1
|
Shen J, Zhao X, Bai X, Zhu W, Li Z, Yang Z, Wang Q, Ji J. Phosphoproteomic analysis reveals CDK5-Mediated phosphorylation of MTDH inhibits protein synthesis in microglia. Biochem Biophys Res Commun 2024; 735:150669. [PMID: 39260336 DOI: 10.1016/j.bbrc.2024.150669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
CDK5 plays a crucial role in maintaining normal central nervous system (CNS) development and synaptic function, while microglia are the primary immune cells present in the CNS and play vital physiological roles in CNS development, immune surveillance, and regulation of synaptic plasticity. Despite this, our understanding of both the substrate proteins and functional mechanisms of CDK5 in microglia remains limited. To address this, we utilized CRISPR-Cas9 knockout of Cdk5 in BV2 cells and conducted quantitative phosphoproteomics analysis to systematically screen potential CDK5 substrates in microglia. Our findings identified 335 phosphorylation sites on 234 proteins as potential CDK5 substrates in microglia based on the reported sequence motif. Through in vitro kinase assay and intracellular inhibition and knockout of CDK5 experiments, we confirmed that ER proteins MTDH (protein LYRIC) and Calnexin are novel substrate proteins of CDK5. Moreover, we demonstrated for the first time a critical mechanism for regulating protein synthesis in microglia, that the phosphorylation of S565 site on MTDH, a key protein mediating cell growth, by CDK5 inhibits protein synthesis. Our data provide valuable insights for the discovery of new substrate proteins of CDK5 and the in-depth investigation of the function and mechanism of CDK5 in microglia.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zihao Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a distinct head and neck squamous cell carcinoma in its etiological association of Epstein-Barr virus (EBV) infection, hidden anatomical location, remarkable racial and geographical distribution, and high incidence of locoregional recurrence or metastasis. Thanks to the advancements in proteomics in recent decades, more understanding of the disease etiology, carcinogenesis, and progression has been gained, potentially deciphering the molecular characteristics of the malignancy. Areas covered: In this review, we provide an overview of the proteomic aberrations that are likely involved or drive NPC development and progression, focusing on the contributions of major EBV-encoded factors, intercommunication with environment, protein features of high metastasis and therapy resistance, and protein-protein interactions that allow NPC cells to evade immune recognition and elimination. Finally, multistep carcinogenesis and subtypes of NPC from a proteomic perspective are inquired. Expert commentary: Proteomic studies have covered various aspects involved in NPC pathogenesis, yet much remains to be uncovered. Coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation are critical in ensuring the emergence of good science out of NPC proteomics. NPC proteogenomics and proteoform analysis are two promising fields to promote the application of the proteomic findings from bench to bedside.
Collapse
Affiliation(s)
- Zhefeng Xiao
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| | - Zhuchu Chen
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| |
Collapse
|
4
|
Li Z, Li N, Shen L, Fu J. Quantitative Proteomic Analysis Identifies MAPK15 as a Potential Regulator of Radioresistance in Nasopharyngeal Carcinoma Cells. Front Oncol 2018; 8:548. [PMID: 30524968 PMCID: PMC6262088 DOI: 10.3389/fonc.2018.00548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Since resistance to radiotherapy remains refractory for the clinical management of nasopharyngeal cancer (NPC), further understanding the mechanisms of radioresistance is necessary in order to develop more effective NPC treatment and improve prognosis. In this study, an integrated quantitative proteomic approach involving tandem mass tag labeling and liquid chromatograph-mass spectrometer was used to identify proteins potentially responsible for the radioresistance of NPC. The differential radiosensitivity in NPC model cells was examined through clonogenic survival assay, CCK-8 viability assay, and BrdU incorporation analysis. Apoptosis of NPC cells after exposure to irradiation was detected using caspase-3 colorimetric assay. Intracellular reactive oxygen species (ROS) was detected by a dichlorofluorescin diacetate fluorescent probe. In total, 5,946 protein groups were identified, among which 5,185 proteins were quantified. KEGG pathway analysis and protein-protein interaction enrichment analysis revealed robust activation of multiple biological processes/pathways in radioresistant CNE2-IR cells. Knockdown of MAPK15, one up-regulated protein kinase in CNE2-IR cells, significantly impaired clonogenic survival, decreased cell viability and increased cell apoptosis following exposure to irradiation, while over-expression of MAPK15 promoted cell survival, induced radioresistance and reduced apoptosis in NPC cell lines CNE1, CNE2, and HONE1. MAPK15 might regulate radioresistance through attenuating ROS accumulation and promoting DNA damage repair after exposure to irradiation in NPC cells. Quantitative proteomic analysis revealed enormous metabolic processes/signaling networks were potentially involved in the radioresistance of NPC cells. MAPK15 might be a novel potential regulator of radioresistance in NPC cells, and targeting MAPK15 might be useful in sensitizing NPC cells to radiotherapy.
Collapse
Affiliation(s)
- Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University Changsha, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University Changsha, China
| | - Jun Fu
- Department of Oncology, Xiangya Hospital, Central South University Changsha, China
| |
Collapse
|
5
|
Wang K, Chen Z, Long L, Tao Y, Wu Q, Xiang M, Liang Y, Xie X, Jiang Y, Xiao Z, Yan Y, Qiu S, Yi B. iTRAQ-based quantitative proteomic analysis of differentially expressed proteins in chemoresistant nasopharyngeal carcinoma. Cancer Biol Ther 2018; 19:809-824. [PMID: 30067426 DOI: 10.1080/15384047.2018.1472192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly prevalent disease in Southeast Asia. The disease is typically diagnosed in the later stages, and chemotherapy resistance often causes treatment failure. To investigate the underlying mechanisms of drug resistance, we searched for chemoresistant-associated proteins in NPC and drug-resistant NPC cell lines using isobaric tags for relative and absolute quantitation combined with nano liquid chromatography-tandem mass spectrometry. The chemoresistant NPC cell lines CNE1DDP and CNE2DDP were resistant to 1 mg/L cisplatin, had resistant indexes of 4.58 and 2.63, respectively, and clearly grew more slowly than the NPC cell lines CNE1 and CNE2. Using three technical replicates, we identified 690 nonredundant proteins, 56 of which were differentially expressed in both groups of cell lines (CNE1 vs. CNE1DDP and CNE2 vs. CNE2DDP). Gene Ontology, KEGG pathway, and miRNA analyses and protein-protein interactions of differentially expressed proteins showed that proteins TRIM29, HSPB1, CLIC1, ANXA1, and STMN1, among others, may play a role in the mechanisms of chemoresistance in clinical therapy. The chemotherapy-resistant proteomic profiles obtained may allow the identification of novel biomarkers for early detection of chemoresistance in NPC and other cancers.
Collapse
Affiliation(s)
- Kun Wang
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Zhen Chen
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Lu Long
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Ya Tao
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Qiong Wu
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Manlin Xiang
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Yunlai Liang
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Xulin Xie
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Yuan Jiang
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China.,b Department of Clinical Laboratory , Hunan Cancer Hospital , Changsha , Hunan Province , China
| | - Zhiqiang Xiao
- c The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Yahui Yan
- d Department of pathology , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Shiyang Qiu
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Bin Yi
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| |
Collapse
|
6
|
A Review: Proteomics in Nasopharyngeal Carcinoma. Int J Mol Sci 2015; 16:15497-530. [PMID: 26184160 PMCID: PMC4519910 DOI: 10.3390/ijms160715497] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/08/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
Although radiotherapy is generally effective in the treatment of major nasopharyngeal carcinoma (NPC), this treatment still makes approximately 20% of patients radioresistant. Therefore, the identification of blood or biopsy biomarkers that can predict the treatment response to radioresistance and that can diagnosis early stages of NPC would be highly useful to improve this situation. Proteomics is widely used in NPC for searching biomarkers and comparing differentially expressed proteins. In this review, an overview of proteomics with different samples related to NPC and common proteomics methods was made. In conclusion, identical proteins are sorted as follows: Keratin is ranked the highest followed by such proteins as annexin, heat shock protein, 14-3-3σ, nm-23 protein, cathepsin, heterogeneous nuclear ribonucleoproteins, enolase, triosephosphate isomerase, stathmin, prohibitin, and vimentin. This ranking indicates that these proteins may be NPC-related proteins and have potential value for further studies.
Collapse
|
7
|
Dong J, Bruening ML. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:81-100. [PMID: 26001953 DOI: 10.1146/annurev-anchem-071114-040255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.
Collapse
Affiliation(s)
- Jinlan Dong
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824;
| | | |
Collapse
|