity of salinomycin conjugates with floxuridine. Eur J Med Chem 2015; 93:33-41. [DOI: 10.1016/j.ejmech.2015.01.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
|
23
|
Chen X, Gu Y, Singh K, Shang C, Barzegar M, Jiang S, Huang S. Maduramicin inhibits proliferation and induces apoptosis in myoblast cells. PLoS One 2014; 9:e115652. [PMID: 25531367 PMCID: PMC4274093 DOI: 10.1371/journal.pone.0115652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 11/26/2014] [Indexed: 11/19/2022] Open
Abstract
Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death.
Collapse
Affiliation(s)
- Xin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Ying Gu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Karnika Singh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Mansoureh Barzegar
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Shanxiang Jiang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
- * E-mail: (SJ); (SH)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail: (SJ); (SH)
| |
Collapse
|
24
|
Cybulski W, Radko L, Rzeski W. Cytotoxicity of monensin, narasin and salinomycin and their interaction with silybin in HepG2, LMH and L6 cell cultures. Toxicol In Vitro 2014; 29:337-44. [PMID: 25500126 DOI: 10.1016/j.tiv.2014.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/27/2022]
Abstract
The cytotoxic effect of monensin, narasin and salinomycin followed by their co-action with silybin in the cell line cultures of human hepatoma (HepG2), chicken hepatoma (LMH) or rat myoblasts (L6) have been investigated. The effective concentration of the studied ionophoric polyethers has been assessed within two biochemical endpoints: mitochondrial activity (MTT assay) and membrane integrity (LDH assay) after 24h incubation of each compound and farther, the cytotoxicity influenced in course of their interaction with silybin was determined. The most affected endpoints were found for inhibition of mitochondrial activity of the hepatoma cell lines and their viability depended on concentration of the ionophoric polyether, as well as on the cell line tested. The rat myoblasts were more sensitive target for cellular membrane damage when compared to inhibition of mitochondrial activity. An interaction between the ionophoric polyethers and silybin resulted a considerable cytotoxicity decrease within all studied cell lines; the combination index (CI) showed differences of interaction mode and dependence on cell culture, concentration of silybin, as well as the assay used. The obtained results are of interest in respect to recent findings on applicability of salinomycin and monensin for human therapy.
Collapse
Affiliation(s)
- Wojciech Cybulski
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland.
| | - Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland.
| | - Wojciech Rzeski
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Medical Biology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin, Poland.
| |
Collapse
|
25
|
Klose J, Stankov MV, Kleine M, Ramackers W, Panayotova-Dimitrova D, Jäger MD, Klempnauer J, Winkler M, Bektas H, Behrens GMN, Vondran FWR. Inhibition of autophagic flux by salinomycin results in anti-cancer effect in hepatocellular carcinoma cells. PLoS One 2014; 9:e95970. [PMID: 24816744 PMCID: PMC4015957 DOI: 10.1371/journal.pone.0095970] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022] Open
Abstract
Salinomycin raised hope to be effective in anti-cancer therapies due to its capability to overcome apoptosis-resistance in several types of cancer cells. Recently, its effectiveness against human hepatocellular carcinoma (HCC) cells both in vitro and in vivo was demonstrated. However, the mechanism of action remained unclear. Latest studies implicated interference with the degradation pathway of autophagy. This study aimed to determine the impact of Salinomycin on HCC-autophagy and whether primary human hepatocytes (PHH) likewise are affected. Following exposure of HCC cell lines HepG2 and Huh7 to varying concentrations of Salinomycin (0-10 µM), comprehensive analysis of autophagic activity using western-blotting and flow-cytometry was performed. Drug effects were analyzed in the settings of autophagy stimulation by starvation or PP242-treatment and correlated with cell viability, proliferation, apoptosis induction, mitochondrial mass accumulation and reactive oxygen species (ROS) formation. Impact on apoptosis induction and cell function of PHH was analyzed. Constitutive and stimulated autophagic activities both were effectively suppressed in HCC by Salinomycin. This inhibition was associated with dysfunctional mitochondria accumulation, increased apoptosis and decreased proliferation and cell viability. Effects of Salinomycin were dose and time dependent and could readily be replicated by pharmacological and genetic inhibition of HCC-autophagy alone. Salinomycin exposure to PHH resulted in transient impairment of synthesis function and cell viability without apoptosis induction. In conclusion, our data suggest that Salinomycin suppresses late stages of HCC-autophagy, leading to impaired recycling and accumulation of dysfunctional mitochondria with increased ROS-production all of which are associated with induction of apoptosis.
Collapse
Affiliation(s)
- Johannes Klose
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Metodi V. Stankov
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Moritz Kleine
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Wolf Ramackers
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Diana Panayotova-Dimitrova
- Department of Dermatology, Venereology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Mark D. Jäger
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Klempnauer
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Michael Winkler
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Hüseyin Bektas
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Georg M. N. Behrens
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
26
|
Zhou S, Wang F, Wong ET, Fonkem E, Hsieh TC, Wu JM, Wu E. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities. Curr Med Chem 2014; 20:4095-101. [PMID: 23931281 DOI: 10.2174/15672050113109990199] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Pharmaceutical Sciences, North Dakota State University, 203 Sudro Hall, NDSU Dept 2665, PO Box 6050, Fargo, ND 58108-6050.
| | | | | | | | | | | | | |
Collapse
|
27
|
Salinomycin treatment reduces metastatic tumor burden by hampering cancer cell migration. Mol Cancer 2014; 13:16. [PMID: 24468090 PMCID: PMC3909296 DOI: 10.1186/1476-4598-13-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/24/2014] [Indexed: 11/16/2022] Open
Abstract
Background Tumor spreading is the major threat for cancer patients. The recently published anti-cancer drug salinomycin raised hope for an improved treatment by targeting therapy-refractory cancer stem cells. However, an unambiguous role of salinomycin against cancer cell migration and metastasis formation remains elusive. Findings We report that salinomycin effectively inhibits cancer cell migration in a variety of cancer types as determined by Boyden chamber assays. Additionally, cells were treated with doxorubicin at a concentration causing a comparable low cytotoxicity, emphasizing the anti-migratory potential of salinomycin. Moreover, single-cell tracking by time-lapse microscopy demonstrated a remarkable effect of salinomycin on breast cancer cell motility. Ultimately, salinomycin treatment significantly reduced the metastatic tumor burden in a syngenic mouse tumor model. Conclusions Our findings clearly show that salinomycin can strongly inhibit cancer cell migration independent of the induction of cell death. We furthermore demonstrate for the first time that salinomycin treatment reduces metastasis formation in vivo, strengthening its role as promising anti-cancer therapeutic.
Collapse
|
28
|
Wu D, Zhang Y, Huang J, Fan Z, Shi F, Wang S. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo. Biochem Biophys Res Commun 2013; 443:712-7. [PMID: 24333874 DOI: 10.1016/j.bbrc.2013.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Abstract
Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.
Collapse
Affiliation(s)
- Danxin Wu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yu Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jie Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zirong Fan
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fengrong Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Senming Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|