1
|
Ždralević M, Radović A, Raonić J, Popovic N, Klisic A, Vučković L. Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis. Int J Mol Sci 2024; 25:11060. [PMID: 39456841 PMCID: PMC11507567 DOI: 10.3390/ijms252011060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) remains the second most common cause of cancer-related mortality worldwide, necessitating advancements in early detection and innovative treatment strategies. MicroRNAs (miRNAs), small non-coding RNAs involved in gene regulation, have emerged as crucial players in the pathogenesis of CRC. This review synthesizes the latest findings on miRNA deregulated in precancerous lesions and in CRC. By examining the deregulation patterns of miRNAs across different stages of CRC development, this review highlights their potential as diagnostic tools. We specifically analyse the roles and diagnostic relevance of four miRNAs-miR-15b, miR-21, miR-31, and miR-146a-that consistently exhibit altered expression in CRC. The current knowledge of their role in key oncogenic pathways, drug resistance, and clinical relevance is discussed. Despite challenges posed by the heterogeneity of the research findings on miRNA deregulation and their role in CRC, integrating miRNA diagnostics into current screening methods holds promise for enhancing personalized medicine approaches. This review emphasizes the transformative potential of miRNAs in CRC diagnosis, paving the way for improved patient outcomes and novel therapeutic paradigms.
Collapse
Affiliation(s)
- Maša Ždralević
- Institute for Advanced Studies, University of Montenegro, Cetinjska 2, 81000 Podgorica, Montenegro
| | - Andrijana Radović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Janja Raonić
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| |
Collapse
|
2
|
Fabijanec M, Hulina-Tomašković A, Štefanović M, Verbanac D, Ćelap I, Somborac-Bačura A, Grdić Rajković M, Demirović A, Ramić S, Krušlin B, Rumora L, Čeri A, Koržinek M, Petrik J, Ljubičić N, Baršić N, Barišić K. MicroRNA-193a-3p as a Valuable Biomarker for Discriminating between Colorectal Cancer and Colorectal Adenoma Patients. Int J Mol Sci 2024; 25:8156. [PMID: 39125725 PMCID: PMC11311302 DOI: 10.3390/ijms25158156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Specific markers for colorectal cancer (CRC), preceded by colorectal adenoma (pre-CRC), are lacking. This study aimed to investigate whether microRNAs (miR-19a-3p, miR-92a-3p, miR-193a-3p, and miR-210-3p) from tissues and exosomes are potential CRC biomarkers and compare them to existing biomarkers, namely carcinoembryonic antigen (CEA) and carbohydrate antigen (CA) 19-9. MiRNA was isolated in the samples of 52 CRC and 76 pre-CRC patients. Expression levels were analyzed by RT-qPCR. When comparing pre-CRC and CRC tissue expression levels, only miR-193a-3p showed statistically significant result (p < 0.0001). When comparing the tissues and exosomes of CRC samples, a statistically significant difference was found for miR-193a-3p (p < 0.0001), miR-19a-3p (p < 0.0001), miR-92a-3p (p = 0.0212), and miR-210-3p (p < 0.0001). A receiver-operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to evaluate the diagnostic value of CEA, CA 19-9, and miRNAs. CEA and CA 19-9 had good diagnostic values (AUCs of 0.798 and 0.668). The diagnostic value only of miR-193a-3p was highlighted (AUC = 0.725). The final logistic regression model, in which we put a combination of CEA concentration and the miR-193a-3p expression level in tissues, showed that using these two markers can distinguish CRC and pre-CRC in 71.3% of cases (AUC = 0.823). MiR-193a-3p from tissues could be a potential CRC biomarker.
Collapse
Affiliation(s)
- Marija Fabijanec
- Center for Applied Medical Biochemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Andrea Hulina-Tomašković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
| | - Mario Štefanović
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
| | - Ivana Ćelap
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Somborac-Bačura
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
| | - Marija Grdić Rajković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
| | - Alma Demirović
- Department of Pathology and Cytology “Ljudevit Jurak”, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (A.D.); (B.K.)
| | - Snježana Ramić
- Department of Oncological Pathology, University Hospital for Tumors, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia;
| | - Božo Krušlin
- Department of Pathology and Cytology “Ljudevit Jurak”, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (A.D.); (B.K.)
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
| | - Andrea Čeri
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
| | - Martha Koržinek
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
| | - József Petrik
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
| | - Neven Ljubičić
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (N.L.)
| | - Neven Baršić
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (N.L.)
| | - Karmela Barišić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (M.Š.); (D.V.); (I.Ć.); (A.S.-B.); (M.G.R.); (L.R.); (A.Č.); (M.K.); (J.P.); (K.B.)
| |
Collapse
|
3
|
Soltaninezhad P, Arab F, Mohtasham N, FakherBaheri M, Kavishahi NN, Aghaee-Bakhtiari SH, Zare-Mahmoodabadi R, Pakfetrat A, Taban KI, Mohajertehran F. Unveiling the Potential of Serum MiR-483-5p: A Promising Diagnostic and Prognostic Biomarker in OLP and OSCC Patients by In silico Analysis of Differential Gene Expression. Curr Pharm Des 2024; 30:310-322. [PMID: 38310566 DOI: 10.2174/0113816128276149240108163407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) and oral lichen planus (OLP) are two separate conditions affecting the mouth and result in varying clinical outcomes and levels of malignancy. Achieving early diagnosis and effective therapy planning requires the identification of reliable diagnostic biomarkers for these disorders. MicroRNAs (miRNAs) have recently received attention as powerful biomarkers for various illnesses, including cancer. In particular, miR-483-5p is a promising diagnostic and prognostic biomarker in various cancers. Therefore, this study aimed to investigate the role of serum miR-483-5p in the diagnosis and prognosis of OLP and OSCC patients by in silico analysis of differential gene expression. METHODS GSE23558 and GSE52130 data sets were selected, and differential gene expression analysis was performed using microarray data from GSE52130 and GSE23558. The analysis focused on comparing OLP and OSCC samples with normal samples. The genes intersected through the differential gene expression analysis were then extracted to determine the overlapping genes among the upregulated or downregulated DEGs. The downregulated genes among the DEGs were subsequently imported into the miRWalk database to search for potential target genes of miRNA 483-5p that lacked validation. To gain insight into the biological pathways associated with the DEGs, we conducted pathway analysis utilizing tools, such as Enrichr. Additionally, the cellular components associated with these DEGs were investigated by analyzing the String database. On the other hand, blood serum samples were collected from 35 OSCC patients, 34 OLP patients, and 34 healthy volunteers. The expression level of miR-483-5p was determined using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The Kruskal-Wallis test was utilized to investigate the considerable correlation. Moreover, this study explored the prognostic value of miR-483-5p through its association with clinicopathological parameters in OSCC patients. RESULTS The results showed that serum expression of miR-483-5p was considerably higher in OSCC patients compared to OLP patients and healthy controls (p 0.0001) and that this difference was statistically significant. Furthermore, elevated miR-483-5p expression was associated with tumor size, lymph node metastasis, and stage of tumor nodal metastasis in OSCC patients (p 0.001, p 0.038, and p 0.0001, respectively). In silico analysis found 71 upregulated genes at the intersection of upregulated DEGs and 44 downregulated genes at the intersection of downregulated DEGs, offering insight into the potential underlying mechanisms of miR-483-5p's engagement in OSCC and OLP. The majority of these DEGs were found to be involved in autophagy pathways, but DEGs involved in the histidine metabolism pathway showed significant results. Most of these DEGs were located in the extracellular region. After screening for downregulated genes that were invalidated, miRNA 483-5p had 7 target genes. CONCLUSION This study demonstrates the potential of serum miR-483-5p as a promising diagnostic and prognostic biomarker in OSCC and OLP patients. Its upregulation in OSCC patients and its association with advanced tumor stage and potential metastasis suggest the involvement of miR-483-5p in critical signaling pathways involved in cell proliferation, apoptosis, and cell cycle regulation, making it a reliable indicator of disease progression. Nevertheless, additional experimental studies are essential to validate these findings and establish a foundation for the advancement of targeted therapies and personalized treatment approaches.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/pathology
- Computer Simulation
- Gene Expression Regulation, Neoplastic
- Lichen Planus, Oral/genetics
- Lichen Planus, Oral/blood
- Lichen Planus, Oral/diagnosis
- MicroRNAs/blood
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/blood
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/pathology
- Prognosis
Collapse
Affiliation(s)
| | - Fatemeh Arab
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadhossein FakherBaheri
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nima Nikbin Kavishahi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Reza Zare-Mahmoodabadi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Izadi Taban
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
5
|
Liang L, Liu S, Wu Q, Chen R, Jiang S, Yang Z. m6A-mediated upregulation of miRNA-193a aggravates cardiomyocyte apoptosis and inflammatory response in sepsis-induced cardiomyopathy via the METTL3/ miRNA-193a/BCL2L2 pathway. Exp Cell Res 2023:113712. [PMID: 37414203 DOI: 10.1016/j.yexcr.2023.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
The impact of N6-methyladenosine (m6A) modification on pri-miRNA in sepsis-induced cardiomyopathy (SICM), and its underlying regulatory mechanism, have not been fully elucidated. We successfully constructed a SICM mice model through cecal ligation and puncture (CLP). In vitro, a lipopolysaccharide (LPS)-induced HL-1 cells model was also established. The results showed that sepsis frequently resulted in excessive inflammatory response concomitant with impaired myocardial function in mice exposed to CLP, as indicated by decreases in ejection fraction (EF), fraction shortening (FS), and left ventricular end diastolic diameters (LVDd). miR-193a was enriched in CLP mice heart and in LPS-treated HL-1 cells, while overexpression of miR-193a significantly increased the expression levels of cytokines. Sepsis-induced enrichment of miR-193a significantly inhibited cardiomyocytes proliferation and enhanced apoptosis, while this was reversed by miR-193a knockdown. Furthermore, under our experimental conditions, enrichment of miR-193a in SICM could be considered excessively maturated on pri-miR-193a by enhanced m6A modification. This modification was catalyzed by sepsis-induced overexpression of methyltransferase-like 3 (METTL3). Moreover, mature miRNA-193a bound to a predictive sequence within 3'UTRs of a downstream target, BCL2L2, which was further validated by the observation that the BCL2L2-3'UTR mutant failed to decrease luciferase activity when co-transfected with miRNA-193a. The interaction between miRNA-193a and BCL2L2 resulted in BCL2L2 downregulation, subsequently activating the caspase-3 apoptotic pathway. In conclusion, sepsis-induced miR-193a enrichment via m6A modification plays an essential regulatory role in cardiomyocyte apoptosis and inflammatory response in SICM. The detrimental axis of METTL3/m6A/miR-193a/BCL2L2 is implicated in the development of SICM.
Collapse
Affiliation(s)
- Lian Liang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siqi Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyu Wu
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, China
| | - Ran Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shanping Jiang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Antonova E, Hambikova A, Shcherbakov D, Sukhov V, Vysochanskaya S, Fadeeva I, Gorshenin D, Sidorova E, Kashutina M, Zhdanova A, Mitrokhin O, Avvakumova N, Zhernov Y. Determination of Common microRNA Biomarker Candidates in Stage IV Melanoma Patients and a Human Melanoma Cell Line: A Potential Anti-Melanoma Agent Screening Model. Int J Mol Sci 2023; 24:ijms24119160. [PMID: 37298110 DOI: 10.3390/ijms24119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play an important role in regulating gene expression. Dysregulation of miRNA expression is commonly observed in cancer, and it can contribute to malignant cell growth. Melanoma is the most fatal type of skin malignant neoplasia. Some microRNAs can be prospective biomarkers for melanoma in stage IV (advanced) at higher risk of relapses and require validation for diagnostic purposes. This work aimed to (1) determine the most significant microRNA biomarker candidates in melanoma using content analysis of the scientific literature, (2) to show microRNA biomarker candidates' diagnostic efficacy between melanoma patients and healthy control groups in a small-scale preliminary study by blood plasma PCR analysis, (3) to determine significant microRNA markers of the MelCher human melanoma cell line, which are also detected in patients with melanoma, that can be used as markers of drug anti-melanoma activity, and (4) test anti-melanoma activity of humic substances and chitosan by their ability to reduce level of marker microRNAs. The content analysis of the scientific literature showed that hsa-miR-149-3p, hsa-miR-150-5p, hsa-miR-193a-3p, hsa-miR-21-5p, and hsa-miR-155-5p are promising microRNA biomarker candidates for diagnosing melanoma. Estimating microRNA in plasma samples showed that hsa-miR-150-5p and hsa-miR-155-5p may have a diagnostic value for melanoma in stage IV (advanced). When comparing ΔCt hsa-miR-150-5p and ΔCt hsa-miR-155-5p levels in melanoma patients and healthy donors, statistically significant differences were found (p = 0.001 and p = 0.001 respectively). Rates ΔCt were significantly higher among melanoma patients (medians concerning the reference gene miR-320a were 1.63 (1.435; 2.975) and 6.345 (4.45; 6.98), respectively). Therefore, they persist only in plasma from the melanoma patients group but not in the healthy donors group. In human wild-type stage IV melanoma (MelCher) cell culture, the presence of hsa-miR-150-5p and hsa-miR-155-5p in supernatant was detected. The ability of humic substance fractions and chitosan to reduce levels of hsa-miR-150-5p and hsa-miR-155-5p was tested on MelCher cultures, which is associated with anti-melanoma activity. It was found that the hymatomelanic acid (HMA) fraction and its subfraction UPLC-HMA statistically significantly reduced the expression of miR-150-5p and miR-155-5p (p ≤ 0.05). For the humic acid (HA) fraction, this activity was determined only to reduce miR-155-5p (p ≤ 0.05). Ability to reduce miR-150-5p and miR-155-5p expression on MelCher cultures was not determined for chitosan fractions with a molecular weight of 10 kDa, 120 kDa, or 500 kDa. Anti-melanoma activity was also determined in the MTT test on MelCher cultures for explored substances. The median toxic concentration (TC50) was determined for HA, HMA and UPLC-HMA (39.3, 39.7 and 52.0 μg/mL, respectively). For 10 kDa, 120 kDa, or 500 kDa chitosan fractions TC50 was much higher compared to humic substances (508.9, 6615.9, 11352.3 μg/mL, respectively). Thus, our pilot study identified significant microRNAs for testing the in vitro anti-melanoma activity of promising drugs and melanoma diagnostics in patients. Using human melanoma cell cultures gives opportunities to test new drugs on a culture that has a microRNA profile similar to that of patients with melanoma, unlike, for example, murine melanoma cell cultures. It is necessary to conduct further studies with a large number of volunteers, which will make it possible to correlate the profile of individual microRNAs with specific patient data, including the correlation of the microRNA profile with the stage of melanoma.
Collapse
Affiliation(s)
- Elena Antonova
- Research Center for Fundamental and Applied Problems of Bioecology and Biotechnology, I.N. Ulyanov Ulyanovsk State Pedagogical University, 432700 Ulyanovsk, Russia
| | - Anastasia Hambikova
- Research Center for Fundamental and Applied Problems of Bioecology and Biotechnology, I.N. Ulyanov Ulyanovsk State Pedagogical University, 432700 Ulyanovsk, Russia
| | - Denis Shcherbakov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Vitaly Sukhov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Sonya Vysochanskaya
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Inna Fadeeva
- Department of English Language, Institute of World Economy, Diplomatic Academy of the Russian Foreign Ministry, 119992 Moscow, Russia
| | - Denis Gorshenin
- Laboratory of Innate Immunity, National Research Center-Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
| | - Ekaterina Sidorova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Maria Kashutina
- Loginov Moscow Clinical Scientific and Practical Center, 111123 Moscow, Russia
- Department of Public Health Promotion, National Research Centre for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy, Clinical Pharmacology and Emergency Medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alina Zhdanova
- Department of Medical Chemistry, Samara State Medical University, 443099 Samara, Russia
| | - Oleg Mitrokhin
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Nadezhda Avvakumova
- Department of Medical Chemistry, Samara State Medical University, 443099 Samara, Russia
| | - Yury Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Center for Medical Anthropology, N.N. Miklukho-Maclay Institute of Ethnology and Anthropology of the Russian Academy of Sciences, 119017 Moscow, Russia
| |
Collapse
|
7
|
Liu J, Chen B, Yang M, Qian Y, Shen Q, Chen H, Dong Y, Wang L, Jiao J. A three-plasma miRNA panel predicts the risk of colorectal cancer: a community-based nested case‒control study. Sci Rep 2023; 13:4196. [PMID: 36918702 PMCID: PMC10014991 DOI: 10.1038/s41598-023-31449-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Circulating microRNAs (miRNAs) have been considered potential markers for the early detection of malignant colorectal cancer (CRC). We aimed to identify a group of miRNAs for the early detection of CRC and assess their predictive ability in a community-based population in China. A nested case‒control study consisting of 97 incident colorectal cancer cases and 103 frequency-matched healthy controls was conducted. The data were randomly assigned into a training set (60%) and a test set (40%). We selected and detected 10 kinds of miRNAs in plasma samples. Multivariate logistic regression analysis was used to identify miRNAs associated with colorectal cancer risk in the training set and test set. Then, we evaluated the predictive ability of the identified miRNAs by the receiver operating characteristic curve (ROC). In this study, three miRNAs (miRNA-29a, miRNA-125b, miRNA-145) were significantly associated with colorectal cancer risk in both the training set and test set. The sensitivity of the identified miRNAs ranged from 0.854 to 0.961. After adding the identified miRNAs, the AUC (area under the curve) value significantly increased from 0.61 to 0.71 compared with the basic model consisting of only basic demographic information. We identified a three-plasma miRNA signature that may serve as a novel non-invasive biomarker in early CRC detection and in predicting individual CRC risk in the generation population.
Collapse
Affiliation(s)
- Jia Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University), Wuxi, Jiangsu, China
| | - Binglin Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Man Yang
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University), Wuxi, Jiangsu, China
| | - Yun Qian
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University), Wuxi, Jiangsu, China
| | - Qian Shen
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University), Wuxi, Jiangsu, China
| | - Hai Chen
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University), Wuxi, Jiangsu, China
| | - Yunqiu Dong
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University), Wuxi, Jiangsu, China
| | - Lu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China. .,Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University), Wuxi, Jiangsu, China.
| | - Jiandong Jiao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China. .,Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University), Wuxi, Jiangsu, China.
| |
Collapse
|
8
|
Coronel-Hernández J, Delgado-Waldo I, Cantú de León D, López-Camarillo C, Jacobo-Herrera N, Ramos-Payán R, Pérez-Plasencia C. HypoxaMIRs: Key Regulators of Hallmarks of Colorectal Cancer. Cells 2022; 11:1895. [PMID: 35741024 PMCID: PMC9221210 DOI: 10.3390/cells11121895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoxia in cancer is a thoroughly studied phenomenon, and the logical cause of the reduction in oxygen tension is tumor growth itself. While sustained hypoxia leads to death by necrosis in cells, there is an exquisitely regulated mechanism that rescues hypoxic cells from their fatal fate. The accumulation in the cytoplasm of the transcription factor HIF-1α, which, under normoxic conditions, is marked for degradation by a group of oxygen-sensing proteins known as prolyl hydroxylases (PHDs) in association with the von Hippel-Lindau anti-oncogene (VHL) is critical for the cell, as it regulates different mechanisms through the genes it induces. A group of microRNAs whose expression is regulated by HIF, collectively called hypoxaMIRs, have been recognized. In this review, we deal with the hypoxaMIRs that have been shown to be expressed in colorectal cancer. Subsequently, using data mining, we analyze a panel of hypoxaMIRs expressed in both normal and tumor tissues obtained from TCGA. Finally, we assess the impact of these hypoxaMIRs on cancer hallmarks through their target genes.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| | - Izamary Delgado-Waldo
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - David Cantú de León
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Nadia Jacobo-Herrera
- Biochemistry Unit, Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| |
Collapse
|
9
|
Dohmen J, Semaan A, Kobilay M, Zaleski M, Branchi V, Schlierf A, Hettwer K, Uhlig S, Hartmann G, Kalff JC, Matthaei H, Lingohr P, Holdenrieder S. Diagnostic Potential of Exosomal microRNAs in Colorectal Cancer. Diagnostics (Basel) 2022; 12:diagnostics12061413. [PMID: 35741223 PMCID: PMC9221658 DOI: 10.3390/diagnostics12061413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Despite the significance of colonoscopy for early diagnosis of colorectal adenocarcinoma (CRC), population-wide screening remains challenging, mainly because of low acceptance rates. Herein, exosomal (exo-miR) and free circulating microRNA (c-miR) may be used as liquid biopsies in CRC to identify individuals at risk. Direct comparison of both compartments has shown inconclusive results, which is why we directly compared a panel of 10 microRNAs in this entity. Methods: Exo-miR and c-miR levels were measured using real-time quantitative PCR after isolation from serum specimens in a cohort of 69 patients. Furthermore, results were compared to established tumor markers CEA and CA 19-9. Results: Direct comparison of exo- and c-miR biopsy results showed significantly higher microRNA levels in the exosomal compartment (p < 0.001). Exo-Let7, exo-miR-16 and exo-miR-23 significantly differed between CRC and healthy controls (all p < 0.05), while no c-miR showed this potential. Sensitivity and specificity can be further enhanced using combinations of multiple exosomal miRNAs. Conclusions: Exosomal microRNA should be considered as a promising biomarker in CRC for future studies. Nonetheless, results may show interference with common comorbidities, which must be taken into account in future studies.
Collapse
Affiliation(s)
- Jonas Dohmen
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Alexander Semaan
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
| | - Martin Zaleski
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Anja Schlierf
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Karina Hettwer
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Steffen Uhlig
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Jörg C. Kalff
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
10
|
Deciphering specific miRNAs in brain tumors: a 5-miRNA signature in glioblastoma. Mol Genet Genomics 2022; 297:507-521. [PMID: 35175428 DOI: 10.1007/s00438-022-01866-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
MicroRNAs are endogenous non-coding RNAs with a marked impact on the development and progression of brain tumors. However, they commonly share different expression patterns in other types of tumors, thereby exhibiting lack of tissue specificity. Here, an integrative holistic analysis of microarray data is established for deciphering dysregulated miRNAs in glioblastoma, distinguishing them from eight other CNS tumors. The identification of dysregulated miRNAs was performed in a pool of 176 patients, 118 of which diagnosed with glioblastoma. Dysregulated miRNAs commonly expressed in glioblastoma were then discriminated from those co-expressed in other CNS tumors and further characterized. Overall, 21 miRNAs were found to be commonly dysregulated in glioblastoma. Notwithstanding, 16 miRNAs also exhibited a differential expression in at least one other CNS tumor. The remaining 5, specifically, hsa-miR-21-3p, hsa-miR-338-5p, hsa-miR-485-5p, hsa-miR-491-5p and hsa-miR-1290, were solely associated to glioblastoma. This signature is in-depth characterized, with the spotlight on tumor progression, invasion and patient survival. These five endogenous molecules, differentially expressed in glioblastoma, are thus suggested as potential therapeutic targets, modulating several genes involved in major signalling pathways, including MAPK/ERK, calcium, PI3K/AKT, mTOR and Wnt. In summary, these findings lay a foundation for further research on the expression and function of specific patterns of miRNAs expression in glioblastoma, providing reference for potential novel targets.
Collapse
|
11
|
Meng F, Luo X, Li C, Wang G. LncRNA LINC00525 activates HIF-1α through miR-338-3p / UBE2Q1 / β-catenin axis to regulate the Warburg effect in colorectal cancer. Bioengineered 2022; 13:2554-2567. [PMID: 35156520 PMCID: PMC8973709 DOI: 10.1080/21655979.2021.2018538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Warburg effect is considered to be related to the malignancy of tumor cells under hypoxic conditions, but the underlying mechanism remains unknown. In this article, it has been reported that lncRNA LINC00525 is a hypoxia-responsive lncRNA and is essential for hypoxia-enhanced glycolysis. It was found that LINC00525 was up-regulated, and promoted cell proliferation in colorectal cancer in vitro and in vivo. In colorectal cancer cells, hypoxia increasedLINC00525 expression, whereas knocking down LINC00525 reduced hypoxia-enhanced glycolysis. For specific molecular mechanisms, it was found that LINC00525 promoted UBE2Q1 expression by binding miR-338-3p, and UBE2Q1-stabilized β-catenin enhances hypoxia-enhanced glycolysis by activating HIF-1α. In conclusion, these findings showed that LINC00525 was essential for hypoxia-enhanced glycolysis; its mechanism was related to activating HIF-1α through miR-338-3p/UBE2Q1/β-catenin axis in colorectal cancer cells.
Collapse
Affiliation(s)
- Fanqi Meng
- Department of Colorecal & Anal Surgery, The First Hospital of JiLin University Changchun, China
| | - Xiaofan Luo
- Department of Colorecal & Anal Surgery, The First Hospital of JiLin University Changchun, China
| | - Chenyao Li
- Department of Colorecal & Anal Surgery, The First Hospital of JiLin University Changchun, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of JiLin University
| |
Collapse
|
12
|
Qu L, Tian Y, Hong D, Wang F, Li Z. Mig-6 Inhibits Autophagy in HCC Cell Lines by Modulating miR-193a-3p. Int J Med Sci 2022; 19:338-351. [PMID: 35165519 PMCID: PMC8795807 DOI: 10.7150/ijms.66040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 11/05/2022] Open
Abstract
Mitogen-inducible gene 6 (Mig-6) is a tumor suppressor gene that plays an important role in many types of cancers by interacting with EGFR. However, its molecular mechanism in hepatocellular carcinoma (HCC) and its relationship with miRNAs need to be elucidated. Therefore, this study aimed to explore whether Mig-6 could promote apoptosis and the inhibition of autophagy via its downstream miRNA in HCC cell lines. We used two cell lines, HepG2 and HLE, to establish Mig-6 overexpression and knockdown experiments, as well as miR-193a mimic and inhibitor experiments. The miRNA microarray profiling was also used to verify Mig-6-regulated miRNA. We found that Mig-6 induced apoptosis and reduced autophagy of HCC cell lines. miR-193a-3p is a Mig-6-regulated miRNA in the Mig-6-overexpression model. It affected the apoptosis and autophagy of HCC cells, at least partly by regulating the expression of TGF-β2. Additionally, the relationship between Mig-6 and transforming growth factor TGF-β2 was explored in depth for the first time. These findings revealed an important role of Mig-6 in the apoptosis and autophagy of HCC cells by regulating miR-193a-3p, providing a novel insight into the therapeutic target in HCC.
Collapse
Affiliation(s)
- Lianyue Qu
- Departmentof Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Yulong Tian
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Duo Hong
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Fan Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Zixuan Li
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
13
|
Wei X, Zhu J, Zhang Y, Zhao Q, Wang H, Gu K. miR-338-5p-ZEB2 axis in Diagnostic, Therapeutic Predictive and Prognostic Value of Gastric Cancer. J Cancer 2021; 12:6756-6772. [PMID: 34659565 PMCID: PMC8518007 DOI: 10.7150/jca.58249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/10/2021] [Indexed: 12/24/2022] Open
Abstract
MiRNAs have been widely reported to be involved in the occurrence and development of cancers. So far, some studies have revealed that miR-338-5p has the functions of tumorigenesis and tumor suppression. However, the role of miR-338-5p in the pathogenesis, progression and treatment of gastric cancer (GC) has not been reported. MiRNAs microarray analysis showed for the first time that miR-338-5p was significantly lower-expression in cisplin-resistant GC cells SGC7901/DDP, and cell viability assay and flow cytometry confirmed that overexpression of miR-338-5p could significantly increase cisplatin-sensitivity of SGC7901/DDP and BGC823 cells. Subsequently, we found that the expression of miR-338-5p in postoperative cancer tissues of GC patients was also significantly lower than the corresponding paracancer tissues. The expression of miR-338-5p in peripheral blood serum of GC patients is generally lower than that of healthy people. Moreover, the low expression of miR-338-5p in the cancer tissues and serum of GC patients was closely associated with larger tumor volume, lymph node metastasis, later stage, and even poorer survival, which was confirmed by close 5-year cases follow-up. ZEB2, as a predictive target of miR-338-5p, its expression was negatively regulated by miR-338-5p and can promote cisplatin-resistance in SGC7901/DDP and BGC823 cells. The expression of ZEB2 in cisplatin-resistant SGC7901/DDP cells and GC tissues were significantly higher than SGC7901 cells and paracancer tissues, respectively. Moreover, the expression of ZEB2 in tumor tissues was negatively correlated with miR-338-5p in tumor tissues and peripheral blood serum of GC patients, and the abnormally high expression of ZEB2 in prospective case studies is positively related with more serious clinical pathology and worse survival. More meaningfully, in a retrospective case study, we found that high ZEB2 expression predicts worse clinical efficacy of platinum chemotherapy. Thus, miR-338-5p-ZEB2 axis have novel diagnostic, therapeutic predictive, and prognostic value in GC patients.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jiejie Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
14
|
Garai K, Adam Z, Herczeg R, Banfai K, Gyebrovszki A, Gyenesei A, Pongracz JE, Wilhelm M, Kvell K. Physical Activity as a Preventive Lifestyle Intervention Acts Through Specific Exosomal miRNA Species-Evidence From Human Short- and Long-Term Pilot Studies. Front Physiol 2021; 12:658218. [PMID: 34408656 PMCID: PMC8365358 DOI: 10.3389/fphys.2021.658218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Exercise initiates systemic adaptation to promote health and prevent various lifestyle-related chronic diseases. Emerging evidence suggests that circulating exosomes mediate some of the beneficial effects of exercise via the transfer of microRNAs between tissues. Yet to date, a comprehensive profile of the exosomal miRNA (exomiR) content released following short-term (0.5 year in this study) and long-term (25 + years in this study) regular bouts of exercise is still lacking. However, a better understanding of these miRNA species would assist in clarifying the role of regular exercise at the molecular level in the prevention of chronic diseases. In the present pilot studies we analyzed serum exomiR expression in healthy young, sedentary participants (n = 14; age: 23 ± 2 years) at baseline and following a half year-long moderate-intensity regular exercise training. We also analyzed serum exomiR expression in older, healthy trained participants (seniors, n = 11; age: 62 ± 6 years) who engaged in endurance activities for at least 25 years. Following the isolation and enrichment of serum exosomes using Total Exosome Isolation Reagent (TEI) their exomiR levels were determined using the amplification-free Nanostring platform. Hierarchical cluster analysis revealed that the majority of exomiRs overlap for short-term (0.5 year in this study) and long-term (25 + years in this study) regular bouts of exercise. The top 12 significantly altered exomiRs (let-7a-5p; let-7g-5p; miR-130a-3p; miR-142-3p; miR-150-5p; miR-15a-5p; miR-15b-5p; miR-199a-3p; miR-199b-3p; miR-223-3p; miR-23a-3p, and miR-451a-3p) were used for further evaluation. According to KEGG pathway analysis a large portion of the exomiRs target chronic diseases including cancer, neurodegenerative and metabolic diseases, and viral infections. Our results provide evidence that exosomal miRNA modulation is the molecular mechanism through which regular exercise prevents various chronic diseases. The possibility of using such exomiRs to target diseases is of great interest. While further validation is needed, our comprehensive exomiR study presents, for the first time, the disease-preventive molecular pattern of both short and long-term regular exercise.
Collapse
Affiliation(s)
- Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Zoltan Adam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Robert Herczeg
- Bioinformatics Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Adam Gyebrovszki
- Faculty of Science, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Bioinformatics Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Marta Wilhelm
- Faculty of Science, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
15
|
Sun J, Chen L, Dong M. MiR-338-5p Inhibits EGF-Induced EMT in Pancreatic Cancer Cells by Targeting EGFR/ERK Signaling. Front Oncol 2021; 11:616481. [PMID: 33937024 PMCID: PMC8082406 DOI: 10.3389/fonc.2021.616481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor (EGF) pathway plays critical roles during cancer cell epithelial-mesenchymal transition (EMT) process and metastasis. Epidermal growth factor receptor (EGFR), as one of the important receptors of EGF, undergoes autophosphorylation with the stimulation of EGF and activates MAPK/ERK, PI3K/Akt/mTOR, and other pathways. Here, we identified EGFR was a target of miR-338-5p. Upon EGF treatment, overexpression of miR-338-5p not only downregulated EGFR expression and inhibited MAPK/ERK signaling, but also inhibited EMT and metastasis process of pancreatic cancer (PC) cells. In the clinical pathological analysis, miR-338-5p was significantly down-regulated in 44 pairs PC tissues and its expression was negatively associated with lymph node metastasis and AJCC stage. Furthermore, Overexpression of EGFR partially reversed the protective effect of miR-338-5p overexpression on EGF-mediated migration and invasion in PC cells. Taken together, miR-338-5p controls EGF-mediated EMT and metastasis in PC cells by targeting EGFR/ERK pathways. Here, we hope to provide new insights into the molecular mechanisms of pancreatic cancer, and may help facilitating development of EGFR-based therapies for human cancer.
Collapse
Affiliation(s)
- Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Lin Chen
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Zheng Y, Hu J, Li Y, Hao R, Qi Y. Clinicopathological and prognostic significance of circRNAs in lung cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25415. [PMID: 33832139 PMCID: PMC8036086 DOI: 10.1097/md.0000000000025415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) regulate multiple pathways during lung cancer pathogenesis. Apart from functional significance, many circRNAs have been shown to be associated with clinicopathological characteristics and predict lung cancer prognosis. Our aim is to summarize the expanding knowledge of clinical roles of circRNAs in lung cancer. METHODS A thorough search of literature was conducted to identify articles about the correlation between circRNA expression and its prognostic and clinicopathological values. Biological mechanisms were summarized. RESULTS This study included 35 original articles and 32 circRNAs with prognostic roles for lung cancer. Increased expression of 25 circRNAs and decreased expression of 7 circRNAs predicted poor prognosis. For non-small cell lung cancer, changes of circRNAs were correlated with tumor size, lymph node metastasis, distant metastasis, tumor node metastasis (TNM) stage, and differentiation, indicating the major function of circRNAs is to promote lung cancer invasion and migration. Particularly, meta-analysis of ciRS-7, hsa_circ_0020123, hsa_circ_0067934 showed increase of the 3 circRNAs was associated with positive lymph node metastasis. Increase of ciRS-7 and hsa_circ_0067934 was also related with advanced TNM stage. The biological effects depend on the general function of circRNA as microRNA sponge. CONCLUSIONS CircRNAs have the potential to function as prognostic markers and are associated with lung cancer progression and metastasis.
Collapse
Affiliation(s)
- Yuxuan Zheng
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY
- Morning Star Academic Cooperation, Shanghai
| | - Jie Hu
- Department of Science and Technology, Hebei Medical University
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Provincial Chest Hospital
| | - Ran Hao
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei
- Morning Star Academic Cooperation, Shanghai
| | - Yixin Qi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
Nassar FJ, Msheik ZS, Itani MM, Helou RE, Hadla R, Kreidieh F, Bejjany R, Mukherji D, Shamseddine A, Nasr RR, Temraz SN. Circulating miRNA as Biomarkers for Colorectal Cancer Diagnosis and Liver Metastasis. Diagnostics (Basel) 2021; 11:diagnostics11020341. [PMID: 33669508 PMCID: PMC7921943 DOI: 10.3390/diagnostics11020341] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths worldwide. Stage IV CRC patients have poor prognosis with a five-year survival rate of 14%. Liver metastasis is the main cause of mortality in CRC patients. Since current screening tests have several drawbacks, effective stable non-invasive biomarkers such as microRNA (miRNA) are needed. We aim to investigate the expression of miRNA (miR-21, miR-19a, miR-23a, miR-29a, miR-145, miR-203, miR-155, miR-210, miR-31, and miR-345) in the plasma of 62 Lebanese Stage IV CRC patients and 44 healthy subjects using RT-qPCR, as well as to evaluate their potential for diagnosis of advanced CRC and its liver metastasis using the Receiver Operating Characteristics (ROC) curve. miR-21, miR-145, miR-203, miR-155, miR-210, miR-31, and miR-345 were significantly upregulated in the plasma of surgery naïve CRC patients when compared to healthy individuals. We identified two panels of miRNA that could be used for diagnosis of Stage IV CRC (miR-21 and miR-210) with an area under the curve (AUC) of 0.731 and diagnostic accuracy of 69% and liver metastasis (miR-210 and miR-203) with an AUC = 0.833 and diagnostic accuracy of 72%. Panels of specific circulating miRNA, which require further validation, could be potential non-invasive diagnostic biomarkers for CRC and liver metastasis.
Collapse
Affiliation(s)
- Farah J. Nassar
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (F.J.N.); (R.E.H.); (R.H.); (F.K.); (R.B.); (D.M.); (A.S.)
| | - Zahraa S. Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.M.); (M.M.I.)
| | - Maha M. Itani
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.M.); (M.M.I.)
| | - Remie El Helou
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (F.J.N.); (R.E.H.); (R.H.); (F.K.); (R.B.); (D.M.); (A.S.)
| | - Ruba Hadla
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (F.J.N.); (R.E.H.); (R.H.); (F.K.); (R.B.); (D.M.); (A.S.)
| | - Firas Kreidieh
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (F.J.N.); (R.E.H.); (R.H.); (F.K.); (R.B.); (D.M.); (A.S.)
| | - Rachelle Bejjany
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (F.J.N.); (R.E.H.); (R.H.); (F.K.); (R.B.); (D.M.); (A.S.)
| | - Deborah Mukherji
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (F.J.N.); (R.E.H.); (R.H.); (F.K.); (R.B.); (D.M.); (A.S.)
| | - Ali Shamseddine
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (F.J.N.); (R.E.H.); (R.H.); (F.K.); (R.B.); (D.M.); (A.S.)
| | - Rihab R. Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.M.); (M.M.I.)
- Correspondence: (R.R.N.); (S.N.T.)
| | - Sally N. Temraz
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (F.J.N.); (R.E.H.); (R.H.); (F.K.); (R.B.); (D.M.); (A.S.)
- Correspondence: (R.R.N.); (S.N.T.)
| |
Collapse
|
18
|
In silico analysis of non-coding RNAs and putative target genes implicated in metabolic syndrome. Comput Biol Med 2021; 130:104229. [PMID: 33516961 DOI: 10.1016/j.compbiomed.2021.104229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/12/2023]
Abstract
Regulation of gene expression is vital to maintain normal cellular functions and its dysregulation leads to molecular pathogenesis of many diseases and disorders. Non-coding RNAs regulate the expression of approximately 60% of protein-coding genes and their malfunction contribute to the development of numerous diseases. The involvement of variant forms of circulating non-coding RNAs in diseases has been established. However, their function as biomarkers or therapeutic targets in metabolic disorders are underexploited. The aim of this study was to predict therapeutic targets and construction of biomarker panel for early detection of metabolic syndrome (MS). Non-coding RNAs including circular RNAs (circRNAs), long chain non-coding RNAs (lncRNA) and micro RNAs (miRNAs) were extracted from intensive literature search and experimentally supported databases. Raw data of gene expression profiles of MS were obtained from the GEO dataset and analyzed to get differentially expressed genes (DEGs). Functional enrichment analysis, network illustration of non-coding RNAs and predicted target DEGs were performed. Furthermore, a few numbers of miRNAs targeted DEGs were subjected to homology study. The strong association of hsa-miR-548c-3p, hsa-miR-579-3p, hsa-miR-17-5p and hsa-miR-320a was observed with the pathogenesis of MS. It includes the regulation of genes in glucose and lipid homeostasis, MAPKK activity, regulation of inflammatory responses and many signaling pathways such as insulin resistance, JAK/STAT and mTOR. Finally, interactions of hsa-miR-17-5p:STAT3, hsa-miR-320:JAK2, hsa-miR-320:S6K and hsa-let-7:DVL hybrids were predicted. Results of this study suggest the designing of a biomarker panel to detect early onset and molecular approach for the management of MS.
Collapse
|
19
|
Azar MRMH, Aghazadeh H, Mohammed HN, Sara MRS, Hosseini A, Shomali N, Tamjidifar R, Tarzi S, Mansouri M, Sarand SP, Marofi F, Akbari M, Xu H, Shotorbani SS. miR-193a-5p as a promising therapeutic candidate in colorectal cancer by reducing 5-FU and Oxaliplatin chemoresistance by targeting CXCR4. Int Immunopharmacol 2021; 92:107355. [PMID: 33429333 DOI: 10.1016/j.intimp.2020.107355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths worldwide. The role of microRNAs (miRNAs/miRs) as small (19-25 nucleotides in length) non-coding RNA molecules that modify gene expression has been shown in several types of cancer. 5-Fluorouracil (5-FU) and oxaliplatin (Ox) are two common chemotherapeutic agents used to treat cancer. The present study aimed to evaluate the expression levels of miR-193a-5p in CRC, and its effect on the C-X-C Motif Chemokine Receptor 4 (CXCR4) target gene alone and in combination with chemotherapeutic drugs, to determine its possible role in chemoresistance. CRC tissues and adjacent non-cancerous tissue were obtained from 67 patients who had undergone surgery to determine the expression levels of miR-193a-5p and CXCR4. Subsequently, qPCR and Western blotting were performed to determine the effect of miR-193a-5p and chemotherapy drugs on CXCR4. َAlso, MTT assay, and flow cytometry was performed to determine their role in cell viability and apoptosis. Besides, the relationship between miR-193a-5p and CXCR4 with patients' clinical features was investigated. The results of the present study showed that miR-193a-5p was significantly downregulated, whereas CXCR4 was significantly upregulated in tumor tissues obtained from patients with CRC compared with the adjacent non-tumor healthy controls. In addition, the upregulation of miR-193-5p reduced the expression levels of CXCR4, particularly in combination with 5-FU and OX. Besides, using rescue experiments, the present study showed that miR-193a-5p replacement was able to suppress CXCR4-induced CRC cell proliferation by directly targeting CXCR4. Furthermore, there was a significant association between miR-193a-5p and CXCR4 with certain clinicopathological characteristics, particularly with metastasis-related features. These results suggest that miR-193a-5p serves a tumor-suppressive function in CRC and can directly target CXCR4 and decrease its mRNA and protein expression levels. Additionally, miR-193a-5p in combination with 5-FU and Ox potentiated reducing CXR4 expression, which may reveal its contribution to tumor chemoresistance. In conclusion, miR-193-5p may be applicable as a prognostic and diagnostic marker, and also serve as a therapeutic factor by reducing CXCR4 in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
| | - Hamed Aghazadeh
- Pharmaceutical Engineering Department, Faculty of Chemical Engineering, University of Tehran, Tehran 1417414418, Iran
| | | | - Mehdi Rezai Seghin Sara
- Department of Biochemistry, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Biology Ahar Branch, Islamic Azad University, Ahar 5451116714, Iran
| | - Saeed Tarzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Biology Ahar Branch, Islamic Azad University, Ahar 5451116714, Iran
| | - Mahmoud Mansouri
- University of Tehran, Master of Sciences in Applied Chemistry, Tehran 1417414418, Iran
| | - Sahar Pashaei Sarand
- Amirkabir University of Technology (Polytechnic of Tehran), Master of Sciences in Applied Chemistry, Tehran 441315875, Iran
| | - Faroogh Marofi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Huaxi Xu
- Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
20
|
Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2020; 501:66-82. [PMID: 33385486 DOI: 10.1016/j.canlet.2020.12.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer related deaths worldwide. Despite recent advancements in surgical and molecular targeted therapies that improved the therapeutic efficacy in CRC, the 5 years survival rate of CRC patients still remains frustratingly poor. Accumulated evidences indicate that microRNAs (miRNAs) play a crucial role in the progression and metastasis of CRC. Dysregulated miRNAs are closely associated with cancerous phenotypes (e.g. enhanced proliferative and invasive ability, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis) by regulating their target genes. In this review, we provide an updated overview of tumor suppressive and oncogenic miRNAs, circulatory miRNAs, and the possible causes of dysregulated miRNAs in CRC. In addition, we discuss the important functions of miRNAs in drug resistance of CRC.
Collapse
Affiliation(s)
- Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wangyu Zhu
- Affiliated Zhoushan Hospital, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Xiaodong Zhang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaotang Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Congying Xie
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
21
|
Farouk S, Khairy A, Salem AM, Soliman AF, Bader El Din NG. Differential Expression of miR-21, miR-23a, and miR-27a, and Their Diagnostic Significance in Egyptian Colorectal Cancer Patients. Genet Test Mol Biomarkers 2020; 24:825-834. [PMID: 33290159 DOI: 10.1089/gtmb.2020.0184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Colorectal cancer (CRC) rates are affected by genetics, ethnicity, and environmental factors; it is considered one of the most aggressive human malignancies with high mortality and morbidity rates worldwide due, in part, to its asymptomatic nature during the early stages of disease. Objective: Owing to the impact of microRNA (miRNA) dysregulation on CRC development and progression, this study was conducted to explore the expression levels of mir-21, -23a, and -27a in the sera and tissues of Egyptian CRC patients and to evaluate their diagnostic efficacy based on circulating levels. Methods: In the test phase, the relative expression levels of the studied miRNAs were evaluated in the sera of 70 participants (35 CRC patients and 35 healthy controls) using quantitative real-time-polymerase chain reaction and to verify their diagnostic value. The exploratory phase was designed to validate the tumor-derived trait by comparing the miRNA levels in the cancerous and adjacent noncancerous tissues. Results: The relative expression levels of the studied miRNAs were significantly upregulated in both serum and tumor tissues of the patients compared to their corresponding controls. In addition, significant positive correlations were found between the relative expression levels of the studied miRNAs in serum samples and their levels in the matched CRC tissues. The serum expression levels of mir-21 and -23a were more predictive of CRC than mir-27a. Conclusion: Circulating mir-21, -23a, and -27a expression levels appear to be valuable diagnostic biomarkers for CRC, especially when combined.
Collapse
Affiliation(s)
- Sally Farouk
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| | - Ahmed Khairy
- Endemic Medicine Department, Kasr Elainy Hospitals, Cairo University, Giza, Egypt
| | - Ahmed M Salem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
22
|
Gharib E, Nazemalhosseini-Mojarad E, Baghdar K, Nayeri Z, Sadeghi H, Rezasoltani S, Jamshidi-Fard A, Larki P, Sadeghi A, Hashemi M, Asadzadeh Aghdaei H. Identification of a stool long non-coding RNAs panel as a potential biomarker for early detection of colorectal cancer. J Clin Lab Anal 2020; 35:e23601. [PMID: 33094859 PMCID: PMC7891513 DOI: 10.1002/jcla.23601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background The feces of colorectal cancer (CRC) patients contain tumor colonocytes, which constantly shed into the lumen area. Therefore, stool evaluation can be considered as a rapid and low‐risk way to directly determine the colon and rectum status. As long non‐coding RNAs (lncRNAs) alterations are important in cancer cells fate regulation, we aimed to assess the level of a panel of cancer‐related lncRNAs in fecal colonocytes. Methods The population study consisted of 150 subjects, including a training set, a validation set, and a group of 30 colon polyps. The expression levels of lncRNAs were evaluated by quantitative real‐time PCR (qRT‐PCR). The NPInetr and EnrichR tools were used to identify the interactions and functions of lncRNAs. Results A total of 10 significantly dysregulated lncRNAs, including CCAT1, CCAT2, H19, HOTAIR, HULC, MALAT1, PCAT1, MEG3, PTENP1, and TUSC7, were chosen for designing a predictive panel. The diagnostic performance of the panel in distinguishing CRCs from the healthy group was AUC: 0.8554 in the training set and 0.8465 in the validation set. The AUC for early CRCs (I‐II TNM stages) was 0.8554 in the training set and 0.8465 in the validation set, and for advanced CRCs (III‐IV TNM stages) were 0.9281 in the training set and 0.9236 in the validation set. The corresponding AUC for CRCs vs polyps were 0.9228 (I‐IV TNM stages), 0.9042 (I‐II TNM stages), and 0.9362 (III‐IV TNM stages). Conclusions These data represented the application of analysis of fecal colonocytes lncRNAs in early detection of CRC.
Collapse
Affiliation(s)
- Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghdar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Nayeri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Molecular Genetics Department, Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sama Rezasoltani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezo Jamshidi-Fard
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Larki
- Molecular Genetics Department, Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Salah M, Shaheen I, El-Shanawany P, Eid Saad N, Saad R, El Guibaly M, Momen N. Detection of miR-1246, miR-23a and miR-451 in sera of colorectal carcinoma patients: a case-control study in Cairo University hospital. Afr Health Sci 2020; 20:1283-1291. [PMID: 33402976 PMCID: PMC7751536 DOI: 10.4314/ahs.v20i3.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Colorectal cancer (CRC) has high morbidity and mortality rates. Invasive techniques and other laboratory tests with variable sensitivity and specificity are currently used in diagnosis. Micro ribonucleic acids (miRNAs) have bio vital roles in cell proliferation and apoptosis. Dys-regulation of miRNAs is linked to tumour genesis. The objective of this study was to evaluate the specificity and sensitivity of serum non-invasive biomarkers (micro-RNAs), miR-1246, miR-23a, and miR-451in CRC patients. Methods Peripheral expression of three miRNAs (miR-1246, miR-23a and miR-451) was investigated in sera of 37 CRC Egyptian patients and 30 healthy controls, using quantitative real-time polymerase chain reaction trying to reach the optimal non-invasive combination of miRNAs. Results Serum miR-1246 was up-regulated in sera of CRC patients compared to normal controls (fold change = 3.55; P<0.001) and showed 100% sensitivity and 80% specificity in diagnosis of CRC. Serum miR-451 was significantly down-regulated in CRC patients (fold change = -4.86; p= 0.014), whereas, miR-23a was down-regulated but this was not statistically significant. Conclusion Up-regulation of miR-1246 and down-regulation of miR-451 in the sera of primary CRC Egyptian patients were confirmed with high sensitivity and specificity. Large-scale studies on a wider spectrum of miRNAs in Egyptian CRC patients are needed.
Collapse
|
24
|
Polini B, Carpi S, Doccini S, Citi V, Martelli A, Feola S, Santorelli FM, Cerullo V, Romanini A, Nieri P. Tumor Suppressor Role of hsa-miR-193a-3p and -5p in Cutaneous Melanoma. Int J Mol Sci 2020; 21:E6183. [PMID: 32867069 PMCID: PMC7503447 DOI: 10.3390/ijms21176183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Remarkable deregulation of several microRNAs (miRNAs) is demonstrated in cutaneous melanoma. hsa-miR-193a-3p is reported to be under-expressed in tissues and in plasma of melanoma patients, but the role of both miR-193a arms in melanoma is not known yet. METHODS After observing the reduced levels of miR-193a arms in plasma exosomes of melanoma patients, the effects of hsa-miR-193a-3p and -5p transfection in cutaneous melanoma cell lines are investigated. RESULTS In melanoma cell lines A375, 501Mel, and MeWo, the ectopic over-expression of miR-193a arms significantly reduced cell viability as well as the expression of genes involved in proliferation (ERBB2, KRAS, PIK3R3, and MTOR) and apoptosis (MCL1 and NUSAP1). These functional features were accompanied by a significant downregulation of Akt and Erk pathways and a strong increase in the apoptotic process. Since in silico databases revealed TROY, an orphan member of the tumor necrosis receptor family, as a potential direct target of miR-193a-5p, this possibility was investigated using the luciferase assay and excluded by our results. CONCLUSIONS Our results underline a relevant role of miR-193a, both -3p and -5p, as tumor suppressors clarifying the intracellular mechanisms involved and suggesting that their ectopic over-expression could represent a novel treatment for cutaneous melanoma patients.
Collapse
Affiliation(s)
- Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| | - Sara Feola
- Laboratory of ImmunoViroTherapy (IVTLab), Drug Research Program (DRP), Translation Immunology Program (TRIMM), iCAN Precision Cancer Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.F.); (V.C.)
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Vincenzo Cerullo
- Laboratory of ImmunoViroTherapy (IVTLab), Drug Research Program (DRP), Translation Immunology Program (TRIMM), iCAN Precision Cancer Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.F.); (V.C.)
| | - Antonella Romanini
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| |
Collapse
|
25
|
Ai D, Wang Y, Li X, Pan H. Colorectal Cancer Prediction Based on Weighted Gene Co-Expression Network Analysis and Variational Auto-Encoder. Biomolecules 2020; 10:biom10091207. [PMID: 32825264 PMCID: PMC7563725 DOI: 10.3390/biom10091207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE).
Collapse
Affiliation(s)
- Dongmei Ai
- Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.W.); (X.L.); (H.P.)
- Correspondence: ; Tel.: +86-136-2105-2939
| | - Yuduo Wang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.W.); (X.L.); (H.P.)
| | - Xiaoxin Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.W.); (X.L.); (H.P.)
| | - Hongfei Pan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.W.); (X.L.); (H.P.)
| |
Collapse
|
26
|
Rashid H, Hossain B, Siddiqua T, Kabir M, Noor Z, Ahmed M, Haque R. Fecal MicroRNAs as Potential Biomarkers for Screening and Diagnosis of Intestinal Diseases. Front Mol Biosci 2020; 7:181. [PMID: 32850969 PMCID: PMC7426649 DOI: 10.3389/fmolb.2020.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of conserved endogenous, small non-coding RNA molecules with a length of 18–25 nucleotides that regulate gene expression by RNA interference processes, including mRNA chopping, mRNA deadenylation, and translation inhibition. miRNAs maintain the physiological functions of the intestine and are instrumental in gut pathogenesis. miRNAs play an important role in intercellular communication and are present in all body fluids, including stools with different composition and concentrations. However, under diseased conditions, miRNAs are aberrantly expressed and act as negative regulators of gene expression. The stable and differentially expressed miRNAs in stool enables miRNAs to be used as potential biomarkers for screening of various intestinal diseases. In this review, we summarize the expressed miRNA profile in stool and highlight miRNAs as biomarkers with potential clinical and diagnostic applications, and we aim to address the prospects for recent advanced techniques for screening miRNA in diagnosis and prognosis of intestinal disorders.
Collapse
Affiliation(s)
- Humaira Rashid
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Biplob Hossain
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Towfida Siddiqua
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mamun Kabir
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Zannatun Noor
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mamun Ahmed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Rashidul Haque
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
27
|
Ibrahim H, Lim YC. KRAS-associated microRNAs in colorectal cancer. Oncol Rev 2020; 14:454. [PMID: 32685110 PMCID: PMC7365993 DOI: 10.4081/oncol.2020.454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancerrelated death worldwide. Despite progress in treatment of cancers, CRC with KRAS mutations are resistant towards anti-EGFR treatment. MicroRNAs have been discovered in an exponential manner within the last few years and have been known to exert either an onco-miRNA or tumor suppressive effect. Here, the various roles of microRNAs involved in the initiation and progression of KRAS-regulated CRC are summarized. A thorough understanding of the roles and functions of the plethora of microRNAs associated with KRAS in CRC will grant insights into the provision of other potential therapeutic targets as well as treatment. MicroRNAs may also serve as potential molecular classifier or early detection biomarkers for future treatment and diagnosis of CRC.
Collapse
Affiliation(s)
| | - Ya Chee Lim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam
| |
Collapse
|
28
|
Chu YL, Li H, Ng PLA, Kong ST, Zhang H, Lin Y, Tai WCS, Yu ACS, Yim AKY, Tsang HF, Cho WCS, Wong SCC. The potential of circulating exosomal RNA biomarkers in cancer. Expert Rev Mol Diagn 2020; 20:665-678. [PMID: 32188269 DOI: 10.1080/14737159.2020.1745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are great potentials of using exosomal RNAs (exoRNA) as biomarkers in cancers. The isolation of exoRNA requires the use of ultracentrifugation to isolate cell-free RNA followed by detection using real-time PCR, microarray, next-generation sequencing, or Nanostring nCounter system. The use of exoRNA enrichment panels has largely increased the detection sensitivity and specificity when compared to traditional diagnostic tests. Moreover, using exoRNA as biomarkers can assist the early detection of chemo and radioresistance cancer, and in turn opens up the possibility of personalized treatment to patients. Finally, exoRNA can be detected at an early stage of cancer recurrence to improve the survival rate. AREAS COVERED In this review, the authors summarized the detection methods of exoRNA as well as its potential as a biomarker in cancer diagnosis and chemo and radioresistance. EXPERT OPINION The application of exoRNAs in clinical diagnosis is still in its infancy. Further researches on extracellular vesicles isolation, detection protocols, exoRNA classes and subclasses, and the regulatory biological pathways have to be performed before exoRNA can be applied translationally.
Collapse
Affiliation(s)
- Yin Lam Chu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Harriet Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Pik Lan Amanda Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Siu Ting Kong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College , Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, Faculty of Applied Sciences and Textiles, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region , Kowloon, China
| | | | | | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | | | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| |
Collapse
|
29
|
Yang Y, Meng WJ, Wang ZQ. MicroRNAs in Colon and Rectal Cancer - Novel Biomarkers from Diagnosis to Therapy. Endocr Metab Immune Disord Drug Targets 2020; 20:1211-1226. [PMID: 32370729 DOI: 10.2174/1871530320666200506075219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a significant cause of tumor- related deaths worldwide. Traditional biomarkers, such as CEA and CA199, are not sensitive enough to provide useful information for early diagnosis and treatment and are rather used to track the clinical progression of the disease. There is growing evidence that microRNAs (miRNA) are potentially superior to traditional biomarkers as promising non-invasive biomarkers for the timely diagnosis and prediction of prognosis or treatment response in the management of CRC. In this review, the latest studies on the dysregulation of miRNAs expression in CRC and the potential for miRNAs to serve as biomarkers were collected. Given the limitations of miRNA, as discussed in this paper, its clinical applications as a diagnostic biomarker should be limited to use in combination with other biomarkers. Further research is necessary to elucidate the clinical applications of miRNA in therapy for CRC.
Collapse
Affiliation(s)
- Ying Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen-Jian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zi-Qiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Chira A, Muresan MS, Braicu C, Budisan L, Raduly L, Chira RI, Dumitrascu DL, Berindan-Neagoe I. Serum patterns of mir-23a and mir-181b in irritable bowel syndrome and colorectal cancer - A pilot study. Bosn J Basic Med Sci 2020; 20:254-261. [PMID: 31881168 PMCID: PMC7202192 DOI: 10.17305/bjbms.2019.4392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023] Open
Abstract
Emerging evidence demonstrates that microRNAs (miRNAs) could serve as reliable biomarkers of inflammation and oncogenesis. The aim of this study was to determine whether miR-23a and miR-181b were suitable as biomarkers of irritable bowel syndrome (IBS) and colorectal cancer (CRC). Forty patients with IBS (29 females, 11 males), 33 with CRC (14 females, 19 males), and 33 healthy controls (17 females, 16 males) were prospectively included. Serum levels of miRNAs were evaluated by quantitative real-time PCR. The serum levels of miR-23a and miR-181b were significantly higher in the IBS group (p = 0.0009 and 0.004, respectively) and CRC group (p = 0.002 and 0.029, respectively) than in the control group. Serum levels of miR-23a and miR-181b were upregulated in CRC vs. IBS, but the differences did not reach statistical significance (p = 0.169 and 0.179, respectively). The miRNet and Reactome databases identified phosphatase and tensin homolog as a major common pathway, indicating inflammation as a central hallmark. Although miRNAs could serve as reliable biomarkers in clinical practice, future studies are needed to establish appropriate cut-off limits.
Collapse
Affiliation(s)
- Alexandra Chira
- Department of Internal Medicine, 2nd Medical Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihai-Stefan Muresan
- Institute of Urology and Kidney Transplant Cluj-Napoca, Cluj-Napoca, Romania; The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Romeo Ioan Chira
- Department of Internal Medicine, Division Gastroenterology, 1st Medical Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Lucian Dumitrascu
- Department of Internal Medicine, 2nd Medical Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; MEDFUTURE - Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
31
|
Yang Z, Zhang J, Lu D, Sun Y, Zhao X, Wang X, Zhou W, He Q, Jiang Z. Hsa_circ_0137008 suppresses the malignant phenotype in colorectal cancer by acting as a microRNA-338-5p sponge. Cancer Cell Int 2020; 20:67. [PMID: 32158357 PMCID: PMC7057602 DOI: 10.1186/s12935-020-1150-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been shown to play a crucial role in tumorigenesis. In this study, we investigated the function of hsa_circ_0137008 and its underlying molecular mechanism in colorectal cancer (CRC). Methods Gene expression was conducted by quantitative real-time PCR or western blot. Functional experiments were performed by cell count kit-8, colony formation assay, wound healing, and transwell assays. Luciferase reporter assay and RNA pull-down assay were performed to investigate the molecular mechanism of hsa_circ_0137008 in CRC. In addition, the xenograft tumor model was applied to determine the role of hsa_circ_0137008 in vivo. Results Downregulation of hsa_circ_0137008 was observed in CRC tissues and cell lines. Functionally, overexpression of hsa_circ_0137008 inhibited the proliferation of CRC cells, as indicated by the inhibition of proliferative protein expression (Ki67 and PCNA), reduced cell viability and colony formation ability. Upregulation of hsa_circ_0137008 suppressed the migration, invasion, and epithelial to mesenchymal transition (EMT) of CRC cells. Mechanically, hsa_circ_0137008 negatively regulated the expression of microRNA-338-5p (miR-338-5p). Furthermore, hsa_circ_0137008 abated the miR-338-5p mediated promotion on CRC cell progression. Tumor suppressive function of hsa_circ_0137008 was validated in vivo. Conclusion These findings highlighted the fact that overexpression of hsa_circ_0137008 inhibited the progression of CRC via sponging miR-338-5p, suggesting that hsa_circ_0137008/miR-338-5p axis is a principal regulator of CRC tumorigenesis.
Collapse
Affiliation(s)
- Zhanfeng Yang
- 1Department of Medicine, Zhengzhou University of Industry Technology, 16 Xueyuan Road, Xinzheng, 451100 Henan China
| | - Jingjing Zhang
- 1Department of Medicine, Zhengzhou University of Industry Technology, 16 Xueyuan Road, Xinzheng, 451100 Henan China
| | - Danghui Lu
- 2Department of Vascular Surgery, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450000 Henan China
| | - Yan Sun
- 1Department of Medicine, Zhengzhou University of Industry Technology, 16 Xueyuan Road, Xinzheng, 451100 Henan China
| | - Xinyong Zhao
- 1Department of Medicine, Zhengzhou University of Industry Technology, 16 Xueyuan Road, Xinzheng, 451100 Henan China
| | - Xiaoqiong Wang
- 1Department of Medicine, Zhengzhou University of Industry Technology, 16 Xueyuan Road, Xinzheng, 451100 Henan China
| | - Wen Zhou
- 3The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Guangzhou, 510120 China
| | - Qunli He
- 1Department of Medicine, Zhengzhou University of Industry Technology, 16 Xueyuan Road, Xinzheng, 451100 Henan China
| | - Zhi Jiang
- 3The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Guangzhou, 510120 China
| |
Collapse
|
32
|
miR-338-5p Targets Epidermal Growth Factor-Containing Fibulin-Like Extracellular Matrix Protein 1 to Inhibit the Growth and Invasion of Trophoblast Cells in Selective Intrauterine Growth Restriction. Reprod Sci 2020; 27:1357-1364. [PMID: 32056133 PMCID: PMC7190678 DOI: 10.1007/s43032-020-00160-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Selective intrauterine growth restriction (sIUGR) is a disorder of monochorionic (MC) twin pregnancies. However, the underlying mechanism remains largely unknown. Trophoblast cells are the major component of the placenta. Dysfunction of trophoblast cells is associated with placental dysfunction. Our previous study identified miR-338-5p is downregulated in placenta tissues sharing larger twins of sIUGR. In the present study, we aimed to investigate the role of miR-338-5p in trophoblast cells and explored its target. Our results further indicated that miR-338-5p was downregulated in placental tissues supporting larger twins of sIUGR, whereas epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was upregulated. Moreover, miR-338-5p overexpression suppressed the growth and invasion of trophoblast cells. Importantly, results from luciferase reporter assay demonstrated that miR-338-5p bound on the 3'-UTR of EFEMP1. miR-338-5p suppressed the growth and invasion of trophoblast cells via targeting EFEMP1. Further, miR-338-5p/EFEMP1 might disrupt the function of trophoblast cells via inhibiting the phosphorylation of AKT.
Collapse
|
33
|
Lai H, Zhang J, Zuo H, Liu H, Xu J, Feng Y, Lin Y, Mo X. Overexpression of miR-17 is correlated with liver metastasis in colorectal cancer. Medicine (Baltimore) 2020; 99:e19265. [PMID: 32118734 PMCID: PMC7478658 DOI: 10.1097/md.0000000000019265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in men and women. The presence of systemic disease, with metastatic spread to distant sites such as the liver, considerably reduces the survival rate in CRC. Cancer stem cells contribute to the metastatic potential of CRC. However, the mechanism underlying metastasis in CRC remains unclear. Thus, this study aimed to examine the expression of microRNAs (miRNAs) in CRC stem cells in cases of liver metastases and assess their correlation with clinicopathological features. METHODS miRNAs showing high expression in liver metastases and primary lesions were selected through data mining of gene expression omnibus datasets, and miRNAs characteristic of stem cells were selected through COREMINE medical text mining. Subsequently, paired formalin-fixed paraffin-embedded tissue samples of primary CRC and liver metastasis from 30 patients were examined for the expression of miRNAs common to these lists (hsa-miR-20a, hsa-miR-26b, hsa-miR-146a, hsa-miR-17, hsa-miR-451, hsa-miR-23a, and hsa-miR-29a) using quantitative real-time polymerase chain reaction. Further, miRNA expression was compared between liver metastases and the primary tumor in each patient and the factors associated with differential expression were analyzed. RESULTS hsa-miR-17 was significantly upregulated in liver metastases (P < .05), but no significant difference in the expression of hsa-miR-26b, hsa-miR-146a, hsa-miR-451, hsa-miR-23a, and hsa-miR-29a was observed between primary tumors and liver metastases. The higher expression of hsa-miR-17 in liver metastases was associated with the administration of neoadjuvant chemotherapy and tumor differentiation (P < .05) but was not associated with age, sex, tumor location, or lymphatic metastasis. CONCLUSIONS High expression of miR-17 may contribute to liver metastasis in CRC. Therefore, an in-depth understanding of its downstream pathways could help in elucidating the mechanisms underlying liver metastases in CRC. However, additional studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Hao Lai
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Jie Zhang
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Hongqun Zuo
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Haizhou Liu
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jing Xu
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Yan Feng
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yuan Lin
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Xianwei Mo
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| |
Collapse
|
34
|
Yang C, Yan Z, Hu F, Wei W, Sun Z, Xu W. Silencing of microRNA-517a induces oxidative stress injury in melanoma cells via inactivation of the JNK signaling pathway by upregulating CDKN1C. Cancer Cell Int 2020; 20:32. [PMID: 32015692 PMCID: PMC6990552 DOI: 10.1186/s12935-019-1064-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background Melanoma is notoriously resistant to current treatments, and less than 25% of metastatic melanoma cases respond to existing therapies. Growing evidence has shown that microRNAs (miRNAs) play a vital role in the prognosis of melanoma. MiR-517a has been implicated in many types of cancer; however, its expressional features and potential biological functions in melanoma remain unclear. The present study aimed to investigate the possible effects of miR-517a on oxidative stress (OS) in melanoma cells. Methods miR-517a expression in melanoma was determined using RT-qPCR. After treatment with different concentrations of H2O2, cell viability was determined in order to identify the most appropriate H2O2 concentration. Through loss and gain of function experiments, the interactions between miR-517a, the cyclin dependent kinase inhibitor 1C (CDKN1C) and the c-Jun NH2-terminal kinase (JNK) signaling pathway, as well as their roles in OS of melanoma cells were identified. Moreover, the expression of Cleaved Caspase-3, extent of ERK1/2 phosphorylation, Bax/Bcl-2 ratio, levels of T-AOC, ROS and MDA, and SOD activity were also tested. Finally, melanoma cell viability and apoptosis were detected. Results MiR-517a was upregulated, while CDKN1C was downregulated in melanoma tissues and cells. MiR-517a targets CDKN1C and consequently reduced its expression. Inhibition of miR-517a was shown to increase Cleaved Caspase-3 expression, Bax/Bcl-2 ratio, levels of ROS and MDA, as well as cell apoptosis but decrease extent of ERK1/2 phosphorylation, T-AOC levels, SOD activity, along with cell proliferation and mitochondrial membrane potential. Conclusions Overall, silencing miR-517a results in upregulated CDKN1C expression, and inhibited JNK signaling pathway activation, consequently promoting OS in melanoma cells.
Collapse
Affiliation(s)
- Chao Yang
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Zeqiang Yan
- 2Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021 People's Republic of China
| | - Fen Hu
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Wei Wei
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Zhihua Sun
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Wei Xu
- 3Department of Dermatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| |
Collapse
|
35
|
Di Z, Di M, Fu W, Tang Q, Liu Y, Lei P, Gu X, Liu T, Sun M. Integrated Analysis Identifies a Nine-microRNA Signature Biomarker for Diagnosis and Prognosis in Colorectal Cancer. Front Genet 2020; 11:192. [PMID: 32265979 PMCID: PMC7100107 DOI: 10.3389/fgene.2020.00192] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most lethal and malignant type of cancer in the world. Abnormal expression of human microRNA-200a (hsa-miRNA-200a or miR-200a) has previously been characterized as a clinically noticeable biomarker in several cancers, but its role in CRC is still unclear. METHODS Three CRC miRNA expression datasets were integratively analyzed by Least Absolute Shrinkage and Selector Operation (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Nine candidate miRNAs were identified and validated for diagnostic and prognostic capability with the prediction model. The potential roles of the tumor suppressor miR-200a-3p in invasion, migration, and epithelial-mesenchymal transition of CRC cells were elaborated by in vitro studies. RESULTS Nine miRNAs (miR-492, miR-200a, miR-338, miR-29c, miR-101, miR-148a, miR-92a, miR-424, and miR-210) were identified as potentially useful diagnostic biomarkers in the clinic. The overall accuracy rate of the nine miRNAs in the diagnostic model was 0.94, 0.89, and 0.978 in the testing, validation, and independent validation dataset, respectively. CRC patients in the GSE29622 cohort were separated by the prognostic model into the low-risk score group and the high-risk score group. The area under the receiver operating characteristic curve (AUC) was 0.872 and 0.783 for predicting the 1- to 10-year survival of CRC patients. The performance of the prognostic model was validated by an independent TCGA-Colon Adenocarcinoma (COAD) dataset with AUC values between 0.911 and 0.796 in predicting 1- to 10-year survival. Nomograms comprising risk scores, tumor stage, and TNM staging were generated for predicting 1-, 3-, and 5-year overall survival (OS) in the GSE29622 and TCGA-COAD datasets. Colony formation, invasion, and migration in DLD1 and SW480 cells were suppressed by overexpression of miR-200a-3p. Inhibition of miR-200a-3p function contributed to abnormal colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT). miR-200a-3p binding sites were located within the 3'-untranslated region (3'-UTR) of the Forkhead box protein A1 (FOXA1) mRNA. CONCLUSION We developed and validated a diagnostic and prognostic prediction model for CRC. miR-200a-3p was determined to be a potential diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Ziyang Di
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Maojun Di
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Tang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yanwei Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Tong Liu,
| | - Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Min Sun,
| |
Collapse
|
36
|
Zhang Y, Zhang Z, Wei R, Miao X, Sun S, Liang G, Chu C, Zhao L, Zhu X, Guo Q, Wang B, Li X. IL (Interleukin)-6 Contributes to Deep Vein Thrombosis and Is Negatively Regulated by miR-338-5p. Arterioscler Thromb Vasc Biol 2019; 40:323-334. [PMID: 31852218 PMCID: PMC6975520 DOI: 10.1161/atvbaha.119.313137] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Deep venous thrombosis (DVT), one of the most common venous thromboembolic disorders, is closely linked with pulmonary embolism and post-thrombotic syndrome, both of which have a high mortality. However, the factors that trigger DVT formation are still largely unknown. Elevated expression of IL (interleukin)-6—an important inflammatory cytokine—has been linked with DVT formation. However, the molecular mechanisms leading to the elevated IL-6 in DVT remain unclear. Here, we proposed that epigenetic modification of IL-6 at the post-transcriptional level may be a crucial trigger for IL-6 upregulation in DVT. Approach and Results: To explore the association between microRNAs and IL-6 in DVT, we performed microRNA microarray analysis and experiments both in vitro and in vivo. Microarray and quantitative real-time polymerase chain reaction results showed that IL-6 expression was increased while miR-338-5p level was decreased substantially in peripheral blood mononuclear cells of patients with DVT, and there was significant negative correlation between miR-338-5p and IL-6. Experiments in vitro showed that overexpressed miR-338-5p reduced IL-6 expression, while miR-338-5p knockdown increased IL-6 expression. Moreover, our in vivo study found that mice with anti–IL-6 antibody or agomiR-338-5p delivery resulted in decreased IL-6 expression and alleviated DVT formation, whereas antagomiR-338-5p acted inversely. Most of miR-338-5p was found located in cytoplasm by fluorescence in situ hybridization. Dual-luciferase reporter assay identified direct binding between miR-338-5p and IL-6. Conclusions: Our results suggest that decreased miR-338-5p promotes DVT formation by increasing IL-6 expression.
Collapse
Affiliation(s)
- Yunhong Zhang
- From the School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, China (Y.Z., C.C.).,Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Xiuming Miao
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China (X.M., G.L., B.W.)
| | - Shangwen Sun
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.).,Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (S.S.)
| | - Gang Liang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China (X.M., G.L., B.W.)
| | - Chu Chu
- From the School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, China (Y.Z., C.C.).,Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Bin Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China (X.M., G.L., B.W.)
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| |
Collapse
|
37
|
Guo J, Yang Z, Zhou H, Yue J, Mu T, Zhang Q, Bi X. Upregulation of DKK3 by miR‐483‐3p plays an important role in the chemoprevention of colorectal cancer mediated by black raspberry anthocyanins. Mol Carcinog 2019; 59:168-178. [DOI: 10.1002/mc.23138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Guo
- College of Life ScienceLiaoning UniversityShenyang China
| | - Zhe Yang
- College of Life ScienceLiaoning UniversityShenyang China
| | - Hongrui Zhou
- College of Life ScienceLiaoning UniversityShenyang China
| | - Jiaxin Yue
- College of Life ScienceLiaoning UniversityShenyang China
| | - Teng Mu
- College of Life ScienceLiaoning UniversityShenyang China
| | - Qiuhua Zhang
- Department of PharmacologyLiaoning University of Traditional Chinese MedicineShenyang China
| | - Xiuli Bi
- College of Life ScienceLiaoning UniversityShenyang China
- Research Center for Computer Simulating and Information Processing of Bio‐macromolecules of Liaoning ProvinceLiaoning UniversityShenyang China
| |
Collapse
|
38
|
Lavaee P, Taghdisi SM, Abnous K, Danesh NM, Khayyat LH, Jalalian SH. Fluorescent sensor for detection of miR-141 based on target-induced fluorescence enhancement and PicoGreen. Talanta 2019; 202:349-353. [DOI: 10.1016/j.talanta.2019.04.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
|
39
|
Cui S, Cao Z, Guo W, Yu H, Huang R, Wu Y, Zhou Y. [Plasma miRNA-23a and miRNA-451 as candidate biomarkers for early diagnosis of nonsmall cell lung cancer: a case-control study]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:705-711. [PMID: 31270050 DOI: 10.12122/j.issn.1673-4254.2019.06.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To study the value of plasma miRNA23-a and miRNA-451 as potential biomarkers for early diagnosis of non-small cell lung cancer (NSCLC). METHODS Fifty patients with NSCLC and 50 healthy control subjects were recruited for testing the plasma levels of miRNA23-a and miRNA-451 and their expression levels in the tumor tissues using qRT-PCR. The correlations of the plasma levels of miRNA23-a and miRNA-451 with their expressions in the tumor tissues were analyzed. The diagnostic power of CEA, miRNA23-a and miRNA-451 for NSCLC was evaluated using the receiver-operating characteristics (ROC) curves and the area under the ROC curves (AUC). In the NSCLC cell line A549, we tested the effect of inhibition of miRNA-23a and miRNA-451 on the expression levels of SPRY2 and MIF mRNA using qRT-PCR. RESULTS The expression levels of miRNA-23a and miRNA-451 in NSCLC tissues was significantly associated with smoking, tumor size, lymph node metastasis and TNM stage (P < 0.05). Compared with those in the control group, miRNA-23a level was significantly increased while miRNA-451 was significantly down-regulated in the tumor tissues and plasma of NSCLC patients. The plasma levels of miRNA-23a and miRNA-45 were strongly correlated with their expression levels in the tumor tissues. ROC analysis showed that for the diagnosis of NSCLC, the AUC, sensitivity and specificity of either miRNA-23a or miRNA-451 were significantly higher than those of CEA (P < 0.05). The combination of miRNA23-a and miRNA-451 markedly improved the AUC (0.900), sensitivity (78%) and specificity (86%) for the diagnosis. In A549 cells, inhibition of miRNA23-a and miRNA-451 resulted in significantly increased expression levels of SPRY2 mRNA and MIF mRNA, respectively. CONCLUSIONS miRNA-23a and miRNA-451 can be used as potential biomarkers for early diagnosis of NSCLC, and their combined detection can be more effective for the diagnosis.
Collapse
Affiliation(s)
- Shengjin Cui
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen 518101, China
| | - Zhaopeng Cao
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen 518101, China
| | - Weiquan Guo
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen 518101, China
| | - Huijun Yu
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen 518101, China
| | - Rong Huang
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen 518101, China
| | - Yunfeng Wu
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen 518101, China
| | - Yiwen Zhou
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen 518101, China
| |
Collapse
|
40
|
Tang X, Yang M, Wang Z, Wu X, Wang D. MicroRNA-23a promotes colorectal cancer cell migration and proliferation by targeting at MARK1. Acta Biochim Biophys Sin (Shanghai) 2019; 51:661-668. [PMID: 31281935 DOI: 10.1093/abbs/gmz047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 11/14/2022] Open
Abstract
The functional role of microRNA-23a in tumorigenesis has been investigated; however, the exact mechanism of microRNA-23a (miR-23a) in colorectal cancer development has not been fully explored. In the present study, we aimed to investigate the molecular functional role of miR-23a in colorectal carcinogenesis. Quantitative real-time polymerase chain reaction was conducted to investigate the expression level of miR-23a in tissue samples and cell lines (HCT116 and SW480). CCK-8, colony formation and Transwell assay were used to explore the role of miR-23a in cell proliferation and migration. Dual luciferase reporter assay was used to identify the direct binding of miR-23a with its target, MARK1. Western blot analysis was used to analyze the expression level of MARK1, as well as a confirmed miR-23a target gene, MTSS1, in miR-23a-mimic and miR-23a-inhibit groups. Rescue experiments were conducted by overexpression of MARK1 in miR-23a-mimic-transfected cell lines. The results showed that miR-23a was highly expressed in colorectal cancer tissue and cell lines. MiR-23a could promote proliferation and migration of colorectal cancer cell lines. MARK1 was a direct target of miR-23a and the expression level of MARK1 was down-regulated in miR-23a-mimic-transfected cell lines but up-regulated in miR-23a-inhibit-transfected cells. Overexpression of MARK1 could partly reverse the cancer-promoting function of miR-23a. Our results suggested that miR-23a promotes colorectal cancer cell proliferation and migration by mediating the expression of MARK1. MiR-23a may be a potential therapeutic target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Xiaoli Tang
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Meiyuan Yang
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoqing Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
41
|
Plasma microRNA Levels Combined with CEA and CA19-9 in the Follow-Up of Colorectal Cancer Patients. Cancers (Basel) 2019; 11:cancers11060864. [PMID: 31234350 PMCID: PMC6627112 DOI: 10.3390/cancers11060864] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) ranks among the most common cancers worldwide. Surgical removal remains the best strategy for treatment of resectable tumors. An important part of caring for patients after surgery is monitoring for early detection of a possible relapse of the disease. Efforts are being made to improve the sensitivity and specificity of routinely used carcinoembryonic antigen (CEA) with the use of additional biomarkers such as microRNAs. The aim of our study was to evaluate the prognostic potential of microRNAs and their use as markers of disease recurrence. The quantitative estimation of CEA, CA19-9, and 22 selected microRNAs (TaqMan Advanced miRNA Assays) was performed in 85 paired (preoperative and postoperative) blood plasma samples of CRC patients and in samples taken during the follow-up period. We have revealed a statistically significant decrease in plasma levels for miR-20a, miR-23a, miR-210, and miR-223a (p = 0.0093, p = 0.0013, p = 0.0392, and p = 0.0214, respectively) after surgical removal of the tumor tissue. A statistically significant relation to prognosis (overall survival; OS) was recorded for preoperative plasma levels of miR-20a, miR-21, and miR-23a (p = 0.0236, p = 0.0316, and p =0.0271, respectively) in a subgroup of patients who underwent palliative surgery. The best discrimination between patients with favorable and unfavorable outcomes was achieved by a combination of CEA, CA19-9 with miR-21, miR-20a, and miR-23a (p < 0.0001). The use of these microRNAs for early disease recurrence detection was affected by a low specificity in comparison with CEA and CA19-9. CEA and CA19-9 had high specificity but low sensitivity. Our results show the benefit of combining currently used standard biomarkers and microRNAs for precise prognosis estimation.
Collapse
|
42
|
Wei S, Liu K, He Q, Gao Y, Shen L. PES1 is regulated by CD44 in liver cancer stem cells via miR-105-5p. FEBS Lett 2019; 593:1777-1786. [PMID: 31127852 DOI: 10.1002/1873-3468.13459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Pescadillo (PES1) is a key molecule for ribosome formation in mammalian cells. In this study, human hepatoma C3A cells were reprogrammed by four transcription factors, Oct4, Sox2, Klf4 and c-Myc, into induced cancer stem cells, termed C3A-induced cancer stem cells (C3A-iCSCs). We found that PES1 was up-regulated in C3A-iCSCs and promoted cell proliferation. Moreover, the cancer stem cell marker CD44, which is located in the cytomembrane, translocated to the nucleus and was up-regulated in C3A-iCSCs. Our results suggest that CD44 has a negative effect on miR-105-5p. We found that PES1 is a direct target of, and was negatively regulated by, miR-105-5p. In summary, CD44 regulates PES1 in liver cancer stem cells via miR-105-5p to promote cell growth.
Collapse
Affiliation(s)
- Shiruo Wei
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Kaiyu Liu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qihua He
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Shen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| |
Collapse
|
43
|
Lin M, Zhang Z, Gao M, Yu H, Sheng H, Huang J. MicroRNA-193a-3p suppresses the colorectal cancer cell proliferation and progression through downregulating the PLAU expression. Cancer Manag Res 2019; 11:5353-5363. [PMID: 31354344 PMCID: PMC6578599 DOI: 10.2147/cmar.s208233] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer-related death in China. Dysregulation of microRNAs (miRNAs) is involved in cancer development and progression. Our previous study showed an inverse relationship between miR-193a-3p expression and the prognosis of CRC. However, the exact biological functions of miR-193a-3p in CRC are still poorly understood. This study aimed to explore the role and mechanism of miR-193a-3p in CRC. Methods Real-time PCR and Western blotting were used to examine the expression levels of RNA and protein, respectively. A dual luciferase assay was performed to validate predicted targets of miR-193a-3p. Loss and gain-of-function studies were carried out to reveal the effects and potential mechanism of the miR-193a-3p in the proliferation, metastasis and angiogenesis of CRC cells. Results The expression levels of miR-193a-3p in human CRC cell lines were significantly decreased compared with that in normal colonic epithelium cell line. Furthermore, plasminogen activator urokinase (PLAU) was validated as a direct target gene of miR-193a-3p. Over-expression of miR-193a-3p inhibited proliferation, migration and angiogenesis of HT-29 cell, whereas forced expression of PLAU could rescue the inhibitory effects. Conclusion miR-193a-3p might inhibit CRC cell growth, migration and angiogenesis partly through targeting PLAU. MiR-193a-3p/PLAU axis might provide a potent therapeutic opportunity for aggressive CRC.
Collapse
Affiliation(s)
- Maosong Lin
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Zan Zhang
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Mingjun Gao
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Haihui Sheng
- Shanghai Engineering Center of Molecular Medicine, and National Engineering Center for Biochip, Shanghai 201203, People's Republic of China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| |
Collapse
|
44
|
Xu K, Zhan Y, Yuan Z, Qiu Y, Wang H, Fan G, Wang J, Li W, Cao Y, Shen X, Zhang J, Liang X, Yin P. Hypoxia Induces Drug Resistance in Colorectal Cancer through the HIF-1α/miR-338-5p/IL-6 Feedback Loop. Mol Ther 2019; 27:1810-1824. [PMID: 31208913 DOI: 10.1016/j.ymthe.2019.05.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/12/2019] [Accepted: 05/19/2019] [Indexed: 01/24/2023] Open
Abstract
Hypoxia is associated with poor prognosis and therapeutic resistance in cancer patients. Accumulating evidence has shown that microRNA (miRNA) plays an important role in the acquired drug resistance in colorectal carcinoma (CRC). However, the role of miRNA in hypoxia-induced CRC drug resistance remains to be elucidated. Here, we identified a hypoxia-triggered feedback loop that involves hypoxia-inducible transcription factor 1α (HIF-1α)-mediated repression of miR-338-5p and confers drug resistance in CRC. In this study, the unbiased miRNA array screening revealed that miR-338-5p is downregulated in both hypoxic CRC cell lines tested. Repression of miR-338-5p was required for hypoxia-induced CRC drug resistance. Furthermore, we identified interleukin-6 (IL-6), which mediates STAT3/Bcl2 activation under hypoxic conditions, as a direct miR-338-5p target. The resulting HIF-1α/miR-338-5p/IL-6 feedback loop was necessary for drug resistance in colon cancer cell lines. Using CRC patient samples, we found miR-338-5p has a negative correlation with HIF-1α and IL-6. Finally, in a xenograft model, overexpressing miR-338-5p in CRC cells and HIF-1α inhibitor PX-478 were able to enhance the sensitivity of CRC to oxaliplatin (OXA) via suppressing the HIF-1α/miR-338-5p/IL-6 feedback loop in vivo. Taken together, our results uncovered an HIF-1α/miR-338-5p/IL-6 feedback circuit that is critical in hypoxia-mediated drug resistance in CRC; targeting each member of this feedback loop could potentially reverse hypoxia-induced drug resistance in CRC.
Collapse
Affiliation(s)
- Ke Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
| | - Yueping Zhan
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Yanyan Qiu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Haijing Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jie Wang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yijun Cao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xian Shen
- The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325035, China
| | - Jun Zhang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
45
|
Wang H, Zhao F, Cai S, Pu Y. MiR-193a regulates chemoresistance of human osteosarcoma cells via repression of IRS2. J Bone Oncol 2019; 17:100241. [PMID: 31193934 PMCID: PMC6543196 DOI: 10.1016/j.jbo.2019.100241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022] Open
Abstract
Chemoresistance prevents curative potential of chemotherapy in most cases. MicroRNAs (miRNAs) are key players in regulating chemoresistance in osteosarcoma, which is the most common primary bone cancer. Bisulfite sequencing and quantitative real time PCR analyses showed that miR-193a expression is downregulated by DNA hypermethylation at its promoter region in a chemoresistant cell line, SJSA-1, compared to a chemosensitive cell line G-292. Introduction of a miR-193a mimic in SJSA-1 cells or an antagomir into G-292 cells confirmed the role of miR-193a in osteosarcoma chemoresistance. Bioinformatics together with biochemical assays showed that insulin receptor substrate 2 (IRS2) is a target of miR-193a. Our data concludes that miR-193a plays a role in the osteosarcoma chemoresistance and thus might serve as a useful biomarker for osteosarcoma prognosis.
Collapse
Key Words
- 3PA, miR-193a-3p-antagomir
- 3PM, miR-193a-3p-mimic
- Ago, miR-193a-3p's agomir
- Anta, miR-193a-3p's antagomir
- BSP, Bisulfite Sequencing PCR
- CDDP, cisplatin
- Carb, carboplatin
- Chemoresistance
- DNA methylation
- Dox, doxorubicin
- Etop, etoposide
- IRS2
- IRS2, Insulin Receptor Substrate 2
- MTX, methotrexate
- Mut, mutation-type vector
- OS, osteosarcoma
- Osteosarcoma
- UTR, untranslated region
- WT, wild-type vector
- miR, microRNA
- miR-193a-3p
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Clinical Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Fangfang Zhao
- Department of Laboratory Research Center, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Shanbao Cai
- Department of Orthopedic Surgery, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Youguang Pu
- Department of Laboratory Research Center, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| |
Collapse
|
46
|
McGregor M, Price TJ. Moving miRNAs to therapeutic targets in colorectal cancer. EBioMedicine 2019; 43:13-14. [PMID: 31060899 PMCID: PMC6558254 DOI: 10.1016/j.ebiom.2019.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 10/27/2022] Open
Affiliation(s)
- Mark McGregor
- Department of Medical Oncology, The Queen Elizabeth Hospital, 28 Woodville Road, Woodville 5011, Australia
| | - Timothy J Price
- Department of Medical Oncology, The Queen Elizabeth Hospital, 28 Woodville Road, Woodville 5011, Australia; University of Adelaide, School of Medicine, North Terrace, Adelaide 5000, Australia.
| |
Collapse
|
47
|
Shirafkan N, Shomali N, Kazemi T, Shanehbandi D, Ghasabi M, Baghbani E, Ganji M, Khaze V, Mansoori B, Baradaran B. microRNA-193a-5p inhibits migration of human HT-29 colon cancer cells via suppression of metastasis pathway. J Cell Biochem 2019; 120:8775-8783. [PMID: 30506718 DOI: 10.1002/jcb.28164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE Altered expression of microRNAs (miRNAs) is indicated strongly in colorectal cancer (CRC). This study aims to evaluate the inhibitory role of miR-193a-5p on epithelial-mesenchymal transition markers in CRC lines. The cellular effects and potential mechanisms of miR-193a-5p were also examined. METHODS Quantitative reverse-transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of miR-193a-5p in three CRC cell lines (HCT-116, SW-480, and HT-29) and its impact on metastasis-related genes ( vimentin and CXCR4) before and after mimic transfection. Of those, the cell line with the highest changes was selected for the next upcoming experiments such as wound-healing assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and annexin-V staining tests. RESULTS Our results revealed that miR-193a-5p was significantly downregulated in three CRC cell lines and that HT-29 displayed the most decrease ( P < 0.0001). The restoration of miR-193a-5p in human HT-29 cell line inhibited cell migration. But, miR-193a-5p transfection did not affect cell viability and had no significant effect on apoptosis induction. Also, the quantitative RT-PCR analysis of miR-193a-5p mimic transfected cells revealed a significant increase in miR-193a-5p messenger RNA (mRNA) expression level ( P < 0.0001) with reduction of vimentin and CXCR4 mRNA expression levels in HT-29 cell line ( P < 0.01 and < 0.05, respectively). CONCLUSION Our results indicated that miR-193a-5p acts as a tumor suppressor miRNA and its downregulation plays an important role in metastasis via upregulation of metastasis-related genes in CRC. Therefore, it can be considered as a potential therapeutic target for applying in CRC management in the future.
Collapse
Affiliation(s)
- Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maziar Ganji
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Afshar S, Afshar S, Warden E, Manochehri H, Saidijam M. Application of Artificial Neural Network in miRNA Biomarker Selection and Precise Diagnosis of Colorectal Cancer. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 30056689 PMCID: PMC6462295 DOI: 10.29252/.23.3.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: The early diagnosis of colorectal cancer (CRC) is associated with improved survival rates, and development of novel non-invasive, sensitive, and specific diagnostic tests is highly demanded. The objective of this paper was to identify commonly circulating microRNA (miRNA) biomarkers for use in CRC diagnosis. Methods: An artificial neural network (ANN) model was proposed in this work. Among miRNAs retrieved from the Gene Expression Omnibus dataset, four miRNAs with the best miRNA score were selected by ANN units. Results: The simulation results showed that the designed ANN model could accurately classify the sample data into cancerous or non-cancerous. Furthermore, based on the results of evaluated ANN model, the area under the ROC curve (AUC) of the designed ANN model as well as the regression coefficient between the output of the ANN and the expected output was one. The confusion matrix of the ANN model indicated that all non-cancerous patients were predicted as normal, and the cancerous patients as cancerous. Conclusion: Our findings suggest that the improved model can be used as a robust prediction toolbox for cancer diagnosis. In conclusion, by using ANN, circulatory miRNAs can be used as a non-invasive, sensitive and specific diagnostic marker.
Collapse
Affiliation(s)
- Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Sepideh Afshar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Emily Warden
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Hamed Manochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Hamadan, Iran,Corresponding Author: Massoud Saidijam Research Center for Molecular Medicine, Hamadan University of Medical Science, Hamadan, Iran; Tel.: (+98-813) 8380462; Fax: (+98-813) 8380464; Mobile: (+98-913) 3287903; E-mail:
| |
Collapse
|
49
|
Chu CA, Lee CT, Lee JC, Wang YW, Huang CT, Lan SH, Lin PC, Lin BW, Tian YF, Liu HS, Chow NH. MiR-338-5p promotes metastasis of colorectal cancer by inhibition of phosphatidylinositol 3-kinase, catalytic subunit type 3-mediated autophagy pathway. EBioMedicine 2019; 43:270-281. [PMID: 30982765 PMCID: PMC6557806 DOI: 10.1016/j.ebiom.2019.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background In our preliminary screening, expression of miR-338-5p was found to be higher in primary colorectal cancer (CRC) with metastasis. The autophagy related gene- phosphatidylinositol 3-kinase, catalytic subunit type 3 (PIK3C3) appeared to be targeted by miR-338-5p. Here, we provide solid evidence in support of PIK3C3 involved in miR-338-5p related metastasis of CRC in vitro and in vivo. Methods The potential clinical relevance of miR-338-5p and its target gene was analysed on benign colorectal polyps and primary CRCs by QPCR. Mouse spleen xenograft experiment was performed to examine the importance of miR-338-5p for metastasis. Findings PIK3C3 was one of target genes of miR-338-5p. In primary CRCs, expression of miR-338-5p is positively related to tumour staging, distant metastasis and poor patient survival. Patients with higher ratios of miR-338-5p/PIK3C3 also had significantly poor overall survival, supporting their significance in the progression of CRC. Over-expression of miR-338-5p promotes CRC metastasis to the liver and lung in vivo, in which PIK3C3 was down-regulated in the metastatic tumours. In contrast, overexpression of PIK3C3 in miR-338-5p stable cells inhibited the growth of metastatic tumours. Both migration and invasion of CRC in vitro induced by miR-338-5p are mediated by suppression of PIK3C3. Using forward and reverse approaches, autophagy was proved to involve in CRC migration and invasion induced by miR-338-5p. Interpretation MiR-338-5p induces migration, invasion and metastasis of CRC in part through PIK3C3-related autophagy pathway. The miR-338-5p/PIK3C3 ratio may become a prognostic biomarker for CRC patients. Fund NCKU Hospital, Taiwan, Ministry of Science and Technology, Taiwan.
Collapse
Affiliation(s)
- Chien-An Chu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital Dou-Liou Branch, Douliou City, Yunlin County, Taiwan
| | - Jenq-Chang Lee
- Department of Surgery, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Wen Wang
- Department of Pathology, National Cheng Kung University Hospital, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Tang Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan
| | - Sheng-Hui Lan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Peng-Chan Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Wen Lin
- Department of Surgery, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yu-Feng Tian
- Department of Health & Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan; Division of Colorectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Taiwan.
| | - Nan-Haw Chow
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
50
|
Karimi N, Ali Hosseinpour Feizi M, Safaralizadeh R, Hashemzadeh S, Baradaran B, Shokouhi B, Teimourian S. Serum overexpression of miR-301a and miR-23a in patients with colorectal cancer. J Chin Med Assoc 2019; 82:215-220. [PMID: 30913118 DOI: 10.1097/jcma.0000000000000031] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound vesicles with complex cargoes including proteins, lipids, and nucleic acids. EVs have received significant attention due to their specific features including stability under harsh conditions and involvement in cell-to-cell communication. Circulating EVs and the molecules associated with them are important in the diagnosis and prognosis of cancers. MicroRNAs (miRNAs) are a group of small noncoding RNAs that have a role in regulating gene expression. Current literature shows that circulating miRNAs can be used as noninvasive biomarkers for early detection of cancers. The present study was set to investigate the potential role of serum exosomal miRNA expression levels in colorectal cancer (CRC) patients and evaluate their correlation with clinicopathologic features. METHODS Exosome-enriched fractions were isolated from the serum of 25 CRC patients and 13 age- and sex-matched healthy controls using a polymer-based precipitation method. During the pilot phase, real-time polymerase chain reaction (RT-PCR) was carried out on 12 CRC patients and eight healthy participants to evaluate the expression difference of 11 candidate miRNAs between CRC patients and tumor free subjects. Finally, the results were validated in a separate group, which was similar in size to the pilot group. The clinicopathologic data were also collected and the relationship between aberrant miRNA expression and clinicopathological parameters were investigated. RESULTS There were high expressions of exosomal miR-23a and miR-301a in serum samples of CRC patients compared to normal controls in training and validation phases; these differences were not significantly correlated with clinicopathologic features. Receiver operating characteristic curve analysis showed that miR-301a and miR-23a were able to discriminate CRC patients from normal subjects. CONCLUSION The findings provide evidence on the roles of miR-301a and miR-23a in CRC development and their potential roles as noninvasive biomarkers for early detection of CRC.
Collapse
Affiliation(s)
- Nasibeh Karimi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shahryar Hashemzadeh
- Department of General & Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical sciences, Tabriz, Iran
| | - Behrooz Shokouhi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|