1
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Ah-Pine F, Malaterre-Septembre A, Bedoui Y, Khettab M, Neal JW, Freppel S, Gasque P. Complement Activation and Up-Regulated Expression of Anaphylatoxin C3a/C3aR in Glioblastoma: Deciphering the Links with TGF-β and VEGF. Cancers (Basel) 2023; 15:cancers15092647. [PMID: 37174113 PMCID: PMC10177042 DOI: 10.3390/cancers15092647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The complement (C) innate immune system has been shown to be activated in the tumor microenvironment of various cancers. The C may support tumor growth by modulating the immune response and promoting angiogenesis through the actions of C anaphylatoxins (e.g., C5a, C3a). The C has important double-edged sword functions in the brain, but little is known about its role in brain tumors. Hence, we analyzed the distribution and the regulated expression of C3a and its receptor C3aR in various primary and secondary brain tumors. We found that C3aR was dramatically upregulated in Grade 4 diffuse gliomas, i.e., glioblastoma multiforme, IDH-wildtype (GBM) and astrocytoma, IDH-mutant, Grade 4, and was much less expressed in other brain tumors. C3aR was observed in tumor-associated macrophages (TAM) expressing CD68, CD18, CD163, and the proangiogenic VEGF. Robust levels of C3a were detected in the parenchyma of GBM as a possible result of Bb-dependent C activation of the alternative C pathway. Interestingly, in vitro models identified TGF-β1 as one of the most potent growth factors that upregulate VEGF, C3, and C3aR in TAM (PMA-differentiated THP1) cell lines. Further studies should help to delineate the functions of C3a/C3aR on TAMs that promote chemotaxis/angiogenesis in gliomas and to explore the therapeutic applications of C3aR antagonists for brain tumors.
Collapse
Affiliation(s)
- Franck Ah-Pine
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Service d'Anatomie et Cytologie Pathologiques, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - Axelle Malaterre-Septembre
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
| | - Yosra Bedoui
- Service d'Anatomie et Cytologie Pathologiques, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - Mohamed Khettab
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Service d'Oncologie Médicale, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - James W Neal
- Institute of Life Sciences, Swansea Medical School, Sketty, Swansea SA2 8PY, UK
| | - Sébastien Freppel
- Service de Neurochirurgie, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - Philippe Gasque
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale ZOI (LICE OI), CHU de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
| |
Collapse
|
3
|
Han S, Zhang Z, Ma W, Gao J, Li Y. Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptor Subfamily C (NLRC) as a Prognostic Biomarker for Glioblastoma Multiforme Linked to Tumor Microenvironment: A Bioinformatics, Immunohistochemistry, and Machine Learning-Based Study. J Inflamm Res 2023; 16:523-537. [PMID: 36798872 PMCID: PMC9926983 DOI: 10.2147/jir.s397305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Purpose Glioblastoma multiforme (GBM) remains the deadliest primary brain tumor. We aimed to illuminate the role of nucleotide-binding oligomerization domain (NOD)-like receptor subfamily C (NLRC) in GBM. Patients and Methods Based on public database data (mainly The Cancer Genome Atlas [TCGA]), we performed bioinformatics analysis to visually evaluate the role and mechanism of NLRCs in GBM. Then, we validated our findings in a glioma tissue microarray (TMA) by immunohistochemistry (IHC), and the prognostic value of NOD1 was assessed via random forest (RF) models. Results In GBM tissues, the expression of NLRC members was significantly increased, which was related to the low survival rate of GBM. Additionally, Cox regression analysis revealed that the expression of NOD1 (among NLRCs) served as an independent prognostic marker. A nomogram based on multivariate analysis proved the effective predictive performance of NOD1 in GBM. Enrichment analysis showed that high expression of NOD1 could regulate extracellular structure, cell adhesion, and immune response to promote tumor progression. Then, immune infiltration analysis showed that NOD1 overexpression correlated with an enhanced immune response. Then, in a glioma TMA, the results of IHC revealed that the increase in NOD1 expression indicated high recurrence and poor prognosis of human glioma. Furthermore, the expression level of NOD1 showed good prognostic value in the TMA cohort via RF. Conclusion The value of NOD1 as a biomarker for GBM was demonstrated. The possible mechanisms may lie in the regulatory role of NLRC-related pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Shiyuan Han
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Zimu Zhang
- Department of General Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Wenbin Ma
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Jun Gao
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Yongning Li
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China,Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, People’s Republic of China,Correspondence: Yongning Li, Department of Neurosurgery and Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, People’s Republic of China, Tel +86 13901074129, Fax +86 1069152530, Email
| |
Collapse
|
4
|
Complement and Fungal Dysbiosis as Prognostic Markers and Potential Targets in PDAC Treatment. Curr Oncol 2022; 29:9833-9854. [PMID: 36547187 PMCID: PMC9777542 DOI: 10.3390/curroncol29120773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still hampered by a dismal prognosis. A better understanding of the tumor microenvironment within the pancreas and of the factors affecting its composition is of utmost importance for developing new diagnostic and treatment tools. In this context, the complement system plays a prominent role. Not only has it been shown to shape a T cell-mediated immune response, but it also directly affects proliferation and apoptosis of the tumor cells, influencing angiogenesis, metastatic spread and therapeutic resistance. This makes complement proteins appealing not only as early biomarkers of PDAC development, but also as therapeutic targets. Fungal dysbiosis is currently the new kid on the block in tumorigenesis with cancer-associated mycobiomes extracted from several cancer types. For PDAC, colonization with the yeast Malassezia seems to promote cancer progression, already in precursor lesions. One responsible mechanism appears to be complement activation via the lectin pathway. In the present article, we review the role of the complement system in tumorigenesis, presenting observations that propose it as the missing link between fungal dysbiosis and PDAC development. We also present the results of a small pilot study supporting the crucial interplay between the complement system and Malassezia colonization in PDAC pathogenesis.
Collapse
|
5
|
Zhu H, Yu X, Zhang S, Shu K. Targeting the Complement Pathway in Malignant Glioma Microenvironments. Front Cell Dev Biol 2021; 9:657472. [PMID: 33869223 PMCID: PMC8047198 DOI: 10.3389/fcell.2021.657472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma is a highly fatal type of brain tumor, and its reoccurrence is largely due to the ordered interactions among the components present in the complex microenvironment. Besides its role in immune surveillance and clearance under physiological conditions, the complement system is expressed in a variety of tumor types and mediates the interactions within the tumor microenvironments. Recent studies have uncovered the broad expression spectrum of complement signaling molecules in the tumor microenvironment and various tumor cells, in particular, malignant glioma cells. Involvement of the complement system in tumor growth, immunosuppression and phenotype transition have also been elucidated. In this review, we enumerate the expression and function of complement molecules in multiple tumor types reported. Moreover, we elaborate the complement pathways in glioma cells and various components of malignant glioma microenvironments. Finally, we summarize the possibility of the complement molecules as prognostic factors and therapeutic targets in the treatment of malignant glioma. Specific targeting of the complement system maybe of great significance and value in the future treatment of multi-type tumors including malignant glioma.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Riihilä P, Viiklepp K, Nissinen L, Farshchian M, Kallajoki M, Kivisaari A, Meri S, Peltonen J, Peltonen S, Kähäri V. Tumour-cell-derived complement components C1r and C1s promote growth of cutaneous squamous cell carcinoma. Br J Dermatol 2020; 182:658-670. [PMID: 31049937 PMCID: PMC7065064 DOI: 10.1111/bjd.18095] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incidence of epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is increasing worldwide. OBJECTIVES To study the role of the complement classical pathway components C1q, C1r and C1s in the progression of cSCC. METHODS The mRNA levels of C1Q subunits and C1R and C1S in cSCC cell lines, normal human epidermal keratinocytes, cSCC tumours in vivo and normal skin were analysed with quantitative real-time polymerase chain reaction. The production of C1r and C1s was determined with Western blotting. The expression of C1r and C1s in tissue samples in vivo was analysed with immunohistochemistry and further investigated in human cSCC xenografts by knocking down C1r and C1s. RESULTS Significantly elevated C1R and C1S mRNA levels and production of C1r and C1s were detected in cSCC cells, compared with normal human epidermal keratinocytes. The mRNA levels of C1R and C1S were markedly elevated in cSCC tumours in vivo compared with normal skin. Abundant expression of C1r and C1s by tumour cells was detected in invasive sporadic cSCCs and recessive dystrophic epidermolysis bullosa-associated cSCCs, whereas the expression of C1r and C1s was lower in cSCC in situ, actinic keratosis and normal skin. Knockdown of C1r and C1s expression in cSCC cells inhibited activation of extracellular signal-related kinase 1/2 and Akt, promoted apoptosis of cSCC cells and significantly suppressed growth and vascularization of human cSCC xenograft tumours in vivo. CONCLUSIONS These results provide evidence for the role of tumour-cell-derived C1r and C1s in the progression of cSCC and identify them as biomarkers and putative therapeutic targets in cSCC. What's already known about this topic? The incidences of actinic keratosis, cutaneous squamous cell carcinoma (cSCC) in situ and invasive cSCC are increasing globally. Few specific biomarkers for progression of cSCC have been identified, and no biological markers are in clinical use to predict the aggressiveness of actinic keratosis, cSCC in situ and invasive cSCC. What does this study add? Our results provide novel evidence for the role of complement classical pathway components C1r and C1s in the progression of cSCC. What is the translational message? Our results identify complement classical pathway components C1r and C1s as biomarkers and putative therapeutic targets in cSCC.
Collapse
Affiliation(s)
- P. Riihilä
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - K. Viiklepp
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - L. Nissinen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - M. Farshchian
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - M. Kallajoki
- Department of PathologyTurku University HospitalTurkuFinland
| | - A. Kivisaari
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - S. Meri
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
| | - J. Peltonen
- Department of Anatomy and Cell BiologyUniversity of TurkuTurkuFinland
| | - S. Peltonen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - V.‐M. Kähäri
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| |
Collapse
|
7
|
Nabizadeh JA, Manthey HD, Panagides N, Steyn FJ, Lee JD, Li XX, Akhir FNM, Chen W, Boyle GM, Taylor SM, Woodruff TM, Rolfe BE. C5a receptors C5aR1 and C5aR2 mediate opposing pathologies in a mouse model of melanoma. FASEB J 2019; 33:11060-11071. [PMID: 31298935 DOI: 10.1096/fj.201800980rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The canonical complement component 5a (C5a) receptor (C5aR) 1 has well-described roles in tumorigenesis but the contribution of the second receptor, C5aR2, is unclear. The present study demonstrates that B16.F0 melanoma cells express mRNA for both C5aR1 and C5aR2 and signal through ERK and p38 MAPKs in response to C5a. Despite this, C5a had no impact on melanoma cell proliferation or migration in vitro. In vivo studies demonstrated that the growth of B16.F0 melanoma tumors was increased in C5aR2-/- mice but reduced in C5aR1-/- mice and wild-type mice treated with a C5aR1 antagonist. Analysis of tumor-infiltrating leukocyte populations showed no significant differences between wild-type and C5aR2-/- mice. Conversely, percentages of myeloid-derived suppressor cells, macrophages, and regulatory T lymphocytes were lower in tumors from C5aR1-/- mice, whereas total (CD3+) T lymphocytes and CD4+ subsets were higher. Analysis of cytokine and chemokine levels also showed plasma IFN-γ was higher and tumor C-C motif chemokine ligand 2 was lower in the absence of C5aR1. The results suggest that C5aR1 signaling supports melanoma growth by promoting infiltration of immunosuppressive leukocyte populations into the tumor microenvironment, whereas C5aR2 has a more restricted but beneficial role in limiting tumor growth. Overall, these data support the potential of C5aR1-inhibitory therapies for melanoma.-Nabizadeh, J. A., Manthey, H. D., Panagides, N., Steyn, F. J., Lee, J. D., Li, X. X., Akhir, F. N. M., Chen, W., Boyle, G. M., Taylor, S. M., Woodruff, T. M., Rolfe, B. E. C5a receptors C5aR1 and C5aR2 mediate opposing pathologies in a mouse model of melanoma.
Collapse
Affiliation(s)
- Jamileh A Nabizadeh
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Helga D Manthey
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Nadya Panagides
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - John D Lee
- School of Biomedical Science, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Xaria X Li
- School of Biomedical Science, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Fazrena N M Akhir
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Weiyu Chen
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Glen M Boyle
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Stephen M Taylor
- School of Biomedical Science, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Science, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Barbara E Rolfe
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Ajona D, Ortiz-Espinosa S, Pio R, Lecanda F. Complement in Metastasis: A Comp in the Camp. Front Immunol 2019; 10:669. [PMID: 31001273 PMCID: PMC6457318 DOI: 10.3389/fimmu.2019.00669] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The complement system represents a pillar of the innate immune response. This system, critical for host defense against pathogens, encompasses more than 50 soluble, and membrane-bound proteins. Emerging evidence underscores its clinical relevance in tumor progression and its role in metastasis, one of the hallmarks of cancer. The multistep process of metastasis entails the acquisition of advantageous functions required for the formation of secondary tumors. Thus, targeting components of the complement system could impact not only on tumor initiation but also on several crucial steps along tumor dissemination. This novel vulnerability could be concomitantly exploited with current strategies overcoming tumor-mediated immunosuppression to provide a substantial clinical benefit in the treatment of metastatic disease. In this review, we offer a tour d'horizon on recent advances in this area and their prospective potential for cancer treatment.
Collapse
Affiliation(s)
- Daniel Ajona
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Sergio Ortiz-Espinosa
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ruben Pio
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
9
|
Klikovits T, Stockhammer P, Laszlo V, Dong Y, Hoda MA, Ghanim B, Opitz I, Frauenfelder T, Nguyen-Kim TDL, Weder W, Berger W, Grusch M, Aigner C, Klepetko W, Dome B, Renyi-Vamos F, Oehler R, Hegedus B. Circulating complement component 4d (C4d) correlates with tumor volume, chemotherapeutic response and survival in patients with malignant pleural mesothelioma. Sci Rep 2017; 7:16456. [PMID: 29184132 PMCID: PMC5705645 DOI: 10.1038/s41598-017-16551-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022] Open
Abstract
Only limited information is available on the role of complement activation in malignant pleural mesothelioma (MPM). Thus, we investigated the circulating and tissue levels of the complement component 4d (C4d) in MPM. Plasma samples from 55 MPM patients, 21 healthy volunteers (HV) and 14 patients with non-malignant pleural diseases (NMPD) were measured by ELISA for C4d levels. Tissue specimens from 32 patients were analyzed by C4d immunohistochemistry. Tumor volumetry was measured in 20 patients. We found no C4d labeling on tumor cells, but on ectopic lymphoid structures within the tumor stroma. Plasma C4d levels did not significantly differ between MPM, HV or NMPD. Late-stage MPM patients had higher plasma C4d levels compared to early-stage (p = 0.079). High circulating C4d was associated with a higher tumor volume (p = 0.047). Plasma C4d levels following induction chemotherapy were significantly higher in patients with stable/progressive disease compared to those with partial/major response (p = 0.005). Strikingly, patients with low C4d levels at diagnosis had a significantly better overall survival, confirmed in a multivariate cox regression model (hazard ratio 0.263, p = 0.01). Our findings suggest that circulating plasma C4d is a promising new prognostic biomarker in patients with MPM and, moreover, helps to select patients for surgery following induction chemotherapy.
Collapse
Affiliation(s)
- Thomas Klikovits
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Paul Stockhammer
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Viktoria Laszlo
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Yawen Dong
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Mir Alireza Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Bahil Ghanim
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Isabelle Opitz
- Division of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Thomas Frauenfelder
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Thi Dan Linh Nguyen-Kim
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Walter Weder
- Division of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Walter Berger
- Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Clemens Aigner
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Ruhrlandklinik, University Hospital Essen, Tueschener Weg 40, 45239, Essen, Germany
| | - Walter Klepetko
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Balazs Dome
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- National Koranyi Institute of Pulmonology, Piheno út 1, 1121, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Rudolf Oehler
- Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Balazs Hegedus
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Ruhrlandklinik, University Hospital Essen, Tueschener Weg 40, 45239, Essen, Germany.
- MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences - Semmelweis University, Üllői út 26, 1085, Budapest, Hungary.
| |
Collapse
|
10
|
Berraondo P, Minute L, Ajona D, Corrales L, Melero I, Pio R. Innate immune mediators in cancer: between defense and resistance. Immunol Rev 2017; 274:290-306. [PMID: 27782320 DOI: 10.1111/imr.12464] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic inflammation in the tumor microenvironment and evasion of the antitumor effector immune response are two of the emerging hallmarks required for oncogenesis and cancer progression. The innate immune system not only plays a critical role in perpetuating these tumor-promoting hallmarks but also in developing antitumor adaptive immune responses. Thus, understanding the dual role of the innate system in cancer immunology is required for the design of combined immunotherapy strategies able to tackle established tumors. Here, we review recent advances in the understanding of the role of cell populations and soluble components of the innate immune system in cancer, with a focus on complement, the adapter molecule Stimulator of Interferon Genes, natural killer cells, myeloid cells, and B cells.
Collapse
Affiliation(s)
- Pedro Berraondo
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Luna Minute
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Daniel Ajona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Solid Tumors and Biomarkers, CIMA, Pamplona, Spain.,Deparment of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | | | - Ignacio Melero
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Ruben Pio
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain. .,Program of Solid Tumors and Biomarkers, CIMA, Pamplona, Spain. .,Deparment of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
11
|
Whitehead B, Wu L, Hvam ML, Aslan H, Dong M, Dyrskjøt L, Ostenfeld MS, Moghimi SM, Howard KA. Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness. J Extracell Vesicles 2015; 4:29685. [PMID: 26714455 PMCID: PMC4695623 DOI: 10.3402/jev.v4.29685] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
Background Exosomes have been implicated in tumour progression and metastatic spread. Little is known of the effect of mechanical and innate immune interactions of malignant cell-derived exosomes on endothelial integrity, which may relate to increased extravasation of circulating tumour cells and, therefore, increased metastatic spread. Methods Exosomes isolated from non-malignant immortalized HCV-29 and isogenic malignant non-metastatic T24 and malignant metastatic FL3 bladder cells were characterized by nanoparticle tracking analysis and quantitative nanomechanical mapping atomic force microscopy (QNM AFM) to determine size and nanomechanical properties. Effect of HCV-29, T24 and FL3 exosomes on human umbilical vein endothelial cell (HUVEC) monolayer integrity was determined by transendothelial electrical resistance (TEER) measurements and transport was determined by flow cytometry. Complement activation studies in human serum of malignant and non-malignant cell-derived exosomes were performed. Results FL3, T24 and HCV-29 cells produced exosomes at similar concentration per cell (6.64, 6.61 and 6.46×104 exosomes per cell for FL3, T24 and HCV-29 cells, respectively) and of similar size (120.2 nm for FL3, 127.6 nm for T24 and 117.9 nm for HCV-29, respectively). T24 and FL3 cell-derived exosomes exhibited a markedly reduced stiffness, 95 MPa and 280 MPa, respectively, compared with 1,527 MPa with non-malignant HCV-29 cell-derived exosomes determined by QNM AFM. FL3 and T24 exosomes induced endothelial disruption as measured by a decrease in TEER in HUVEC monolayers, whereas no effect was observed for HCV-29 derived exosomes. FL3 and T24 exosomes traffic more readily (11.6 and 21.4% of applied exosomes, respectively) across HUVEC monolayers than HCV-29 derived exosomes (7.2% of applied exosomes). Malignant cell-derived exosomes activated complement through calcium-sensitive pathways in a concentration-dependent manner. Conclusions Malignant (metastatic and non-metastatic) cell line exosomes display a markedly reduced stiffness and adhesion but an increased complement activation compared to non-malignant cell line exosomes, which may explain the observed increased endothelial monolayer disruption and transendothelial transport of these vesicles.
Collapse
Affiliation(s)
- Bradley Whitehead
- The Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - LinPing Wu
- Nanomedicine Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lykke Hvam
- The Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Husnu Aslan
- The Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Mingdong Dong
- The Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Seyed Moein Moghimi
- Nanomedicine Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Alan Howard
- The Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
12
|
Liu Y, Wei F, Wang F, Li C, Meng G, Duan H, Ma Q, Zhang W. Serum peptidome profiling analysis for the identification of potential biomarkers in cervical intraepithelial neoplasia patients. Biochem Biophys Res Commun 2015; 465:476-80. [PMID: 26282206 DOI: 10.1016/j.bbrc.2015.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
Abstract
Cervical intraepithelial neoplasia (CIN) is a precancerous disease of cervical squamous cell carcinoma. We Used Mass Spectrometry based peptidome profile study to predict the transformation of CIN1, which is the primary stage of this lesion. . Serum samples of 34 Cervical squamous cell carcinoma patients, 31 healthy controls, and 29 CIN1 samples were analyzed. Peptides were purified by WCX magnetic beads (Bioyong), and analyzed by MALDI TOF (Bruker). Raw data were analyzed by BioExplorer software (Bioyong). The results showed 14 mass peaks with significant differences. The diagnosis model is established by analyzing peptide profiles of 15 SCC patients and 20 healthy women serum, with a sensitivity of 100% and specificity of 100.00%. In validation set, the SCC diagnosis model also had good performance with a sensitivity of 80%, a specificity of 100%. In addition, this model could predict 29 CIN1 patients with accuracy of 55.17%. These results would provide a new method to predict the trend of CIN1 and take effective measures for high risk group timely.
Collapse
Affiliation(s)
- Yun Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Fangqiao Wei
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Feng Wang
- Bioyong Technologies Inc., Beijing, China
| | - Changdong Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ge Meng
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hua Duan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Qingwei Ma
- Bioyong Technologies Inc., Beijing, China
| | - Weiyuan Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|