1
|
Liu S, Yin W, Lin Y, Huang S, Xue S, Sun G, Wang C. Metastasis pattern and prognosis in children with neuroblastoma. World J Surg Oncol 2023; 21:130. [PMID: 37046344 PMCID: PMC10091559 DOI: 10.1186/s12957-023-03011-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND We aimed to investigate the different metastases and prognoses of neuroblastoma (NB) and determine the risk factors of metastasis. METHOD Data of 1224 patients with NB were obtained from the Surveillance, Epidemiology and End Results database (2010-2018). Pearson's chi-square test, Kaplan-Meier analysis, multivariable logistic regression and Cox regression analysis were used to determine the factors associated with prognosis. RESULTS The overall incidence of NB was an age-adjusted rate of 8.2 patients per 1,000,000 children. In total, 1224 patients were included in our study, with 599 patients (48.9%) exhibiting distant metastases. Compared to patients with non-metastatic NB, a greater proportion of patients with metastatic NB were under 1 year, male, had an adrenal primary site, unilateral tumour, a tumour size > 10 cm, neuroblastoma-not otherwise specified (NB-NOS), second malignant neoplasms and were more likely to choose radiotherapy and chemotherapy. Multivariate Cox regression showed that metastasis was an independent risk factor for overall survival (OS) and cancer-specific survival (CSS). The survival rate of non-metastatic patients with NB was better than those with metastasis (OS: hazard ratio (HR): 0.248, P < 0.001; CSS: HR: 0.267, P < 0.001). The bone and liver were the two most common isolated metastatic sites in NB. However, no statistical difference was observed in OS and CSS between the only bone metastasis group, only liver metastasis group and bone metastasis combined with liver metastasis group (all P > 0.05). Additionally, age at diagnosis > 1 year (odds ratio (OR): 3.295, P < 0 .001), grades III-IV (OR: 26.228, P < 0 .001) and 5-10 cm tumours (OR: 1.781, P < 0 .001) increased the risk of bone metastasis of NB. Moreover, no surgical treatment (OR: 2.441, P < 0 .001) increased the risk of liver metastasis of NB. CONCLUSION Metastatic NB has unique clinicopathological features, with the bone and liver as the most common single metastatic sites of NB. Therefore, more aggressive treatment is recommended for high-risk children with NB displaying distant metastases.
Collapse
Affiliation(s)
- Shan Liu
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Weimin Yin
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaobin Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Sihan Huang
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Shufang Xue
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Gaoyuan Sun
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengyi Wang
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China.
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
High Grade of Amplification of Six Regions on Chromosome 2p in a Neuroblastoma Patient with Very Poor Outcome: The Putative New Oncogene TSSC1. Cancers (Basel) 2021; 13:cancers13225792. [PMID: 34830942 PMCID: PMC8616235 DOI: 10.3390/cancers13225792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Here, a case of neuroblastoma (NB) carrying a high-grade amplification of six loci besides MYCN is described. Since the patient had a very poor outcome, we postulated that these DNA co-amplifications might have a synergistic effect in increasing NB cell proliferation. In order to verify this hypothesis, we analyzed in silico the impact of high expression of the genes located within the amplifications on the NB patients’ outcome using a large dataset integrating three different platforms. These analyses disclosed that high expression of the TSSC1 gene was the most significantly associated with reduced overall survival of NB patients, suggesting that it may have a potential prognostic role in NB in both MYCN amplified and MYCN not amplified tumors. Further studies on TSSC1 interactions and functioning could lead to possible focused therapies for high-risk NB patients. Abstract We observed a case of high-risk neuroblastoma (NB) carried by a 28-month-old girl, displaying metastatic disease and a rapid decline of clinical conditions. By array-CGH analysis of the tumor tissue and of the metastatic bone marrow aspirate cells, we found a high-grade amplification of six regions besides MYCN on bands 2p25.3–p24.3. The genes involved in these amplifications were MYT1L, TSSC1, CMPK2, RSAD2, RNF144A, GREB1, NTSR2, LPIN1, NBAS, and the two intergenic non-protein coding RNAs LOC730811 and LOC339788. We investigated if these DNA co-amplifications may have an effect on enhancing tumor aggressiveness. We evaluated the association between the high expression of the amplified genes and NB patient’s outcome using the integration of gene expression data of 786 NB samples profiled with different public platforms from patients with at least five-year follow-up. NB patients with high expression of the TSSC1 gene were associated with a reduced survival rate. Immunofluorescence staining on primary tumor tissues confirmed that the TSSC1 protein expression was high in the relapsed or dead stage 4 cases, but it was generally low in NB patients in complete remission. TSSC1 appears as a putative new oncogene in NB.
Collapse
|
3
|
Clinical Features of Neuroblastoma With 11q Deletion: An Increase in Relapse Probabilities In Localized And 4S Stages. Sci Rep 2019; 9:13806. [PMID: 31551474 PMCID: PMC6760233 DOI: 10.1038/s41598-019-50327-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023] Open
Abstract
Neuroblastoma (NB) is a heterogeneous tumor with an extremely diverse prognosis according to clinical and genetic factors, such as the presence of an 11q deletion (11q-del). A multicentric study using data from a national neuroblastic tumor database was conducted. This study compared the most important features of NB patients: presence of 11q-del, presence of MYCN amplification (MNA) and remaining cases. A total of 357 patients were followed throughout an 8-year period. 11q-del was found in sixty cases (17%). 11q-del tumors were diagnosed at an older age (median 3.29 years). Overall survival (OS) was lower in 11q-del patients (60% at 5 years), compared to all other cases (76% at 5 years) p = 0.014. Event free survival (EFS) was 35% after 5 years, which is a low number when compared with the remaining cases: 75% after 5 years (p < 0.001). Localized tumors with 11q-del have a higher risk of relapse (HR = 3.312) such as 4 s 11q-del patients (HR 7.581). 11q-del in NB is a dismal prognostic factor. Its presence predicts a bad outcome and increases relapse probability, specially in localized stages and 4 s stages. The presence of 11q aberration should be taken into consideration when stratifying neuroblastoma risk groups.
Collapse
|
4
|
Costa RA, Seuánez HN. Investigation of major genetic alterations in neuroblastoma. Mol Biol Rep 2018; 45:287-295. [PMID: 29455316 DOI: 10.1007/s11033-018-4161-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. This malignancy shows a wide spectrum of clinical outcome and its prognosis is conditioned by manifold biological and genetic factors. We investigated the tumor genetic profile and clinical data of 29 patients with NB by multiplex ligation-dependent probe amplification (MLPA) to assess therapeutic risk. In 18 of these tumors, MYCN status was assessed by fluorescence in situ hybridization (FISH). Copy number variation was also determined for confirming MLPA findings in two 6p loci. We found 2p, 7q and 17q gains, and 1p and 11q losses as the most frequent chromosome alterations in this cohort. FISH confirmed all cases of MYCN amplification detected by MLPA. In view of unexpected 6p imbalance, copy number variation of two 6p loci was assessed for validating MLPA findings. Based on clinical data and genetic profiles, patients were stratified in pretreatment risk groups according to international consensus. MLPA proved to be effective for detecting multiple genetic alterations in all chromosome regions as requested by the International Neuroblastoma Risk Group (INRG) for therapeutic stratification. Moreover, this technique proved to be cost effective, reliable, only requiring standard PCR equipment, and attractive for routine analysis. However, the observed 6p imbalances made PKHD1 and DCDC2 inadequate for control loci. This must be considered when designing commercial MLPA kits for NB. Finally, four patients showed a normal MLPA profile, suggesting that NB might have a more complex genetic pattern than the one assessed by presently available MLPA kits.
Collapse
Affiliation(s)
- Régis Afonso Costa
- Genetics Program, Instituto Nacional de Câncer, Rua André Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil.,Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Héctor N Seuánez
- Genetics Program, Instituto Nacional de Câncer, Rua André Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil. .,Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Mlakar V, Jurkovic Mlakar S, Lopez G, Maris JM, Ansari M, Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications. Mol Cancer 2017; 16:114. [PMID: 28662712 PMCID: PMC5492892 DOI: 10.1186/s12943-017-0686-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Deletion of the long arm of chromosome 11 (11q deletion) is one of the most frequent events that occur during the development of aggressive neuroblastoma. Clinically, 11q deletion is associated with higher disease stage and decreased survival probability. During the last 25 years, extensive efforts have been invested to identify the precise frequency of 11q aberrations in neuroblastoma, the recurrently involved genes, and to understand the molecular mechanisms of 11q deletion, but definitive answers are still unclear. In this review, it is our intent to compile and review the evidence acquired to date on 11q deletion in neuroblastoma.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Ansari
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland.,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
6
|
Fransson S, Östensson M, Djos A, Javanmardi N, Kogner P, Martinsson T. Estimation of copy number aberrations: Comparison of exome sequencing data with SNP microarrays identifies homozygous deletions of 19q13.2 and CIC in neuroblastoma. Int J Oncol 2016; 48:1103-16. [PMID: 26794043 DOI: 10.3892/ijo.2016.3349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/08/2015] [Indexed: 11/05/2022] Open
Abstract
In the pediatric cancer neuroblastoma, analysis of recurrent chromosomal aberrations such as loss of chromosome 1p, 11q, gain of 17q and MYCN amplification are used for patient stratification and subsequent therapy decision making. Different analysis techniques have been used for detection of segmental abnormalities, including fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH)-microarrays and multiplex ligation-dependent probe amplification (MLPA). However, as next-generation sequencing becomes available for clinical use, this technique could also be used for assessment of copy number alterations simultaneously with mutational analysis. In this study we compare genomic profiles generated through exome sequencing data with profiles generated from high resolution Affymetrix single nucleotide polymorphism (SNP) microarrays on 30 neuroblastoma tumors of different stages. Normalized coverage reads for tumors were calculated using Control-FREEC software and visualized through a web based Shiny application, prior to comparison with corresponding SNP-microarray data. The two methods show high-level agreement for breakpoints and copy number of larger segmental aberrations and numerical aneuploidies. However, several smaller gene containing deletions that could not readily be detected through the SNP-microarray analyses were identified through exome profiling, most likely due to difference between spatial distribution of microarray probes and targeted regions of the exome capture. These smaller aberrations included focal ATRX deletion in two tumors and three cases of novel deletions in chromosomal region 19q13.2 causing homozygous loss of multiple genes including the CIC (Capicua) gene. In conclusion, genomic profiles generated from normalized coverage of exome sequencing show concordance with SNP microarray generated genomic profiles. Exome sequencing is therefore a useful diagnostic tool for copy number variant (CNV) detection in neuroblastoma tumors, especially considering the combination with mutational screening. This enables detection of theranostic targets such as ALK and ATRX together with detection of significant segmental aneuploidies, such as 2p-gain, 17q-gain, 11q-deletion as well as MYCN amplification.
Collapse
Affiliation(s)
- Susanne Fransson
- Department of Medical and Clinical Genetics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin Östensson
- Department of Medical and Clinical Genetics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Medical and Clinical Genetics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Niloufar Javanmardi
- Department of Medical and Clinical Genetics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Medical and Clinical Genetics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Thompson D, Vo KT, London WB, Fischer M, Ambros PF, Nakagawara A, Brodeur GM, Matthay KK, DuBois SG. Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group project. Cancer 2015; 122:935-45. [PMID: 26709890 DOI: 10.1002/cncr.29848] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/17/2015] [Accepted: 11/17/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND MYCN gene amplification (MNA) is a hallmark of aggressive neuroblastoma. This study was performed to determine univariate and multivariate predictors of tumor MNA. METHODS Data from the International Neuroblastoma Risk Group were analyzed for a subset of 7102 patients with known MYCN status. Chi-square testing and logistic regression were used to identify univariate and multivariate predictors of MYCN status. Recursive partitioning was used to identify groups of patients with maximal differences in rates of MNA. RESULTS All clinical features (age ≥ 18 months, high ferritin levels, high lactate dehydrogenase [LDH] levels, International Neuroblastoma Staging System stage 4, and adrenal sites) and pathological/biological features (DNA index ≤ 1, high mitosis-karyorrhexis index [MKI], undifferentiated/poorly differentiated grade, unfavorable histology according to the International Neuroblastoma Pathology Classification, and segmental chromosomal aberrations [SCAs]) were significantly associated with MNA. LDH (odds ratio [OR], 8.4; P < .001) and chromosomal 1p loss of heterozygosity (OR, 19.8; P < .001) were the clinical and biological variables, respectively, most strongly associated with MNA. In logistic regression, all variables except chromosome 17q aberration and pooled SCAs were independently predictive of MNA. Recursive partitioning identified subgroups with disparate rates of MNA, including subgroups with 85.7% MNA (patients with high LDH levels who had poorly differentiated adrenal tumors with chromosome 1p deletion) and 0.6% MNA (localized tumors having hyperdiploidy and low MKIs and lacking chromosome 1p aberrations). CONCLUSIONS MNA is strongly associated with other clinical and biological variables in neuroblastoma. Recursive partitioning has identified subgroups of neuroblastoma patients with highly disparate rates of MNA. These findings can be used to inform investigations of molecular mechanisms of MNA.
Collapse
Affiliation(s)
- Daria Thompson
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, California
| | - Kieuhoa T Vo
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, California
| | - Wendy B London
- Dana-Farber Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Matthias Fischer
- Department of Pediatric Oncology, Children's Hospital and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Peter F Ambros
- Children's Cancer Research Institute, St. Anne Kinderkrebsforschung, Vienna, Austria
| | - Akira Nakagawara
- Department of Biochemistry, Chiba Cancer Center Research Institute and Chiba University, Chiba, Japan
| | - Garrett M Brodeur
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine K Matthay
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, California
| | - Steven G DuBois
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, California
| |
Collapse
|
8
|
Comparative genetic study of intratumoral heterogenous MYCN amplified neuroblastoma versus aggressive genetic profile neuroblastic tumors. Oncogene 2015; 35:1423-32. [PMID: 26119945 DOI: 10.1038/onc.2015.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/08/2015] [Accepted: 05/10/2015] [Indexed: 12/18/2022]
Abstract
Intratumoral heterogeneous MYCN amplification (hetMNA) is an unusual event in neuroblastoma with unascertained biological and clinical implications. Diagnosis is based on the detection of MYCN amplification surrounded by non-amplified tumor cells by fluorescence in situ hybridization (FISH). To better define the genetic features of hetMNA tumors, we studied the Spanish cohort of neuroblastic tumors by FISH and single nucleotide polymorphism arrays. We compared hetMNA tumors with homogeneous MNA (homMNA) and nonMNA tumors with 11q deletion (nonMNA w11q-). Of 1091 primary tumors, 28 were hetMNA by FISH. Intratumoral heterogeneity of 1p, 2p, 11q and 17q was closely associated with hetMNA tumors when analyzing different pieces for each case. For chromosome 2, 16 cases showed 2p intact, 4 focal gain at 2p24.3 and 8 MNA. The lengths of the smallest regions of overlap (SROs) for 2p gains and 1p deletions were between the SRO lengths observed in homMNA and nonMNA w11q- tumors. Co-occurrence of 11q- and +17q was frequently found with the largest SROs for both aberrations. The evidence for and frequency of different genetic subpopulations representing a hallmark of the hetMNA subgroup of NB indicates, on one hand, the presence of a considerable genetic instability with different SRO of either gains and losses compared with those of the other NB groups and highlights and, on the other hand, the need for multiple sampling from distant and macroscopically and microscopically distinct tumor areas. Narrowing down the different SRO for both deletions and gains in NB groups would be crucial to pinpointing the candidate gene(s) and the critical gene dosage with prognostic and therapeutic significance. This complexity of segmental chromosomal aberration patterns reinforces the necessity for a larger cohort study using FISH and pangenomic techniques to develop a suitable therapeutic strategy for these patients.
Collapse
|
9
|
Berbegall AP, Villamón E, Tadeo I, Martinsson T, Cañete A, Castel V, Navarro S, Noguera R. Neuroblastoma after childhood: prognostic relevance of segmental chromosome aberrations, ATRX protein status, and immune cell infiltration. Neoplasia 2015; 16:471-80. [PMID: 25077701 PMCID: PMC4198743 DOI: 10.1016/j.neo.2014.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma (NB) is a common malignancy in children but rarely occurs during adolescence or adulthood. This subgroup is characterized by an indolent disease course, almost uniformly fatal, yet little is known about the biologic characteristics. The aim of this study was to identify differential features regarding DNA copy number alterations, α-thalassemia/mental retardation syndrome X-linked (ATRX) protein expression, and the presence of tumor-associated inflammatory cells. Thirty-one NB patients older than 10 years who were included in the Spanish NB Registry were considered for the current study; seven young and middle-aged adult patients (range 18-60 years) formed part of the cohort. We performed single nucleotide polymorphism arrays, immunohistochemistry for immune markers (CD4, CD8, CD20, CD11b, CD11c, and CD68), and ATRX protein expression. Assorted genetic profiles were found with a predominant presence of a segmental chromosome aberration (SCA) profile. Preadolescent and adolescent NB tumors showed a higher number of SCA, including 17q gain and 11q deletion. There was also a marked infiltration of immune cells, mainly high and heterogeneous, in young and middle-aged adult tumors. ATRX negative expression was present in the tumors. The characteristics of preadolescent, adolescent, young adult, and middle-aged adult NB tumors are different, not only from childhood NB tumors but also from each other. Similar examinations of a larger number of such tumor tissues from cooperative groups should lead to a better older age–dependent tumor pattern and to innovative, individual risk-adapted therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Ana P Berbegall
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain; Medical Research Foundation INCLIVA, Hospital Clínico, INCLIVA, Valencia, Spain
| | - Eva Villamón
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain
| | - Irene Tadeo
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain; Medical Research Foundation INCLIVA, Hospital Clínico, INCLIVA, Valencia, Spain
| | - Tommy Martinsson
- Department of Clinical Genetics, Göteborg University, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adela Cañete
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Samuel Navarro
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain
| | - Rosa Noguera
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|