1
|
Benmokhtar S, Laraqui A, Hilali F, Bajjou T, El Zaitouni S, Jafari M, Baba W, Elannaz H, Lahlou IA, Hafsa C, Oukabli M, Mahfoud T, Tanz R, Ichou M, Ennibi K, Dakka N, Sekhsokh Y. RAS/RAF/MAPK Pathway Mutations as Predictive Biomarkers in Middle Eastern Colorectal Cancer: A Systematic Review. Clin Med Insights Oncol 2024; 18:11795549241255651. [PMID: 38798959 PMCID: PMC11128178 DOI: 10.1177/11795549241255651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background This review article aims to investigate the prevalence and spectrum of rat sarcoma (RAS) and V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) mutations, and their connection with geographical location, clinicopathological features, and other relevant factors in colorectal cancer (CRC) patients in the Middle East. Methods A systematic literature review, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, was conducted to investigate the association between the frequency of relevant mutations and the descriptive clinicopathological characteristics of CRC patients. Multiple electronic databases, including PubMed, Science Direct, Web of Science, Scopus, and Google Scholar, were searched to analyze the relevant literature. Results A total of 19 eligible studies comprising 2960 patients with CRC were included in this review. A comprehensive analysis of the collected literature data as well as descriptive and methodological insights is provided. Men were predominant in reviewed studies for the region, accounting for 58.6%. Overall, RAS mutation prevalence was 38.1%. Kirsten RAS Viral Oncogene Homolog (KRAS) mutations were the most common, accounting for 37.1% of cases and distributed among different exons, with the G12D mutation being the most frequent in exon 2 (23.2%) followed by G12V (13.7%), G13D (10.1%), G12C (5.1%), G12A (5.04%), and G12S (3.6%). Neuroblastoma RAS Viral Oncogene Homolog (NRAS) mutations were identified in 3.3% of tumor samples, with the most common mutation site located in exons 2, 3, and 4, and codon 61 being the most common location for the region. The total mutation frequency in the BRAF gene was 2.6%, with the V600E mutation being the most common. Conclusion The distribution patterns of RAS and BRAF mutations among CRC patients exhibit notable variations across diverse ethnic groups. Our study sheds light on this phenomenon by demonstrating a higher prevalence of KRAS mutations in CRC patients from the Middle East, as compared with those from other regions. The identification of these mutations and geographical differences is important for personalized treatment planning and could potentially aid in the development of novel targeted therapies. The distinct distribution patterns of RAS and BRAF mutations among CRC patients across different ethnic groups, as well as the regional variability in mutation prevalence, highlight the need for further research in this area.
Collapse
Affiliation(s)
- Soukaina Benmokhtar
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelilah Laraqui
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Farida Hilali
- Laboratory of Research and Biosafety P3, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Tahar Bajjou
- Laboratory of Research and Biosafety P3, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Sara El Zaitouni
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meryem Jafari
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Walid Baba
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Hicham Elannaz
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Idriss Amine Lahlou
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Chahdi Hafsa
- Department of Medical Oncology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mohamed Oukabli
- Department of Pathology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Tarik Mahfoud
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Rachid Tanz
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mohamed Ichou
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Khaled Ennibi
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Yassine Sekhsokh
- Laboratory of Research and Biosafety P3, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| |
Collapse
|
2
|
Habashy P, Lea V, Wilkinson K, Wang B, Wu XJ, Roberts TL, Ng W, Rutland T, Po JW, Becker T, Descallar J, Lee M, Mackenzie S, Gupta R, Cooper W, Lim S, Chua W, Lee CS. KRAS and BRAF Mutation Rates and Survival Outcomes in Colorectal Cancer in an Ethnically Diverse Patient Cohort. Int J Mol Sci 2023; 24:17509. [PMID: 38139338 PMCID: PMC10743527 DOI: 10.3390/ijms242417509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
KRAS and BRAF mutation rates in colorectal cancer (CRC) reported from various mono-ethnic studies vary amongst different ethnic groups. However, these differences in mutation rates may not be statistically significant or may be due to differences in environmental and/or laboratory factors across countries rather than racial genetic differences. Here, we compare the KRAS/BRAF mutation rates and survival outcomes in CRC between ethnic groups at a single institution. We also investigate the contributions of genetic, environmental, and laboratory factors to the variations in KRAS/BRAF mutation rates reported from different countries. Clinicopathological data from 453 ethnically diverse patients with CRC were retrospectively analyzed at Liverpool Hospital, NSW Australia (2014-2016). KRAS/BRAF mutations were detected using real-time PCR (Therascreen kits from Qiagen). Mismatch repair (MMR) status was determined using immunohistochemical staining. Four ethnic groups were analyzed: Caucasian, Middle Eastern, Asian, and South American. Overall survival data were available for 406 patients. There was no significant difference in KRAS mutation rates between Caucasians (41.1%), Middle Easterners (47.9%), Asians (44.8%), and South Americans (25%) (p = 0.34). BRAF mutation rates differed significantly between races (p = 0.025), with Caucasians having the highest rates (13.5%) and Middle Easterners the lowest (0%). A secondary analysis in which Caucasians were divided into three subgroups showed that ethnic grouping correlated significantly with KRAS mutation rate (p = 0.009), with central and eastern Europeans having the highest rates (58.3%). There were no significant differences in overall survival (OS) or disease-free survival (DFS) between the four races. The similarity in KRAS mutation rates across races raises the possibility that the differences in KRAS mutation rates reported from various countries may either not be statistically significant or may be due to environmental and/or laboratory factors rather than underlying racial genetic differences. In contrast, we verified that BRAF mutation rates differ significantly between races, suggesting racial genetic differences may be responsible for the discrepant BRAF mutation rates reported from different countries.
Collapse
Affiliation(s)
- Paul Habashy
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia; (P.H.); (T.R.)
- Liverpool Clinical School, Western Sydney University, Sydney, NSW 2170, Australia; (T.L.R.); (T.B.)
| | - Vivienne Lea
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia; (P.H.); (T.R.)
- Department of Anatomical Pathology, Liverpool Hospital, Sydney, NSW 2170, Australia
| | - Kate Wilkinson
- Department of Medical Oncology, Liverpool Hospital, Sydney, NSW 2170, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia; (P.H.); (T.R.)
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, NSW 2170, Australia
| | - Xiao-Juan Wu
- Department of Anatomical Pathology, Liverpool Hospital, Sydney, NSW 2170, Australia
| | - Tara Laurine Roberts
- Liverpool Clinical School, Western Sydney University, Sydney, NSW 2170, Australia; (T.L.R.); (T.B.)
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW 2170, Australia
| | - Weng Ng
- Liverpool Clinical School, Western Sydney University, Sydney, NSW 2170, Australia; (T.L.R.); (T.B.)
- Department of Medical Oncology, Liverpool Hospital, Sydney, NSW 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW 2170, Australia
| | - Tristan Rutland
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia; (P.H.); (T.R.)
- Liverpool Clinical School, Western Sydney University, Sydney, NSW 2170, Australia; (T.L.R.); (T.B.)
- Department of Anatomical Pathology, Liverpool Hospital, Sydney, NSW 2170, Australia
| | - Joseph William Po
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, NSW 2170, Australia
- Surgical Innovations Unit, Department of Surgery, Westmead Hospital, Sydney, NSW 2140, Australia
| | - Therese Becker
- Liverpool Clinical School, Western Sydney University, Sydney, NSW 2170, Australia; (T.L.R.); (T.B.)
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW 2170, Australia
| | - Joseph Descallar
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW 2170, Australia
| | - Mark Lee
- Department of Radiation Oncology, Liverpool Hospital, Sydney, NSW 2170, Australia
| | - Scott Mackenzie
- Liverpool Clinical School, Western Sydney University, Sydney, NSW 2170, Australia; (T.L.R.); (T.B.)
- Department of Surgery, Liverpool Hospital, Sydney, NSW 2170, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Wendy Cooper
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia; (P.H.); (T.R.)
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Stephanie Lim
- Liverpool Clinical School, Western Sydney University, Sydney, NSW 2170, Australia; (T.L.R.); (T.B.)
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, NSW 2170, Australia
- Department of Medical Oncology, Campbelltown Hospital, Sydney, NSW 2560, Australia
| | - Wei Chua
- Liverpool Clinical School, Western Sydney University, Sydney, NSW 2170, Australia; (T.L.R.); (T.B.)
- Department of Medical Oncology, Liverpool Hospital, Sydney, NSW 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, NSW 2170, Australia
| | - Cheok Soon Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia; (P.H.); (T.R.)
- Liverpool Clinical School, Western Sydney University, Sydney, NSW 2170, Australia; (T.L.R.); (T.B.)
- Department of Anatomical Pathology, Liverpool Hospital, Sydney, NSW 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
3
|
Afolabi H, Md Salleh S, Zakaria Z, Seng CE, Mohd Nafil SNB, Abdul Aziz AAB, Wada Y, Irekeola A. A Systematic Review and Meta-analysis on the Occurrence of Biomarker Mutation in Colorectal Cancer among the Asian Population. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5824183. [PMID: 35782059 PMCID: PMC9246611 DOI: 10.1155/2022/5824183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
Globally, colorectal carcinoma (CRC) is the third most common cancer and the third major cause of cancer-related death in both sexes. KRAS and BRAF mutations are almost mutually exclusively involved in the pathogenesis of CRC. Both are major culprits in treatment failure and poor prognosis for CRC. Method. A systematic review and meta-analysis of various research was done following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. This trial is registered with PROSPERO CRD42021256452. The initial search included 646 articles; after the removal of noneligible studies, a total of 88 studies was finally selected. Data analysis was carried out using OpenMeta Analyst and Comprehensive Meta-Analysis 3.0 (CMA 3.0) software to investigate the prevalence of KRAS and BRAF mutations among patients with CRC in Asia. Results. The meta-analysis comprises of 25,525 sample sizes from Asia with most being male 15,743/25525 (61.7%). Overall prevalence of KRAS mutations was (59/88) 36.3% (95% CI: 34.5-38.2) with I 2 = 85.54% (P value < 0.001). In 43/59 studies, frequency of KRAS mutations was majorly in codon 12 (76.6% (95% CI: 74.2-78.0)) and less in codon 13 (21.0% (95% CI: 19.1-23.0)). Overall prevalence of BRAF mutations was 5.6% (95% CI: 3.9-8.0) with I 2 = 94.00% (P value < 0.001). When stratified according to location, a higher prevalence was observed in Indonesia (71.8%) while Pakistan has the lowest (13.5%). Conclusion. Total prevalence of KRAS and BRAF mutations in CRC was 36.6% and 5.6%, respectively, and the results conformed with several published studies on KRAS and BRAF mutations.
Collapse
Affiliation(s)
- Hafeez Afolabi
- Department of General Surgery, School of Medical Sciences, Universiti Sains Malaysia Hospital, Malaysia
| | - Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Zaidi Zakaria
- Department of General Surgery, School of Medical Sciences, Universiti Sains Malaysia Hospital, Malaysia
| | - Ch'ng Ewe Seng
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Siti Norasikin Binti Mohd Nafil
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Ahmad Aizat Bin Abdul Aziz
- School of Medical Sciences, Hospital Universiti Sains Malaysia HUSM, Universiti Sains Malaysia USM, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Yusuf Wada
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Ahmad Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| |
Collapse
|
4
|
Yuan M, Wang Z, Lv W, Pan H. The Role of Anti-EGFR Monoclonal Antibody in mCRC Maintenance Therapy. Front Mol Biosci 2022; 9:870395. [PMID: 35433839 PMCID: PMC9006990 DOI: 10.3389/fmolb.2022.870395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Epidermal growth factor receptor (EGFR) monoclonal antibodies (mAbs) combined with chemotherapy in patients with RAS (rat sarcoma viral oncogene homolog) wild-type metastatic colorectal cancer (mCRC) can alleviate and stabilize the disease, effectively prolong the progression-free survival (PFS) and overall survival (OS), and improve the overall response rate (ORR), which is the first-line treatment standard scheme for RAS wild-type mCRC currently. However, whether anti-EGFR mAb can be used for the maintenance treatment after the first-line treatment of mCRC remains controversial. We reviewed the recent studies on anti-EGFR mAb. The contents include five parts, introduction, anti-EGFR mAb in mCRC and its status in first-line therapy, establishment of the maintenance treatment pattern after the standard first-line treatment for mCRC, research progress of anti-EGFR mAb in mCRC maintenance therapy, and conclusion. More studies support the maintenance treatment of anti-EGFR mAb, but some researchers raise the problems about high cost and drug resistance. Despite lack of the maintenance evidence of anti-EGFR mAb, especially lack of large-scale phase III prospective clinical trials, with the emergence of new evidence and more accurate screening of treatment-dominant groups, maintenance therapy with anti-EGFR mAb monotherapy or anti-EGFR mAb combined with fluorouracil-based schemes after first-line chemotherapy combined with anti-EGFR mAb therapy might strive for more treatment opportunities, optimize treatment strategies and prolong treatment continuity, and finally, lead to more survival benefit for suitable patients.
Collapse
Affiliation(s)
- Meiqin Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zeng Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wangxia Lv
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hongming Pan
- Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
- *Correspondence: Hongming Pan,
| |
Collapse
|
5
|
Ottaiano A, Santorsola M, Caraglia M, Circelli L, Gigantino V, Botti G, Nasti G. Genetic regressive trajectories in colorectal cancer: A new hallmark of oligo-metastatic disease? Transl Oncol 2021; 14:101131. [PMID: 34034007 PMCID: PMC8144733 DOI: 10.1016/j.tranon.2021.101131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) originates as consequence of multiple genetic alterations. Some of the involved genes have been extensively studied (APC, TP53, KRAS, SMAD4, PIK3CA, MMR genes) in highly heterogeneous and poly-metastatic cohorts. However, about 10% of metastatic CRC patients presents with an indolent oligo-metastatic disease differently from other patients with poly-metastatic and aggressive clinical course. Which are the genetic dynamics underlying the differences between oligo- and poly-metastatic CRC? The understanding of the genetic trajectories (primary→metastatic) of CRC, in patients selected to represent homogenous clinical models, is crucial to make genotype/phenotype correlations and to identify the molecular events pushing the disease towards an increasing malignant phenotype. This information is crucial to plan innovative therapeutic strategies aimed to reverse or inhibit these phenomena. In the present study, we review the genetic evolution of CRC with the intent to give a developmental perspective on the border line between oligo- and poly-metastatic diseases.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy.
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio, 7 80138, Naples, Italy; Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, 83031, Ariano Irpino, Italy
| | - Luisa Circelli
- AMES-Centro Polidiagnostico Strumentale, 80013, Casalnuovo di Napoli, Italy
| | - Valerio Gigantino
- Innovalab scarl, Molecular Biology, Centro Direzionale, isola A2, 80143, Naples, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| |
Collapse
|
6
|
Yari A, Afzali A, Aalipour M, Nakheai M, Zahedi MJ. KRAS and BRAF mutations in Iranian colorectal cancer patients: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2021; 11:355-369. [PMID: 33680376 PMCID: PMC7911761 DOI: 10.22088/cjim.11.4.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Mutations in the EGFR signaling pathway play an important role in the development of colorectal cancer (CRC). Mutations in these genes, like KRAS and BRAF, affect the treatment strategies and associated with poor prognosis and relative resistance to anti-EGFR therapies. Our aim was to conduct a systematic and meta-analysis on all studies that have been conducted on the prevalence of these gene mutations in Iranian CRC patients. Methods: Four science citation index databases (MEDLINE, EMBASE, Web of Science and Cochrane library) and local databases were searched up to March 2018 with related keywords. Two reviewers independently screened and extracted the data. Quality of all included studies was assessed using an adapted checklist from STROBE. A random-effect model was used to calculate the total prevalence of KRAS and BRAF mutations in CRC subjects by the event rate (ER). Meta-regression was utilized to explore heterogeneity causes. Results: In total, from 573 records, 23 eligible studies (2662 patients) were included for data extraction and analysis. In 18 of 23 included studies, the prevalence of KRAS mutations was 33.9% (95% CI=30.1-37.9) with I2=65.17 (p<0.001). The occurrence of KRAS mutations in codon 12 and 13 was 76.9% (95% CI = 70.4-82.3%) with I2=84.88 (p<0.001) and 23.5% (95% CI=17.9-30.3) with I2=85.85 (p<0.001), respectively. In 9 of 23 studies, the BRAF mutation rate was 3.2% (95% CI=0.003-13.6) with I2=88.61 (p<0.001). Conclusion: The prevalence of these mutations in CRC patients shows a significant difference in the different regions of Iran, which is probably due to environmental and racial factors.
Collapse
Affiliation(s)
- Abolfazl Yari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Asiyeh Afzali
- Department of Medical Laboratory of Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Aalipour
- Department of Immunology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Nakheai
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Javad Zahedi
- Gastroenterology and Hepatology Research Center, Department of Internal Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Avenarius MR, Miller CR, Arnold MA, Koo S, Roberts R, Hobby M, Grossman T, Moyer Y, Wilson RK, Mardis ER, Gastier-Foster JM, Pfau RB. Genetic Characterization of Pediatric Sarcomas by Targeted RNA Sequencing. J Mol Diagn 2020; 22:1238-1245. [PMID: 32745614 PMCID: PMC7538815 DOI: 10.1016/j.jmoldx.2020.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022] Open
Abstract
Somatic variants, primarily fusion genes and single-nucleotide variants (SNVs) or insertions/deletions (indels), are prevalent among sarcomas. In many cases, accurate diagnosis of these tumors incorporates genetic findings that may also carry prognostic or therapeutic significance. Using the anchored multiplex PCR-based FusionPlex system, a custom RNA sequencing panel was developed that simultaneously detects fusion genes, SNVs, and indels in 112 genes found to be recurrently mutated in solid tumors. Using this assay, a retrospective analysis was conducted to identify somatic variants that may have assisted with classifying a cohort of 90 previously uncharacterized primarily pediatric sarcoma specimens. In total, somatic variants were identified in 45.5% (41/90) of the samples tested, including 22 cases with fusion genes and 19 cases with SNVs or indels. In addition, two of these findings represent novel alterations: a WHSC1L1/NCOA2 fusion and a novel in-frame deletion in the NRAS gene (NM_002524: c.174_176delAGC p.Ala59del). These sequencing results, taken in context with the available clinical data, indicate a potential change in the initial diagnosis, prognosis, or management in 27 of the 90 cases. This study presents a custom RNA sequencing assay that detects fusion genes and SNVs in tandem and has the ability to identify novel fusion partners. These features highlight the advantages associated with utilizing anchored multiplex PCR technology for the rapid and highly sensitive detection of somatic variants.
Collapse
Affiliation(s)
- Matthew R Avenarius
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Cecelia R Miller
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Michael A Arnold
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, Ohio; Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Selene Koo
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, Ohio; Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Ryan Roberts
- Department of Hematology and Oncology, Nationwide Children's Hospital, Columbus, Ohio
| | - Martin Hobby
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Thomas Grossman
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Yvonne Moyer
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Julie M Gastier-Foster
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Ruthann B Pfau
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
8
|
Nelson AC, Turbyville TJ, Dharmaiah S, Rigby M, Yang R, Wang TY, Columbus J, Stephens R, Taylor T, Sciacca D, Onsongo G, Sarver A, Subramanian S, Nissley DV, Simanshu DK, Lou E. RAS internal tandem duplication disrupts GTPase-activating protein (GAP) binding to activate oncogenic signaling. J Biol Chem 2020; 295:9335-9348. [PMID: 32393580 PMCID: PMC7363148 DOI: 10.1074/jbc.ra119.011080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolution, respectively, providing insight into the physical interactions of this class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.
Collapse
Affiliation(s)
- Andrew C Nelson
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas J Turbyville
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Megan Rigby
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ting-You Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - John Columbus
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Robert Stephens
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Troy Taylor
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Drew Sciacca
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Getiria Onsongo
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne Sarver
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Dwight V Nissley
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
SLAM-MS: Mutation scanning of stem-loop amplicons with TaqMan probes by quantitative DNA melting analysis. Sci Rep 2020; 10:5476. [PMID: 32214156 PMCID: PMC7096437 DOI: 10.1038/s41598-020-62173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
DNA Melting Analysis (DMA) with a TaqMan probe covering the mutation “hot spot” is a simple, sensitive, and “closed tube” method of mutation detection. However, DMA requires asymmetric PCR to produce single-stranded amplicons capable of interacting with TaqMan probes. This makes quantitative analysis impossible owing to low amplification efficiency. Moreover, bi-strand mutation detection necessitates two independent PCRs. The SLAM-MS (Stem-Loop AMplicon Mutation Scanning) assay, in which symmetric PCR is performed using primers with 5'-universal primer sequence (UPS), has been developed to detect KRAS mutations. Some of the resulting amplicons, sense and antisense, adopt single-stranded stem-loop conformation and become unable to renature, but able to hybridize with TaqMan probes. Hybrids of stem-loops and complementary TaqMan probes are suitable for melting analysis and simultaneous bi-strand mutation scanning. In addition, the areas under the melting peaks are determined by the PeakFit software, a non-linear iterative curve fitting program, to evaluate the wild-type/mutant allele ratio. Thus, the SLAM-MS assay permits quantification of both the number of copies of the target sequence and the percentage of mutant alleles. For mutant enrichment, the SLAM-MS assay uses TaqMan probes as PCR blocking agents allowing an ~10 times higher mutation detection sensitivity than High Resolution Melting (HRM) assay.
Collapse
|
10
|
Positive Correlation Between Somatic Mutations in RAS Gene and Colorectal Cancer in Telangana Population: Hospital-Based Study in a Cosmopolitan City. Appl Biochem Biotechnol 2019; 190:703-711. [PMID: 31475312 DOI: 10.1007/s12010-019-03119-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent cancer types in both men and women. Screening of RAS (Kirsten rat sarcoma viral oncogene homolog (KRAS), neuro-blastoma RAS viral oncogene homolog (NRAS), and v-raf murine sarcoma viral oncogene homolog B1 (BRAF)) somatic mutations is necessary prior to considering anti-epidermal growth factor receptor (EGFR) therapies in CRC patients. Next-generation sequencing studies have confirmed that RAS gene panels could be used while developing treatment strategies for patients with CRC. The present study explored genetic mutations in KRAS, NRAS, and BRAF in CRC patients in the Telangana state of India. Patients with confirmed CRC (n = 100) who visited the Apollo hospitals were evaluated. Genomic DNA was extracted from formalin-fixed, paraffin-embedded tissues, and pyrosequencing analysis was performed. Patient DNA samples were screened for 54 different KRAS, NRAS, and BRAF mutations, which revealed 34 somatic mutations. Exon 11 of BRAF possessed 4 mutations with highest individuals documented with G469A mutation. Pyrosequencing, a reliable method for analyzing somatic mutations present in RAS, could aid in taking treatment decisions for patients with CRC.
Collapse
|
11
|
Eijkelenboom A, van Schaik FMA, van Es RM, Ten Broek RW, Rinne T, van der Vleuten C, Flucke U, Ligtenberg MJL, Rehmann H. Functional characterisation of a novel class of in-frame insertion variants of KRAS and HRAS. Sci Rep 2019; 9:8239. [PMID: 31160609 PMCID: PMC6547725 DOI: 10.1038/s41598-019-44584-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mutations in the RAS genes are identified in a variety of clinical settings, ranging from somatic mutations in oncology to germline mutations in developmental disorders, also known as 'RASopathies', and vascular malformations/overgrowth syndromes. Generally single amino acid substitutions are identified, that result in an increase of the GTP bound fraction of the RAS proteins causing constitutive signalling. Here, a series of 7 in-frame insertions and duplications in HRAS (n = 5) and KRAS (n = 2) is presented, resulting in the insertion of 7-10 amino acids residues in the switch II region. These variants were identified in routine diagnostic screening of 299 samples for somatic mutations in vascular malformations/overgrowth syndromes (n = 6) and in germline analyses for RASopathies (n = 1). Biophysical characterization shows the inability of Guanine Nucleotide Exchange Factors to induce GTP loading and reduced intrinsic and GAP-stimulated GTP hydrolysis. As a consequence of these opposing effects, increased RAS signalling is detected in a cellular model system. Therefore these in-frame insertions represent a new class of weakly activating clinically relevant RAS variants.
Collapse
Affiliation(s)
- Astrid Eijkelenboom
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Frederik M A van Schaik
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Robert M van Es
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Roel W Ten Broek
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Tuula Rinne
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Carine van der Vleuten
- Department of Dermatology, Radboudumc Center of Expertise Hecovan, Radboud university medical center, Nijmegen, The Netherlands
| | - Uta Flucke
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Holger Rehmann
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands. .,Expertise Centre for Structural Biology, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands.
| |
Collapse
|
12
|
Fu XH, Chen ZT, Wang WH, Fan XJ, Huang Y, Wu XB, Huang JL, Wang JX, Lin HJ, Tan XL, Wang L, Wang JP. KRAS G12V Mutation is an Adverse Prognostic Factor of Chinese Gastric Cancer Patients. J Cancer 2019; 10:821-828. [PMID: 30854087 PMCID: PMC6400811 DOI: 10.7150/jca.27899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate the molecular characteristics of Chinese gastric cancer patients. In our study, the KRAS, BRAF, and PIK3CA mutation status of 485 GC patients were analyzed by Sanger sequencing. Kaplan-Meier analysis was used to plot survival curves according to different genotypes. The results show that the frequency of KRAS, BRAF and PIK3CA mutations were 4.1%, 1.2% and 3.5%, respectively. BRAF mutations were significantly concentrated in stage III and IV gastric cancer (P=0.009). KRAS G12V mutation carriers have much shorter OS than other mutation carriers and wild-type group patients (P=0.013). In conclusion, only the KRAS G12V mutation has an adverse effect on patient survival.
Collapse
Affiliation(s)
- Xin-Hui Fu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Zhi-Ting Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Wen-Hui Wang
- Department of Information and Technology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Xin-Juan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Xiao-Bin Wu
- Department of GI Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Jing-Lin Huang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Jing-Xuan Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Han-Jie Lin
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Xiao-Li Tan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Lei Wang
- Department of GI Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Jian-Ping Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
13
|
Abbaszadegan MR, Moghbeli M. Genetic and molecular origins of colorectal Cancer among the Iranians: an update. Diagn Pathol 2018; 13:97. [PMID: 30579343 PMCID: PMC6303916 DOI: 10.1186/s13000-018-0774-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one the leading causes of cancer related deaths among Iranians. Despite the various progresses in new therapeutic methods, it has still a low rate of survival. This high ratio of mortality is mainly related to the late diagnosis, in which the patients refer for treatment in advanced stages of tumor. MAIN BODY: colorectal cancer progression is largely associated with molecular and genetic bases. Although Iran has a high ratio of CRC mortality, there is not an efficient genetic panel for detection and prognosis. Therefore, it is critical to introduce new diagnostic markers with ability to detect in early stages. CONCLUSION Present review summarizes all of the genetic and epigenetic factors which are reported in CRC until now among the Iranian patients to pave the way of incorporation of new ethnic specific markers into the clinical practice and development of new targeted therapeutic methods.
Collapse
Affiliation(s)
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Hamzehzadeh L, Khadangi F, Ghayoor Karimiani E, Pasdar A, Kerachian MA. Common KRAS and NRAS gene mutations in sporadic colorectal cancer in Northeastern Iranian patients. Curr Probl Cancer 2018; 42:572-581. [PMID: 29921458 DOI: 10.1016/j.currproblcancer.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Mutation analysis of the Epidermal Growth Factor Receptor downstream has been a main part of colorectal carcinoma evaluation. Large prospective clinical trials have shown only colorectal cancer (CRC) with wild-type KRAS and NRAS responds to anti-Epidermal Growth Factor Receptor treatment. Hence, mutation analysis is necessary prior to treatment. It is essential to conduct studies to learn about the mutation signature of such tumors. The aim of this study was to evaluate the frequency of hotspot mutations in KRAS and NRAS genes in Iranian CRC patients and to explore their correlations with clinicopathologic parameters. METHODS We detected mutations in exon 2 (codons 12 and 13) of the KRAS and NRAS genes using high resolution melting analysis, Intplex design and Sanger sequencing in 87 Iranian CRC patients. Genomic DNA was isolated from fresh tissue samples of CRC patients. RESULTS From 87 eligible cases, 51 were male and 36 were females. KRAS mutations in codons 12 and 13 were present in 28.7% of all analyzed CRCs. Our findings suggested that the tumors with KRAS mutations are not with well- and moderately differentiated tumors compared to poorly differentiated tumors (P value = 0.32). The most frequent types of mutations were glycine to aspartate on codon 12 (p.G12D), and glycine to aspartate on codon 13 (p.G13D). No mutation was found in the NRAS gene in our patients. CONCLUSIONS Based on this study, the frequency of KRAS mutations seems to be in the spectrum of frequencies of other countries such as China, Japan, India, USA, France, and Germany and NRAS was similar to the West of Iran.
Collapse
Affiliation(s)
- Leila Hamzehzadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Khadangi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran; Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, UK
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | - Mohammad Amin Kerachian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Detection of PIK3CA Mutations in Plasma DNA of Colorectal Cancer Patients by an Ultra-Sensitive PNA-Mediated PCR. Mol Diagn Ther 2018; 21:443-451. [PMID: 28247181 DOI: 10.1007/s40291-017-0269-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mutant Phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) has been shown to be associated with the occurrence, development and prognosis in colorectal cancer (CRC). However, its detection has been limited because of complicated procedures and the low sensitivity of the present approaches. METHODS We established an ultra-sensitive peptide nucleic acid-mediated polymerase chain reaction (PNA-PCR) assay to detect PIK3CA gene mutation in exon 9 and exon 20 with cell-free DNA (cfDNA). Using this technology, we detected the mutation status of PIK3CA in 128 colorectal cancer patients. 6 CRC patients receiving targeted therapy were chosen at random to undergo continuous PIK3CA mutation detection. RESULTS The results showed that the sensitivity of PNA-PCR clamping method was 0.1% for the exon 9 and 0.2% for the exon 20 variant alleles. When the PIK3CA mutation status was determined by PNA-PCR plus sequencing, 38.3% (49/128) of CRC carried at least one mutation, either E545Kor H1047R. The clinic-pathological parameters of age (p = 0.358), gender (p = 0.622), disease stage (p = 0.353) and disease location (p = 0.307) were not associated with the PIK3CA mutation. In the continuous monitoring study, we found that the gene status was associated with the effect of treatment. Furthermore, when the PIK3CA variant was determined by only the PNA-PCR method, there was a good linear relationship between ΔCp values and the proportion of variant DNA. The accuracy of PNA-PCR was 93.75 and 92.27% respectively when the cut-off values of ΔCp at 9.0 and 8.0 were set for determining the E545K and H1047R mutations. CONCLUSIONS A simple, noninvasive, ultra-sensitive PNA-PCR technology was developed and was especially suitable for the dynamic detection of PIK3CA variants using cfDNA.
Collapse
|
16
|
Soheili F, Jalili Z, Rahbar M, Khatooni Z, Mashayekhi A, Jafari H. Novel mutation of GATA4 gene in Kurdish population of Iran with nonsyndromic congenital heart septals defects. CONGENIT HEART DIS 2018; 13:295-304. [PMID: 29377543 DOI: 10.1111/chd.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The mutations in GATA4 gene induce inherited atrial and ventricular septation defects, which is the most frequent forms of congenital heart defects (CHDs) constituting about half of all cases. METHOD We have performed High resolution melting (HRM) mutation scanning of GATA4 coding exons of nonsyndrome 100 patients as a case group including 39 atrial septal defects (ASD), 57 ventricular septal defects (VSD) and four patients with both above defects and 50 healthy individuals as a control group. Our samples are categorized according to their HRM graph. The genome sequencing has been done for 15 control samples and 25 samples of patients whose HRM analysis were similar to healthy subjects for each exon. The PolyPhen-2 and MUpro have been used to determine the causative possibility and structural stability prediction of GATA4 sequence variation. RESULTS The HRM curve analysis exhibit that 21 patients and 3 normal samples have deviated curves for GATA4 coding exons. Sequencing analysis has revealed 12 nonsynonymous mutations while all of them resulted in stability structure of protein 10 of them are pathogenic and 2 of them are benign. Also we found two nucleotide deletions which one of them was novel and one new indel mutation resulting in frame shift mutation, and 4 synonymous variations or polymorphism in 6 of patients and 3 of normal individuals. Six or about 50% of these nonsynonymous mutations have not been previously reported. CONCLUSION Our results show that there is a spectrum of GATA4 mutations resulting in septal defects.
Collapse
Affiliation(s)
- Fariborz Soheili
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, IR, Iran.,Department of Marine Biology, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, IR, Iran
| | - Zahra Jalili
- Department of Cardiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR, Iran
| | - Mahtab Rahbar
- Department of Pathology, Faculty of Medicine, Iran Medical University of Medical Science, Tehran, IR, Iran
| | - Zahed Khatooni
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, IR, Iran
| | - Amir Mashayekhi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University Tehran, IR, Iran
| | - Hossein Jafari
- Department of Statistic and Basic Science, Chabahar Maritime University, Chabahar, IR, Iran
| |
Collapse
|
17
|
Guerra J, Pinto C, Pinto D, Pinheiro M, Silva R, Peixoto A, Rocha P, Veiga I, Santos C, Santos R, Cabreira V, Lopes P, Henrique R, Teixeira MR. POLE somatic mutations in advanced colorectal cancer. Cancer Med 2017; 6:2966-2971. [PMID: 29072370 PMCID: PMC5727326 DOI: 10.1002/cam4.1245] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 12/12/2022] Open
Abstract
Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite‐stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE‐mutated CRCs, one tumor was microsatellite‐stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications.
Collapse
Affiliation(s)
- Joana Guerra
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Carla Pinto
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Diana Pinto
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Manuela Pinheiro
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Romina Silva
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Patrícia Rocha
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Isabel Veiga
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Catarina Santos
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Rui Santos
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Verónica Cabreira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Paula Lopes
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Fujiyoshi K, Yamaguchi T, Kakuta M, Takahashi A, Arai Y, Yamada M, Yamamoto G, Ohde S, Takao M, Horiguchi SI, Natsume S, Kazama S, Nishizawa Y, Nishimura Y, Akagi Y, Sakamoto H, Akagi K. Predictive model for high-frequency microsatellite instability in colorectal cancer patients over 50 years of age. Cancer Med 2017; 6:1255-1263. [PMID: 28544821 PMCID: PMC5463087 DOI: 10.1002/cam4.1088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/02/2017] [Accepted: 04/09/2017] [Indexed: 12/19/2022] Open
Abstract
Microsatellite instability (MSI) is an important biomarker for screening for Lynch syndrome, and also of response to immune checkpoint inhibitors. The aim of this study is to create a predictive model to determine which elderly patients with colorectal cancer (CRC) should undergo MSI and/or immunohistochemistry testing on the basis of clinicopathological data. We analyzed a test cohort of CRC patients aged ≥50 years (n = 2219) by multivariate logistic regression analyses to identify predictors of high‐frequency MSI (MSI‐H). The created prediction model was validated in an external cohort (n = 992). The frequency of MSI‐H was 5.5% among CRC patients aged ≥ 50 years. The following five predictors of MSI‐H were identified in the test cohort: female (1 point), mucinous component (2 points), tumor size ≥ 60 mm (2 points), location in proximal colon (3 points), and BRAF mutation (6 points). The area under curve (AUC) in the receiver‐operating characteristic (ROC) analysis of this prediction model was 0.832 (95% confidence interval: 0.790–0.874). The sensitivity and specificity were 74.4% and 77.7%, respectively, for a cut‐off score of 4 points. The receiver‐operating characteristic curve of the validation cohort also showed an AUC of 0.856 (95% CI: 0.806–0.905). This prediction model is useful to select elderly CRC patients who should undergo MSI testing, and who may benefit from treatment with 5‐FU‐based adjuvant chemotherapy and cancer immunotherapy.
Collapse
Affiliation(s)
- Kenji Fujiyoshi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan.,Department of Surgery, Kurume University, Fukuoka, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Hereditary Tumor Research Project, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Miho Kakuta
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Akemi Takahashi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Yoshiko Arai
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Mina Yamada
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Gou Yamamoto
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Sachiko Ohde
- Center for Clinical Epidemiology, Graduate School of Public Health Planning Office, St. Luke's International University, OMURA Susumu & Mieko Memorial, St. Luke's Center for Clinical Academia, Tokyo, Japan
| | - Misato Takao
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Shin-Ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Soichiro Natsume
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Shinsuke Kazama
- Division of Gastroenterological Surgery, Saitama Cancer Center, Saitama, Japan
| | - Yusuke Nishizawa
- Division of Gastroenterological Surgery, Saitama Cancer Center, Saitama, Japan
| | - Yoji Nishimura
- Division of Gastroenterological Surgery, Saitama Cancer Center, Saitama, Japan
| | - Yoshito Akagi
- Department of Surgery, Kurume University, Fukuoka, Japan
| | - Hirohiko Sakamoto
- Division of Gastroenterological Surgery, Saitama Cancer Center, Saitama, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| |
Collapse
|
19
|
Analysis of KRAS , NRAS , PIK3CA , and BRAF mutational profile in poorly differentiated clusters of KRAS-mutated colon cancer. Hum Pathol 2017; 62:91-98. [DOI: 10.1016/j.humpath.2016.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/27/2016] [Accepted: 12/04/2016] [Indexed: 02/06/2023]
|
20
|
Zaboikin M, Zaboikina T, Freter C, Srinivasakumar N. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents. PLoS One 2017; 12:e0169931. [PMID: 28095454 PMCID: PMC5241150 DOI: 10.1371/journal.pone.0169931] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022] Open
Abstract
Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.
Collapse
Affiliation(s)
- Michail Zaboikin
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Tatiana Zaboikina
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Carl Freter
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Narasimhachar Srinivasakumar
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| |
Collapse
|
21
|
Karbalaie Niya MH, Basi A, Koochak A, Safarnezhad Tameshkel F, Rakhshani N, Zamani F, Imanzade F, Rezvani H, Adib Sereshki MM, Sohrabi MR. Sensitive High-Resolution Melting Analysis for Screening of KRAS and BRAF Mutations in Iranian Human Metastatic Colorectal Cancers. Asian Pac J Cancer Prev 2016; 17:5147-5152. [PMID: 28122448 PMCID: PMC5454650 DOI: 10.22034/apjcp.2016.17.12.5147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Investigations of methods for detection of mutations have uncovered major weaknesses of direct sequencing and pyrosequencing, with their high costs and low sensitivity in screening for both known and unknown mutations. High resolution melting (HRM) analysis is an alternative tool for the rapid detection of mutations. Here we describe the accuracy of HRM in screening for KRAS and BRAF mutations in metastatic colorectal cancer (mCRCs) samples. Materials and Methods: A total of 1000 mCRC patients in Mehr Hospital, Tehran, Iran, from Feb 2008 to May 2012 were examined for KRAS mutations and 242 of them were selected for further assessment of BRAF mutations by HRM analysis. In order to calculate the sensitivity and specificity, HRM results were checked by pyrosequencing as the golden standard and Dxs Therascreen as a further method. Results: In the total of 1,000 participants, there were 664 (66.4%) with wild type and 336 (33.6%) with mutant codons 12 and/or 13 of the KRAS gene. Among 242 samples randomly checked for the BRAF gene, all were wild type by HRM. Pyrosequencing and Dxs Therascreen results were in line with those of the HRM. In this regard, the sensitivity and specificity of HRM were evaluated as 100%. Conclusion: The findings suggest that the HRM, in comparison with DNA sequencing, is a more appropriate method for precise scanning of KRAS and BRAF mutations. It is also possible to state that HRM may be an attractive technique for the detection of known or unknown somatic mutations in other genes.
Collapse
|
22
|
Al-Shamsi HO, Jones J, Fahmawi Y, Dahbour I, Tabash A, Abdel-Wahab R, Abousamra AOS, Shaw KR, Xiao L, Hassan MM, Kipp BR, Kopetz S, Soliman AS, McWilliams RR, Wolff RA. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern. J Gastrointest Oncol 2016; 7:882-902. [PMID: 28078112 DOI: 10.21037/jgo.2016.11.02] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. METHODS Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher's exact test was used to determine the association between mutation status and clinical features. RESULTS A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were 44.4%, 4%, 4%, 13.1%, 52.5%, 27.3%, 2% and 3% respectively. Compared to 48.4%, 4%, 4%, 12.1%, 47.5%, 24.2%, 11.1% and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. CONCLUSIONS This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of FBXW7 mutation.
Collapse
Affiliation(s)
- Humaid O Al-Shamsi
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA;; Khalifa Bin Zayed Al Nahyan Foundation, Abu Dhabi, United Arab Emirates;; Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeremy Jones
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yazan Fahmawi
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ibrahim Dahbour
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aziz Tabash
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Reham Abdel-Wahab
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA;; Clinical Oncology Department, Assiut University, Assiut, Egypt
| | - Ahmed O S Abousamra
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenna R Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lianchun Xiao
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Manal M Hassan
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amr S Soliman
- Department of Epidemiology, the University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Li WM, Hu TT, Zhou LL, Feng YM, Wang YY, Fang J. Highly sensitive detection of the PIK3CA (H1047R) mutation in colorectal cancer using a novel PCR-RFLP method. BMC Cancer 2016; 16:454. [PMID: 27405731 PMCID: PMC4941018 DOI: 10.1186/s12885-016-2493-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The PIK3CA (H1047R) mutation is considered to be a potential predictive biomarker for EGFR-targeted therapies. In this study, we developed a novel PCR-PFLP approach to detect the PIK3CA (H1047R) mutation in high effectiveness. METHODS A 126-bp fragment of PIK3CA exon-20 was amplified by PCR, digested with FspI restriction endonuclease and separated by 3 % agarose gel electrophoresis for the PCR-RFLP analysis. The mutant sequence of the PIK3CA (H1047R) was spiked into the corresponding wild-type sequence in decreasing ratios for sensitivity analysis. Eight-six cases of formalin-fixed paraffin-embedded colorectal cancer (CRC) specimens were subjected to PCR-RFLP to evaluate the applicability of the method. RESULTS The PCR-RFLP method had a capability to detect as litter as 0.4 % of mutation, and revealed 16.3 % of the PIK3CA (H1047R) mutation in 86 CRC tissues, which was significantly higher than that discovered by DNA sequencing (9.3 %). A positive association between the PIK3CA (H1047R) mutation and the patients' age was first found, except for the negative relationship with the degree of tumor differentiation. In addition, the highly sensitive detection of a combinatorial mutation of PIK3CA, KRAS and BRAF was achieved using individual PCR-RFLP methods. CONCLUSIONS We developed a sensitive, simple and rapid approach to detect the low-abundance PIK3CA (H1047R) mutation in real CRC specimens, providing an effective tool for guiding cancer targeted therapy.
Collapse
Affiliation(s)
- Wan-Ming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Ting-Ting Hu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Lin-Lin Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Yi-Ming Feng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Yun-Yi Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
24
|
Application of next-generation sequencing in gastrointestinal and liver tumors. Cancer Lett 2016; 374:187-91. [PMID: 26916979 DOI: 10.1016/j.canlet.2016.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 01/24/2023]
Abstract
Malignant transformation of normal cells is associated with the evolution of genomic alterations. This concept has led to the development of molecular testing platforms to identify genomic alterations that can be targeted with novel therapies. Next generation sequencing (NGS) has heralded a new era in precision medicine in which tumor genes can be studied efficiently. Recent developments in NGS have allowed investigators to identify genomic predictive makers and hereditary mutations to guide treatment decision. The application of NGS in gastrointestinal cancers is being extensively studied but continues to face substantial challenges. In our review, we discuss various NGS platforms and highlight their role in identifying familial mutations and markers of response or resistance to cancer therapy. We also provide a balanced discussion of the challenges that limit the routine use of NGS in clinical practice.
Collapse
|
25
|
koochak A, Rakhshani N, Niya MHK, Tameshkel FS, Sohrabi MR, Babaee MR, Rezvani H, Bahar B, Imanzade F, Zamani F, Khonsari MR, Ajdarkosh H, Hemmasi G. Mutation Analysis of KRAS and BRAF Genes in Metastatic Colorectal Cancer: a First Large Scale Study from Iran. Asian Pac J Cancer Prev 2016; 17:603-8. [DOI: 10.7314/apjcp.2016.17.2.603] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Meyer MJ, Lapcevic R, Romero AE, Yoon M, Das J, Beltrán JF, Mort M, Stenson PD, Cooper DN, Paccanaro A, Yu H. mutation3D: Cancer Gene Prediction Through Atomic Clustering of Coding Variants in the Structural Proteome. Hum Mutat 2016; 37:447-56. [PMID: 26841357 DOI: 10.1002/humu.22963] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
A new algorithm and Web server, mutation3D (http://mutation3d.org), proposes driver genes in cancer by identifying clusters of amino acid substitutions within tertiary protein structures. We demonstrate the feasibility of using a 3D clustering approach to implicate proteins in cancer based on explorations of single proteins using the mutation3D Web interface. On a large scale, we show that clustering with mutation3D is able to separate functional from nonfunctional mutations by analyzing a combination of 8,869 known inherited disease mutations and 2,004 SNPs overlaid together upon the same sets of crystal structures and homology models. Further, we present a systematic analysis of whole-genome and whole-exome cancer datasets to demonstrate that mutation3D identifies many known cancer genes as well as previously underexplored target genes. The mutation3D Web interface allows users to analyze their own mutation data in a variety of popular formats and provides seamless access to explore mutation clusters derived from over 975,000 somatic mutations reported by 6,811 cancer sequencing studies. The mutation3D Web interface is freely available with all major browsers supported.
Collapse
Affiliation(s)
- Michael J Meyer
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, 14853.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, 10065
| | - Ryan Lapcevic
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, 14853.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| | - Alfonso E Romero
- Department of Computer Science and Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Mark Yoon
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, 14853.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| | - Jishnu Das
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, 14853.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| | - Juan Felipe Beltrán
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, 14853.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alberto Paccanaro
- Department of Computer Science and Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, 14853.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
27
|
Molecular spectrum of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese colorectal cancer patients: analysis of 1,110 cases. Sci Rep 2015; 5:18678. [PMID: 26691448 PMCID: PMC4687048 DOI: 10.1038/srep18678] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
Abstract
Mutations in genes such as KRAS, NRAS, BRAF and PIK3CA have become an important part of colorectal carcinoma evaluation. The aim of this study was to screen for mutations in these genes in Chinese patients with colorectal cancer (CRC) and to explore their correlations with certain clinicopathological parameters. We tested mutations in the KRAS (exons 2, 3 and 4), NRAS (exons 2, 3 and 4), PIK3CA (exon 20) and BRAF (exon 15) genes using reverse transcriptase-polymerase chain reaction (RT-PCR) and Sanger sequencing in a large cohort of 1,110 Chinese CRC patients who underwent surgical resection at one of three major teaching hospitals located in different regions of China. The prevalence rates of KRAS, NRAS, BRAF and PIK3CA mutations were 45.4%, 3.9%, 3.1% and 3.5%, respectively. Mutant KRAS was associated with the mucinous subtype and greater differentiation, while mutant BRAF was associated with right-sided tumors and poorer differentiation. Our results revealed differences in the genetic profiles of KRAS, NRAS, PIK3CA and BRAF at mutation hotspots between Chinese CRC patients and those of Western countries, while some of these gene features were shared among patients from other Asian countries.
Collapse
|
28
|
Silva IP, Salhi A, Giles KM, Vogelsang M, Han SW, Ismaili N, Lui KP, Robinson EM, Wilson MA, Shapiro RL, Pavlick A, Zhong J, Kirchhoff T, Osman I. Identification of a Novel Pathogenic Germline KDR Variant in Melanoma. Clin Cancer Res 2015; 22:2377-85. [PMID: 26631613 DOI: 10.1158/1078-0432.ccr-15-1811] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE The application of pan-cancer next-generation sequencing panels in the clinical setting has facilitated the identification of low frequency somatic mutations and the testing of new therapies in solid tumors using the "basket trial" scheme. However, little consideration has been given to the relevance of nonsynonymous germline variants, which are likely to be uncovered in tumors and germline and which may be relevant to prognostication and prediction of treatment response. EXPERIMENTAL DESIGN We analyzed matched tumor and normal DNA from 34 melanoma patients using an Ion Torrent cancer-associated gene panel. We elected to study the germline variant Q472H in the kinase insert domain receptor (KDR), which was identified in 35% of melanoma patients in both a pilot and an independent 1,223 patient cohort. Using patient-derived melanoma cell lines and human samples, we assessed proliferation, invasion, VEGF levels, and angiogenesis by analyzing tumor microvessel density (MVD) using anti-CD34 antibody. RESULTS Serum VEGF levels and tumor MVD were significantly higher in Q472H versus KDR wild-type (WD) patients. Primary cultures derived from melanomas harboring the KDR variant were more proliferative and invasive than KDR wild type. Finally, using a VEGFR2 antibody, we showed that KDR Q472H cells were sensitive to targeted inhibition of VEGFR2, an effect that was not observed in KDR WT cells. CONCLUSIONS Our data support the integration of germline analysis into personalized treatment decision-making and suggest that patients with germline KDR variant might benefit from antiangiogenesis treatment. Clin Cancer Res; 22(10); 2377-85. ©2015 AACR.
Collapse
Affiliation(s)
- Ines P Silva
- The Ronald O. Perelman Department of Dermatology, New York, New York. The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York
| | - Amel Salhi
- The Ronald O. Perelman Department of Dermatology, New York, New York. The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York
| | - Keith M Giles
- The Ronald O. Perelman Department of Dermatology, New York, New York. The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York
| | - Matjaz Vogelsang
- The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York. Departments of Population Health and Environmental Medicine, New York, New York
| | - Sung W Han
- The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York. NYU Center for Health Informatics and Bioinformatics, New York, New York
| | | | - Kevin P Lui
- The Ronald O. Perelman Department of Dermatology, New York, New York. The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York
| | - Eric M Robinson
- The Ronald O. Perelman Department of Dermatology, New York, New York. The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York
| | - Melissa A Wilson
- The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York. Department of Medicine, New York, New York
| | - Richard L Shapiro
- The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York. Department of Surgery, New York, New York
| | - Anna Pavlick
- The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York. Department of Medicine, New York, New York
| | - Judy Zhong
- The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York. NYU Center for Health Informatics and Bioinformatics, New York, New York
| | - Tomas Kirchhoff
- The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York. Departments of Population Health and Environmental Medicine, New York, New York
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, New York, New York. The Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York, New York.
| |
Collapse
|
29
|
Emelyanova MA, Amossenko FA, Semyanikhina AV, Aliev VA, Barsukov YA, Lyubchenko LN, Nasedkina TV. Biochip detection of KRAS, BRAF, and PIK3CA somatic mutations in colorectal cancer patients. Mol Biol 2015. [DOI: 10.1134/s0026893315040032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Lin J, Gu Y, Du R, Deng M, Lu Y, Ding Y. Detection of EGFR mutation in supernatant, cell pellets of pleural effusion and tumor tissues from non-small cell lung cancer patients by high resolution melting analysis and sequencing. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8813-22. [PMID: 25674250 PMCID: PMC4313957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
To determine epidermal growth factor receptor (EGFR) mutation in advanced non-small cell lung cancer (NSCLC) patients and compare the detection efficiency between different sample resources, both high resolution melting (HRM) analysis and direct sequencing method were used to analyze 36 pleural effusion samples and 22 matched biopsy tumor tissues collected from NSCLC patients. For each pleural effusion sample, the supernatant and the cell pellets were examined separately. Among all the 36 cases of pleural effusion samples, 18 mutations of EGFR were found in cell-free supernatant while 13 mutations were found in the cell pellets as detected by HRM analysis. In the 22 matched samples, 13 cases of EGFR mutations were identified in paraffin-embedded biopsy tissue samples, 12 cases in the cell-free supernatant and 9 cases in the cell pellets of pleural effusion. EGFR mutations in 15 cases out of the total 36 pleural effusion samples detected by direct sequencing were also identified by HRM analysis, giving 100% efficiency for HRM method. The results established the important role of HRM as a reliable and efficient method to determine EGFR mutation status and indicated the feasibility of using pleural effusion in replacement of biopsy tissues in particular clinical cases. Furthermore, the cell-free supernatant of pleural effusion might be a better resource for mutation detection than cell pellets.
Collapse
Affiliation(s)
- Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, PR China
- Department of Pathology, School of Basic Medicine, Southern Medical UniversityGuangzhou 510515, PR China
| | - Ye Gu
- Department of Pathology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, PR China
- Department of Pathology, School of Basic Medicine, Southern Medical UniversityGuangzhou 510515, PR China
| | - Rui Du
- Department of Pathology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, PR China
- Department of Pathology, School of Basic Medicine, Southern Medical UniversityGuangzhou 510515, PR China
| | - Min Deng
- Department of Pathology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, PR China
| | - Yaodan Lu
- Department of Pathology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, PR China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, PR China
- Department of Pathology, School of Basic Medicine, Southern Medical UniversityGuangzhou 510515, PR China
| |
Collapse
|
31
|
Sundberg SO, Wittwer CT, Howell RM, Huuskonen J, Pryor RJ, Farrar JS, Stiles HM, Palais RA, Knight IT. Microfluidic Genotyping by Rapid Serial PCR and High-Speed Melting Analysis. Clin Chem 2014; 60:1306-13. [DOI: 10.1373/clinchem.2014.223768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
BACKGROUND
Clinical molecular testing typically batches samples to minimize costs or uses multiplex lab-on-a-chip disposables to analyze a few targets. In genetics, multiple variants need to be analyzed, and different work flows that rapidly analyze multiple loci in a few targets are attractive.
METHODS
We used a microfluidic platform tailored to rapid serial PCR and high-speed melting (HSM) to genotype 4 single nucleotide variants. A contiguous stream of master mix with sample DNA was pulsed with each primer pair for serial PCR and melting. Two study sites each analyzed 100 samples for F2 (c.*97G>A), F5 (c.1601G>A), and MTHFR (c.665C>T and c.1286A>C) after blinding for genotype and genotype proportions. Internal temperature controls improved melting curve precision. The platform's liquid-handling system automated PCR and HSM.
RESULTS
PCR and HSM were completed in a total of 12.5 min. Melting was performed at 0.5 °C/s. As expected, homozygous variants were separated by melting temperature, and heterozygotes were identified by curve shape. All samples were correctly genotyped by the instrument. Follow-up testing was required on 1.38% of the assays for a definitive genotype.
CONCLUSIONS
We demonstrate genotyping accuracy on a novel microfluidic platform with rapid serial PCR and HSM. The platform targets short turnaround times for multiple genetic variants in up to 8 samples. It is also designed to allow automatic and immediate reflexive or repeat testing depending on results from the streaming DNA. Rapid serial PCR provides a flexible genetic work flow and is nicely matched to HSM analysis.
Collapse
Affiliation(s)
- Scott O Sundberg
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT
- current address: Canon U.S. Life Sciences, Newport News, VA
| | - Carl T Wittwer
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT
| | | | | | - Robert J Pryor
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT
| | - Jared S Farrar
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT
| | | | | | | |
Collapse
|
32
|
Small bowel adenocarcinomas complicating Crohn's disease are associated with dysplasia: a pathological and molecular study. Inflamm Bowel Dis 2014; 20:1584-92. [PMID: 25029614 DOI: 10.1097/mib.0000000000000112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Crohn's disease (CD) is associated with an increased risk of small bowel adenocarcinoma (SBA). However, there are no guidelines for the screening and early diagnosis of SBA. Colorectal cancer associated with chronic colitis arises from dysplasia. High-risk patients benefit from surveillance colonoscopies aimed to detect dysplasia. The dysplasia-carcinoma sequence remains poorly documented in CD-associated SBA. Moreover, molecular data about SBA complicating CD and associated dysplasia are very limited. We therefore assessed dysplasia and several key molecular markers of carcinogenesis in SBA and dysplasia developed in patients with CD. METHODS Forty-five SBA complicating CD and 4 specimens with dysplasia without SBA were screened. In SBA, we looked for dysplasia and determined their pathological characteristics (type, grade, distribution). We also stained for mismatch repair proteins (MLH1, MSH2, MSH6, PMS2), p53, β-catenin, and p16 and looked for KRAS, BRAF and PIK3CA mutations. RESULTS All neoplastic lesions, except 1 lesion, were found in inflamed mucosal areas. Dysplasia was found in 20 of 41 patients with SBA (49%). Dysplasia was flat or raised, low grade or high grade, and adjacent or distant to concomitant SBA. Molecular markers of SBA carcinogenesis complicating CD were similar to those observed in chronic colitis-related colorectal cancer (KRAS, BRAF, p53, MSI), although differences were observed for β-catenin and p16. No PIK3CA mutations were observed. CONCLUSIONS These results suggest that there is an inflammation-dysplasia-adenocarcinoma sequence in at least half of CD-related SBA, similar to what is observed in chronic colitis-related colorectal cancer and may have implications for the prevention and treatment of this cancer.
Collapse
|
33
|
Bisht S, Ahmad F, Sawaimoon S, Bhatia S, Das BR. Molecular spectrum of KRAS, BRAF, and PIK3CA gene mutation: determination of frequency, distribution pattern in Indian colorectal carcinoma. Med Oncol 2014; 31:124. [PMID: 25073438 DOI: 10.1007/s12032-014-0124-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/05/2014] [Indexed: 12/20/2022]
Abstract
Molecular evaluation of KRAS, BRAF, and PIK3CA mutation has become an important part in colorectal carcinoma evaluation, and their alterations may determine the therapeutic response to anti-EGFR therapy. The current study demonstrates the evaluation of KRAS, BRAF, and PIK3CA mutation using direct sequencing in 204 samples. The frequency of KRAS, BRAF, and PIK3CA mutations was 23.5, 9.8, and 5.9 %, respectively. Five different substitution mutations at KRAS codon 12 (G12S, G12D, G12A, G12V, and G12C) and one substitution type at codon 13 (G13D) were observed. KRAS mutations were significantly higher in patients who were >50 years, and were associated with moderate/poorly differentiated tumors and adenocarcinomas. All mutations in BRAF gene were of V600E type, which were frequent in patients who were ≤ 50 years. Unlike KRAS mutations, BRAF mutations were more frequent in well-differentiated tumors and right-sided tumors. PIK3CA-E545K was the most recurrent mutation while other mutations detected were T544I, Q546R, H1047R, G1049S, and D1056N. No significant association of PIK3CA mutation with age, tumor differentiation, location, and other parameters was noted. No concomitant mutation of KRAS and BRAF mutations was observed, while, interestingly, five cases showed concurrent mutation of KRAS and PIK3CA mutations. In conclusion, to our knowledge, this is the first study to evaluate the PIK3CA mutation in Indian CRC patients. The frequency of KRAS, BRAF, and PIK3CA was similar to worldwide reports. Furthermore, identification of molecular markers has unique strengths, and can provide insights into the pathogenic process and help optimize personalized prevention and therapy.
Collapse
Affiliation(s)
- Swati Bisht
- Research and Development, SRL Limited, Plot No 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, 400062, India
| | | | | | | | | |
Collapse
|
34
|
Negru S, Papadopoulou E, Apessos A, Stanculeanu DL, Ciuleanu E, Volovat C, Croitoru A, Kakolyris S, Aravantinos G, Ziras N, Athanasiadis E, Touroutoglou N, Pavlidis N, Kalofonos HP, Nasioulas G. KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer: a cohort study. BMJ Open 2014; 4:e004652. [PMID: 24859998 PMCID: PMC4039802 DOI: 10.1136/bmjopen-2013-004652] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Treatment decision-making in colorectal cancer is often guided by tumour tissue molecular analysis. The aim of this study was the development and validation of a high-resolution melting (HRM) method for the detection of KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer and determination of the frequency of these mutations in the respective populations. SETTING Diagnostic molecular laboratory located in Athens, Greece. PARTICIPANTS 2425 patients with colorectal cancer participated in the study. PRIMARY AND SECONDARY OUTCOME MEASURES 2071 patients with colorectal cancer (1699 of Greek and 372 of Romanian origin) were analysed for KRAS exon 2 mutations. In addition, 354 tumours from consecutive patients (196 Greek and 161 Romanian) were subjected to full KRAS (exons 2, 3 and 4), NRAS (exons 2, 3 and 4) and BRAF (exon 15) analysis. KRAS, NRAS and BRAF mutation detection was performed by a newly designed HRM analysis protocol, followed by Sanger sequencing. RESULTS KRAS exon 2 mutations (codons 12/13) were detected in 702 of the 1699 Greek patients with colorectal carcinoma analysed (41.3%) and in 39.2% (146/372) of the Romanian patients. Among the 354 patients who were subjected to full KRAS, NRAS and BRAF analysis, 40.96% had KRAS exon 2 mutations (codons 12/13). Among the KRAS exon 2 wild-type patients 15.31% harboured additional RAS mutations and 12.44% BRAF mutations. The newly designed HRM method used showed a higher sensitivity compared with the sequencing method. CONCLUSIONS The HRM method developed was shown to be a reliable method for KRAS, NRAS and BRAF mutation detection. Furthermore, no difference in the mutation frequency of KRAS, NRAS and BRAF was observed between Greek and Romanian patients with colorectal cancer.
Collapse
Affiliation(s)
- Serban Negru
- University of Medicine and Pharmacy of Timisoara, Timisoara, Romania
| | | | - Angela Apessos
- Department of Molecular Biology, GENEKOR, Athens, Greece
| | | | | | | | - Adina Croitoru
- Department of Medical Oncology, Fundeni Clinical Institute Bucharest, Bucharest, Romania
| | - Stylianos Kakolyris
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Thrace, Greece
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, “Agii Anargiri” Cancer Hospital, Athens, Greece
| | - Nikolaos Ziras
- First Department of Medical Oncology, ‘METAXA’ Anticancer Hospital of Athens, Athens, Greece
| | | | | | - Nikolaos Pavlidis
- Department of Medical Oncology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Haralabos P Kalofonos
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Patras Medical School, Rio, Greece
| | | |
Collapse
|
35
|
Lin JK, Lin PC, Lin CH, Jiang JK, Yang SH, Liang WY, Chen WS, Chang SC. Clinical relevance of alterations in quantity and quality of plasma DNA in colorectal cancer patients: based on the mutation spectra detected in primary tumors. Ann Surg Oncol 2014; 21 Suppl 4:S680-6. [PMID: 24841357 DOI: 10.1245/s10434-014-3804-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND While circulating plasma DNA (cpDNA) likely originates in tumors, its utility is limited without knowledge of tumor mutations. This study assessed mutational spectra in primary tumors and clarified the utility of quantitative and qualitative cpDNA alterations in colorectal cancer (CRC) patients. MATERIALS AND METHODS Between 2005 and 2006, 191 surgical colorectal cancer patients at Taipei Veterans General Hospital were enrolled in a study of mutational spectra of 155 mutations in 74 genes. Concentrations of cpDNA in 133 patients were measured by Taqman qPCR. The measured endpoint was overall survival (OS) after surgery. The prognostic value was determined using the log-rank test and Cox regression analysis. RESULTS Of 191 tumors, 208 mutations in 17 genes were found in 137 tumors (71.7 %). Mutation frequencies were 38.7 % in KRAS, followed by APC (23.0 %), TP53 (19.9 %), PIK3CA (7.3 %), and BRAF (4.2 %). The median cpDNA in stage I, II, and III patients was 4,300, 4,800, and 5,600 copies/mL, respectively, increasing to 13,000 copies/mL in stage IV disease (p = .003). From 90 primary tumors with mutations, the sensitivity of cpDNA mutations were 24.0, 45.0, and 27.3 % in the stage I, II, and III disease, respectively, increasing to 87.5 % in stage IV. The 5-year OS of CRC patients with low cpDNA was significantly better than that of patients with high cpDNA (p = .001). Stepwise elimination showed cpDNA to be a strong prognostic factor for OS. CONCLUSIONS Plasma DNA alteration is a useful tool for clinical surveillance of colorectal cancer patients and might be an independent prognosticator.
Collapse
Affiliation(s)
- Jen-Kou Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen D, Wang YY, Chuai ZR, Huang JF, Wang YX, Liu K, Zhang LQ, Yang Z, Shi DC, Liu Q, Huang Q, Fu WL. High-resolution melting analysis for accurate detection of BRAF mutations: a systematic review and meta-analysis. Sci Rep 2014; 4:4168. [PMID: 24566771 PMCID: PMC3933866 DOI: 10.1038/srep04168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/03/2014] [Indexed: 12/24/2022] Open
Abstract
The high-resolution melting curve analysis (HRMA) might be a good alternative method for rapid detection of BRAF mutations. However, the accuracy of HRMA in detection of BRAF mutations has not been systematically evaluated. We performed a systematic review and meta-analysis involving 1324 samples from 14 separate studies. The overall sensitivity of HRMA was 0.99 (95% confidence interval (CI) = 0.75–0.82), and the overall specificity was very high at 0.99 (95% CI = 0.94–0.98). The values for the pooled positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 68.01 (95% CI = 25.33–182.64), 0.06 (95% CI = 0.03–0.11), and1263.76 (95% CI = 393.91–4064.39), respectively. The summary receiver operating characteristic curve for the same data shows an area of 1.00 and a Q* value of 0.97. The high sensitivity and specificity, simplicity, low cost, less labor or time and rapid turnaround make HRMA a good alternative method for rapid detection of BRAF mutations in the clinical practice.
Collapse
Affiliation(s)
- Dong Chen
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Yan-Yan Wang
- Research and service centre of laboratory medicine, Chengdu Military general Hospital, Chengdu, PR China
| | - Zheng-Ran Chuai
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Jun-Fu Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Yun-Xia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Kai Liu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Li-Qun Zhang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhao Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Da-Chuan Shi
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Qian Liu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Wei-Ling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
37
|
Anasagasti A, Barandika O, Irigoyen C, Benitez BA, Cooper B, Cruchaga C, López de Munain A, Ruiz-Ederra J. Genetic high throughput screening in Retinitis Pigmentosa based on high resolution melting (HRM) analysis. Exp Eye Res 2014; 116:386-394. [PMID: 24416769 DOI: 10.1016/j.exer.2013.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retinitis Pigmentosa (RP) involves a group of genetically determined retinal diseases caused by a large number of mutations that result in rod photoreceptor cell death followed by gradual death of cone cells. Most cases of RP are monogenic, with more than 80 associated genes identified so far. The high number of genes and variants involved in RP, among other factors, is making the molecular characterization of RP a real challenge for many patients. Although HRM has been used for the analysis of isolated variants or single RP genes, as far as we are concerned, this is the first study that uses HRM analysis for a high-throughput screening of several RP genes. Our main goal was to test the suitability of HRM analysis as a genetic screening technique in RP, and to compare its performance with two of the most widely used NGS platforms, Illumina and PGM-Ion Torrent technologies. RP patients (n = 96) were clinically diagnosed at the Ophthalmology Department of Donostia University Hospital, Spain. We analyzed a total of 16 RP genes that meet the following inclusion criteria: 1) size: genes with transcripts of less than 4 kb; 2) number of exons: genes with up to 22 exons; and 3) prevalence: genes reported to account for, at least, 0.4% of total RP cases worldwide. For comparison purposes, RHO gene was also sequenced with Illumina (GAII; Illumina), Ion semiconductor technologies (PGM; Life Technologies) and Sanger sequencing (ABI 3130xl platform; Applied Biosystems). Detected variants were confirmed in all cases by Sanger sequencing and tested for co-segregation in the family of affected probands. We identified a total of 65 genetic variants, 15 of which (23%) were novel, in 49 out of 96 patients. Among them, 14 (4 novel) are probable disease-causing genetic variants in 7 RP genes, affecting 15 patients. Our HRM analysis-based study, proved to be a cost-effective and rapid method that provides an accurate identification of genetic RP variants. This approach is effective for medium sized (<4 kb transcript) RP genes, which constitute over 80% of the total of known RP genes.
Collapse
Affiliation(s)
- Ander Anasagasti
- Department of Neuroscience, Instituto Biodonostia, Paseo Dr. Begiristain s/n, E-20014 San Sebastián, Spain
| | - Olatz Barandika
- Department of Neuroscience, Instituto Biodonostia, Paseo Dr. Begiristain s/n, E-20014 San Sebastián, Spain
| | - Cristina Irigoyen
- Department of Ophthalmology, Hospital Universitario Donostia, San Sebastián, Spain
| | - Bruno A Benitez
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Breanna Cooper
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, USA; Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University, St. Louis, MO, USA
| | - Adolfo López de Munain
- Department of Neuroscience, Instituto Biodonostia, Paseo Dr. Begiristain s/n, E-20014 San Sebastián, Spain; Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain; CIBERNED, Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas, Instituto Carlos III, Ministerio de Economía y Competitividad, Spain; Department of Neurosciences, University of the Basque Country UPV-EHU, Spain; Euskampus, University of the Basque Country UPV-EHU, Spain
| | - Javier Ruiz-Ederra
- Department of Neuroscience, Instituto Biodonostia, Paseo Dr. Begiristain s/n, E-20014 San Sebastián, Spain.
| |
Collapse
|
38
|
Mikhail S, Bekaii-Saab T. RAS mutations: impact on treatment outcome. COLORECTAL CANCER 2013. [DOI: 10.2217/crc.13.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SUMMARY RAS proteins belong to the MAPK network, an essential pathway for maintenance of normal vital processes such as proliferation and differentiation. RAS mutations are observed in 30–50% of colorectal carcinomas. The MAPK pathway and RAS proteins are part of a complex system that mediate signaling from the EGF receptors (EGFRs). Our review discusses the most recent evidence highlighting the role of KRAS mutations in patients who are offered anti-EGFR therapy. Furthermore, we discuss emerging evidence of the role of other predictive markers such as PI3K, PTEN, BRAF, NRAS, MET, IGFR-1 and p53 in patients who are receiving anti-EGFR therapy.
Collapse
Affiliation(s)
- Sameh Mikhail
- The Ohio State University Wexner Medical Center – James Cancer Hospital & Solove Research Institute, 320 W 10th Avenue, Columbus, OH 43210, USA
| | - Tanios Bekaii-Saab
- The Ohio State University Wexner Medical Center – James Cancer Hospital & Solove Research Institute, 320 W 10th Avenue, Columbus, OH 43210, USA
| |
Collapse
|