1
|
da Costa AABA, Chowdhury D, Shapiro GI, D'Andrea AD, Konstantinopoulos PA. Targeting replication stress in cancer therapy. Nat Rev Drug Discov 2023; 22:38-58. [PMID: 36202931 PMCID: PMC11132912 DOI: 10.1038/s41573-022-00558-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 02/06/2023]
Abstract
Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.
Collapse
Affiliation(s)
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.
| | | |
Collapse
|
2
|
Ponce RKM, Thomas NJ, Bui NQ, Kondo T, Okimoto RA. WEE1 kinase is a therapeutic vulnerability in CIC-DUX4 undifferentiated sarcoma. JCI Insight 2022; 7:152293. [PMID: 35315355 PMCID: PMC8986087 DOI: 10.1172/jci.insight.152293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/09/2022] [Indexed: 01/08/2023] Open
Abstract
CIC-DUX4 rearrangements define an aggressive and chemotherapy-insensitive subset of undifferentiated sarcomas. The CIC-DUX4 fusion drives oncogenesis through direct transcriptional upregulation of cell cycle and DNA replication genes. Notably, CIC-DUX4–mediated CCNE1 upregulation compromises the G1/S transition to confer a dependence on the G2/M cell cycle checkpoint. Through an integrative transcriptional and kinase activity screen using patient-derived specimens, we now show that CIC-DUX4 sarcomas depend on the G2/M checkpoint regulator WEE1 as part of an adaptive survival mechanism. Specifically, CIC-DUX4 sarcomas depended on WEE1 activity to limit DNA damage and unscheduled mitotic entry. Consequently, genetic or pharmacologic WEE1 inhibition in vitro and in vivo led to rapid DNA damage–associated apoptotic induction of patient-derived CIC-DUX4 sarcomas. Thus, we identified WEE1 as a vulnerability targetable by therapeutic intervention in CIC-DUX4 sarcomas.
Collapse
Affiliation(s)
| | | | - Nam Q Bui
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Ross A Okimoto
- Department of Medicine, UCSF, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
3
|
Esposito F, Giuffrida R, Raciti G, Puglisi C, Forte S. Wee1 Kinase: A Potential Target to Overcome Tumor Resistance to Therapy. Int J Mol Sci 2021; 22:ijms221910689. [PMID: 34639030 PMCID: PMC8508993 DOI: 10.3390/ijms221910689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
During the cell cycle, DNA suffers several lesions that need to be repaired prior to entry into mitosis to preserve genome integrity in daughter cells. Toward this aim, cells have developed complex enzymatic machinery, the so-called DNA damage response (DDR), which is able to repair DNA, temporarily stopping the cell cycle to provide more time to repair, or if the damage is too severe, inducing apoptosis. This DDR mechanism is considered the main source of resistance to DNA-damaging therapeutic treatments in oncology. Recently, cancer stem cells (CSCs), which are a small subset of tumor cells, were identified as tumor-initiating cells. CSCs possess self-renewal potential and persistent tumorigenic capacity, allowing for tumor re-growth and relapse. Compared with cancer cells, CSCs are more resistant to therapeutic treatments. Wee1 is the principal gatekeeper for both G2/M and S-phase checkpoints, where it plays a key role in cell cycle regulation and DNA damage repair. From this perspective, Wee1 inhibition might increase the effectiveness of DNA-damaging treatments, such as radiotherapy, forcing tumor cells and CSCs to enter into mitosis, even with damaged DNA, leading to mitotic catastrophe and subsequent cell death.
Collapse
|
4
|
Zeng Z, Lu J, Wang Y, Sheng H, Wang Y, Chen Z, Wu Q, Zheng J, Chen Y, Yang D, Yu K, Mo H, Hu J, Hu P, Liu Z, Ju H, Xu R. The lncRNA XIST/miR-125b-2-3p axis modulates cell proliferation and chemotherapeutic sensitivity via targeting Wee1 in colorectal cancer. Cancer Med 2021; 10:2423-2441. [PMID: 33666372 PMCID: PMC7982616 DOI: 10.1002/cam4.3777] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Background Numerous reports on microRNAs have illustrated their role in tumor growth and metastasis. Recently, a new prognostic factor, miR‐125b‐2‐3p, has been identified for predicting chemotherapeutic sensitivity in advanced colorectal cancer (CRC). However, the specific mechanisms and biological functions of miR‐125b‐2‐3p in advanced CRC under chemotherapy have yet to be elucidated. Methods MiR‐125b‐2‐3p expression was detected by real‐time PCR (RT‐PCR) in CRC tissues. The effects of miR‐125b‐2‐3p on the growth, metastasis, and drug sensitivity of CRC cells were tested in vitro and in vivo. Based on multiple databases, the upstream competitive endogenous RNAs (ceRNAs) and the downstream genes for miR‐125b‐2‐3p were predicted by bioinformatic analysis, followed by the experiments including luciferase reporter assays, western blot assays, and so on. Results MiR‐125b‐2‐3p was significantly lowly expressed in the tissues and cell lines of CRC. Higher expression of miR‐125b‐2‐3p was associated with relatively lower proliferation rates and fewer metastases. Moreover, overexpressed miR‐125b‐2‐3p remarkably improved chemotherapeutic sensitivity of CRC in vivo and in vitro. Mechanistically, miR‐125b‐2‐3p was absorbed by long noncoding RNA (lncRNA) XIST regulating WEE1 G2 checkpoint kinase (WEE1) expression. The upregulation of miR‐125b‐2‐3p inhibited the proliferation and epithelial‐mesenchymal transition (EMT) of CRC induced by lncRNA XIST. Conclusions Lower miR‐125b‐2‐3p expression resulted in lower sensitivity of CRC to chemotherapy and was correlated with poorer survival of CRC patients. LncRNA XIST promoted CRC metastasis acting as a ceRNA for miR‐125b‐2‐3p to mediate WEE1 expression. LncRNA XIST‐miR‐125b‐2‐3p‐WEE1 axis not only regulated CRC growth and metastasis but also contributed to chemotherapeutic resistance to CRC.
Collapse
Affiliation(s)
- Zhao‐lei Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jia‐huan Lu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yun Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hui Sheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying‐nan Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zhan‐hong Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Diseasethe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Qi‐nian Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jia‐Bo Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan‐xing Chen
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dong‐dong Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Kai Yu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hai‐yu Mo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jia‐jia Hu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Pei‐shan Hu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ze‐xian Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Huai‐qiang Ju
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Rui‐Hua Xu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
5
|
Gruener RF, Ling A, Chang YF, Morrison G, Geeleher P, Greene GL, Huang RS. Facilitating Drug Discovery in Breast Cancer by Virtually Screening Patients Using In Vitro Drug Response Modeling. Cancers (Basel) 2021; 13:885. [PMID: 33672646 PMCID: PMC7924213 DOI: 10.3390/cancers13040885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 01/20/2023] Open
Abstract
(1) Background: Drug imputation methods often aim to translate in vitro drug response to in vivo drug efficacy predictions. While commonly used in retrospective analyses, our aim is to investigate the use of drug prediction methods for the generation of novel drug discovery hypotheses. Triple-negative breast cancer (TNBC) is a severe clinical challenge in need of new therapies. (2) Methods: We used an established machine learning approach to build models of drug response based on cell line transcriptome data, which we then applied to patient tumor data to obtain predicted sensitivity scores for hundreds of drugs in over 1000 breast cancer patients. We then examined the relationships between predicted drug response and patient clinical features. (3) Results: Our analysis recapitulated several suspected vulnerabilities in TNBC and identified a number of compounds-of-interest. AZD-1775, a Wee1 inhibitor, was predicted to have preferential activity in TNBC (p < 2.2 × 10-16) and its efficacy was highly associated with TP53 mutations (p = 1.2 × 10-46). We validated these findings using independent cell line screening data and pathway analysis. Additionally, co-administration of AZD-1775 with standard-of-care paclitaxel was able to inhibit tumor growth (p < 0.05) and increase survival (p < 0.01) in a xenograft mouse model of TNBC. (4) Conclusions: Overall, this study provides a framework to turn any cancer transcriptomic dataset into a dataset for drug discovery. Using this framework, one can quickly generate meaningful drug discovery hypotheses for a cancer population of interest.
Collapse
Affiliation(s)
- Robert F. Gruener
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.F.G.); (Y.-F.C.); (G.L.G.)
| | - Alexander Ling
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ya-Fang Chang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.F.G.); (Y.-F.C.); (G.L.G.)
| | - Gladys Morrison
- Committee for Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA;
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.F.G.); (Y.-F.C.); (G.L.G.)
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
6
|
Prognosis, Biology, and Targeting of TP53 Dysregulation in Multiple Myeloma. Cells 2020; 9:cells9020287. [PMID: 31991614 PMCID: PMC7072230 DOI: 10.3390/cells9020287] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological cancer and is characterized by genetic features including translocations, chromosomal copy number aberrations, and mutations in key oncogene and tumor suppressor genes. Dysregulation of the tumor suppressor TP53 is important in the pathogenesis of many cancers, including MM. In newly-diagnosed MM patients, TP53 dysregulation occurs in three subsets: monoallelic deletion as part of deletion of chromosome 17p (del17p) (~8%), monoallelic mutations (~6%), and biallelic inactivation (~4%). Del17p is an established high-risk feature in MM and is included in current disease staging criteria. Biallelic inactivation and mutation have also been reported in MM patients but are not yet included in disease staging criteria for high-risk disease. Emerging clinical and genomics data suggest that the biology of high-risk disease is complex, and so far, traditional drug development efforts to target dysregulated TP53 have not been successful. Here we review the TP53 dysregulation literature in cancer and in MM, including the three segments of TP53 dysregulation observed in MM patients. We propose a reverse translational approach to identify novel targets and disease drivers from TP53 dysregulated patients to address the unmet medical need in this setting.
Collapse
|
7
|
Sequential combination of bortezomib and WEE1 inhibitor, MK-1775, induced apoptosis in multiple myeloma cell lines. Biochem Biophys Res Commun 2019; 519:597-604. [DOI: 10.1016/j.bbrc.2019.08.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/02/2023]
|
8
|
Diab A, Kao M, Kehrli K, Kim HY, Sidorova J, Mendez E. Multiple Defects Sensitize p53-Deficient Head and Neck Cancer Cells to the WEE1 Kinase Inhibition. Mol Cancer Res 2019; 17:1115-1128. [PMID: 30679201 PMCID: PMC6497558 DOI: 10.1158/1541-7786.mcr-18-0860] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/27/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022]
Abstract
The p53 gene is the most commonly mutated gene in solid tumors, but leveraging p53 status in therapy remains a challenge. Previously, we determined that p53 deficiency sensitizes head and neck cancer cells to AZD1775, a WEE1 kinase inhibitor, and translated our findings into a phase I clinical trial. Here, we investigate how p53 affects cellular responses to AZD1775 at the molecular level. We found that p53 modulates both replication stress and mitotic deregulation triggered by WEE1 inhibition. Without p53, slowing of replication forks due to replication stress is exacerbated. Abnormal, γH2AX-positive mitoses become more common and can proceed with damaged or underreplicated DNA. p53-deficient cells fail to properly recover from WEE1 inhibition and exhibit fewer 53BP1 nuclear bodies despite evidence of unresolved damage. A faulty G1-S checkpoint propagates this damage into the next division. Together, these deficiencies can intensify damages in each consecutive cell cycle in the drug. IMPLICATIONS: The data encourage the use of AZD1775 in combination with genotoxic modalities against p53-deficient head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Ahmed Diab
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael Kao
- Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, Washington
| | - Keffy Kehrli
- Department of Pathology, University of Washington, Seattle, Washington
| | - Hee Yeon Kim
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Julia Sidorova
- Department of Pathology, University of Washington, Seattle, Washington.
| | - Eduardo Mendez
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
| |
Collapse
|
9
|
Li Y, Pu Y, Liu H, Zhang L, Liu X, Li Y, Zuo Z. Discovery of novel wee1 inhibitors via structure-based virtual screening and biological evaluation. J Comput Aided Mol Des 2018; 32:901-915. [DOI: 10.1007/s10822-018-0122-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/18/2018] [Indexed: 10/28/2022]
|
10
|
Fu S, Wang Y, Keyomarsi K, Meric-Bernstein F. Strategic development of AZD1775, a Wee1 kinase inhibitor, for cancer therapy. Expert Opin Investig Drugs 2018; 27:741-751. [DOI: 10.1080/13543784.2018.1511700] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yudong Wang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Khandan Keyomarsi
- Department of Experimental Radiation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstein
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Blandino G, Di Agostino S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:30. [PMID: 29448954 PMCID: PMC5815234 DOI: 10.1186/s13046-018-0705-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
The tumor suppressor p53 plays a critical role to preserve DNA fidelity from diverse insults through the regulation of cell-cycle checkpoints, DNA repair, senescence and apoptosis. The TP53 is the most frequently inactivated gene in human cancers. This leads to the production of mutant p53 proteins that loose wild-type p53 tumor suppression functions and concomitantly acquire new oncogenic properties among which deregulated cell proliferation, increased chemoresistance, disruption of tissue architecture, promotion of migration, invasion and metastasis and several other pro-oncogenic activities. Mouse models show that the genetic reconstitution of the wild type p53 tumor suppression functions rescues tumor growth. This strongly supports the notion that either restoring wt-p53 activity or inhibiting mutant p53 oncogenic activity could provide an efficient strategy to treat human cancers. In this review we briefly summarize recent advances in the study of small molecules and compounds that subvert oncogenic activities of mutant p53 protein into wt-p53 tumor suppressor functions. We highlight inhibitors of signaling pathways aberrantly modulated by oncogenic mutant p53 proteins as promising therapeutic strategies. Finally, we consider the clinical applications of compounds targeting mutant p53 and the use of currently available drugs in the treatment of tumors expressing mutant p53 proteins.
Collapse
Affiliation(s)
- Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
12
|
Wang X, Chen Z, Mishra AK, Silva A, Ren W, Pan Z, Wang JH. Chemotherapy-induced differential cell cycle arrest in B-cell lymphomas affects their sensitivity to Wee1 inhibition. Haematologica 2017; 103:466-476. [PMID: 29217775 PMCID: PMC5830367 DOI: 10.3324/haematol.2017.175992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
Chemotherapeutic agents, e.g., cytarabine and doxorubicin, cause DNA damage. However, it remains unknown whether such agents differentially regulate cell cycle arrest in distinct types of B-cell lymphomas, and whether this phenotype can be exploited for developing new therapies. We treated various types of B cells, including primary and B lymphoma cells, with cytarabine or doxorubicin, and determined DNA damage responses, cell cycle regulation and sensitivity to a Wee1 inhibitor. We found that cyclin A2/B1 upregulation appears to be an intrinsic programmed response to DNA damage; however, different types of B cells arrest in distinct phases of the cell cycle. The Wee1 inhibitor significantly enhanced the apoptosis of G2 phase-arrested B-cell lymphomas by inducing premature entry into mitosis and mitotic catastrophe, whereas it did not affect G1/S-phase-arrested lymphomas. Cytarabine-induced G1-arrest can be converted to G2-arrest by doxorubicin treatment in certain B-cell lymphomas, which correlates with newly acquired sensitivity to the Wee1 inhibitor. Consequently, the Wee1 inhibitor together with cytarabine or doxorubicin inhibited tumor growth in vitro and in vivo more effectively, providing a potential new therapy for treating B-cell lymphomas. We propose that the differential cell cycle arrest can be exploited to enhance the chemosensitivity of B-cell lymphomas.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Immunology and Microbiology, Anschutz Medical Campus, Aurora, CO, USA
| | - Zhangguo Chen
- Department of Immunology and Microbiology, Anschutz Medical Campus, Aurora, CO, USA
| | - Ameet K Mishra
- Department of Immunology and Microbiology, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexa Silva
- Department of Immunology and Microbiology, Anschutz Medical Campus, Aurora, CO, USA
| | - Wenhua Ren
- Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Zenggang Pan
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
13
|
Foy V, Schenk MW, Baker K, Gomes F, Lallo A, Frese KK, Forster M, Dive C, Blackhall F. Targeting DNA damage in SCLC. Lung Cancer 2017; 114:12-22. [PMID: 29173760 DOI: 10.1016/j.lungcan.2017.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 02/07/2023]
Abstract
SCLC accounts for 15% of lung cancer worldwide. Characterised by early dissemination and rapid development of chemo-resistant disease, less than 5% of patients survive 5 years. Despite 3 decades of clinical trials there has been no change to the standard platinum and etoposide regimen for first line treatment developed in the 1970's. The exceptionally high number of genomic aberrations observed in SCLC combined with the characteristic rapid cellular proliferation results in accumulation of DNA damage and genomic instability. To flourish in this precarious genomic context, SCLC cells are reliant on functional DNA damage repair pathways and cell cycle checkpoints. Current cytotoxic drugs and radiotherapy treatments for SCLC have long been known to act by induction of DNA damage and the response of cancer cells to such damage determines treatment efficacy. Recent years have witnessed improved understanding of strategies to exploit DNA damage and repair mechanisms in order to increase treatment efficacy. This review will summarise the rationale to target DNA damage response in SCLC, the progress made in evaluating novel DDR inhibitors and highlight various ongoing challenges for their clinical development in this disease.
Collapse
Affiliation(s)
- Victoria Foy
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Maximilian W Schenk
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Katie Baker
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, UK
| | - Fabio Gomes
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Oncologia Medica, Centro Hospitalar Lisboa Central, Lisboa, Portugal
| | - Alice Lallo
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Kristopher K Frese
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Martin Forster
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, UK
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Institute of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
14
|
Nagel R, Semenova EA, Berns A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 2016; 17:1516-1531. [PMID: 27702988 PMCID: PMC5090709 DOI: 10.15252/embr.201643030] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Historically, cancers have been treated with chemotherapeutics aimed to have profound effects on tumor cells with only limited effects on normal tissue. This approach was followed by the development of small‐molecule inhibitors that can target oncogenic pathways critical for the survival of tumor cells. The clinical targeting of these so‐called oncogene addictions, however, is in many instances hampered by the outgrowth of resistant clones. More recently, the proper functioning of non‐mutated genes has been shown to enhance the survival of many cancers, a phenomenon called non‐oncogene addiction. In the current review, we will focus on the distinct non‐oncogenic addictions found in cancer cells, including synthetic lethal interactions, the underlying stress phenotypes, and arising therapeutic opportunities.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Lu W, Lu T, Wei X. Downregulation of DNMT3a expression increases miR-182-induced apoptosis of ovarian cancer through caspase-3 and caspase-9-mediated apoptosis and DNA damage response. Oncol Rep 2016; 36:3597-3604. [DOI: 10.3892/or.2016.5134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
|
16
|
Emerging targets for radioprotection and radiosensitization in radiotherapy. Tumour Biol 2016; 37:11589-11609. [DOI: 10.1007/s13277-016-5117-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/09/2016] [Indexed: 01/12/2023] Open
|
17
|
He J, Liang X, Luo F, Chen X, Xu X, Wang F, Zhang Z. P53 Is Involved in a Three-Dimensional Architecture-Mediated Decrease in Chemosensitivity in Colon Cancer. J Cancer 2016; 7:900-9. [PMID: 27313779 PMCID: PMC4910581 DOI: 10.7150/jca.14506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
Three-dimensional (3D) culture models represent a better approximation of solid tumor tissue architecture, especially cell adhesion, in vivo than two-dimensional (2D) cultures do. Here, we explored the role of architecture in chemosensitivity to platinum in colon cancer. Under the 3D culture condition, colon cancer cells formed multicellular spheroids, consisting of layers of cells. 3D cultures displayed significantly decreased sensitivity to platinum compared with 2D cultures. Platinum increased p53 in a dose-dependent and time-dependent manner. There was no detectable difference in basal p53 levels between 3D cultures and 2D cultures but cisplatin induced less p53 in both HCT116 3D cultures and LoVo 3D cultures. It was not due to cisplatin concentration because cisplatin induced similar γ-H2AX in 3D vs 2D. Knockdown of p53 significantly decreased sensitivity to platinum in 3D cultures. Knockdown of p53 decreased cleaved caspase 3 and apoptosis induced by cisplatin. These findings indicate that 3D architecture confers decreased chemosensitivity to platinum and p53 is involved in the mechanism. Knockdown of p53 decreased cisplatin's induction of c-Jun N-terminal kinase 1/2 (JNK1/2) activation, whereas inhibition of JNK1/2 activation increased chemosensitivity. Inhibition of p38 activation decreased cisplatin's induction of p53, but no difference in p38 activation by cisplatin was observed between 2D cultures and 3D cultures. Taken together, our results suggest that p53 is involved in a 3D architecture-mediated decrease in chemosensitivity to platinum in colon cancer. Mitogen-activated protein kinases (JNK1/2 and p38) do not play a dominant role in the mechanism.
Collapse
Affiliation(s)
- Jianming He
- 1. Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Xi Liang
- 1. Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China;; 2. Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Fen Luo
- 2. Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Xuedan Chen
- 3. Department Of Medical Genetics, Third Military Medical University, Chongqing, 400038 China
| | - Xueqing Xu
- 2. Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Fengchao Wang
- 4. Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Zhenping Zhang
- 5. Department Of Oncology, First Hospital of Shijiazhuang City, Shijiazhuang, Hebei Province, 050011 China
| |
Collapse
|
18
|
Sakurikar N, Eastman A. Critical reanalysis of the methods that discriminate the activity of CDK2 from CDK1. Cell Cycle 2016; 15:1184-8. [PMID: 26986210 DOI: 10.1080/15384101.2016.1160983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cyclin dependent kinases 1 and 2 (CDK1 and CDK2) play crucial roles in regulating cell cycle progression from G1 to S, through S, and G2 to M phase. Both inhibition and aberrant activation of CDK1/2 can be detrimental to cancer cell growth. However, the tools routinely employed to discriminate between the activities of these 2 kinases do not have the selectivity commonly attributed to them. Activation of these kinases is often assayed as a decrease of the inhibitory tyrosine-15 phosphorylation, yet the antibodies used cannot discriminate between phosphorylated CDK1 and CDK2. Inhibitors of these kinases, while partially selective against purified kinases, may lack selectivity when applied to intact cells. High levels of cyclin E are often considered a marker of increased CDK2 activity, yet active CDK2 targets cyclin E for degradation, hence high levels usually reflect inactive CDK2. Finally, inhibition of CDK2 does not arrest cells in S phase suggesting CDK2 is not required for S phase progression. Furthermore, activation of CDK2 in S phase can rapidly induce DNA double-strand breaks in some cell lines. The misunderstandings associated with the use of these tools has led to misinterpretation of results. In this review, we highlight these challenges in the field.
Collapse
Affiliation(s)
- Nandini Sakurikar
- a Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Alan Eastman
- a Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| |
Collapse
|
19
|
Schwaederle M, Daniels GA, Piccioni DE, Kesari S, Fanta PT, Schwab RB, Shimabukuro KA, Parker BA, Kurzrock R. Next generation sequencing demonstrates association between tumor suppressor gene aberrations and poor outcome in patients with cancer. Cell Cycle 2016; 14:1730-7. [PMID: 25928476 PMCID: PMC4614790 DOI: 10.1080/15384101.2015.1033596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Next generation sequencing is transforming patient care by allowing physicians to customize and match treatment to their patients’ tumor alterations. Our goal was to study the association between key molecular alterations and outcome parameters. We evaluated the characteristics and outcomes (overall survival (OS), time to metastasis/recurrence, and best progression-free survival (PFS)) of 392 patients for whom next generation sequencing (182 or 236 genes) had been performed. The Kaplan-Meier method and Cox regression models were used for our analysis, and results were subjected to internal validation using a resampling method (bootstrap analysis). In a multivariable analysis (Cox regression model), the parameters that were statistically associated with a poorer overall survival were the presence of metastases at diagnosis (P = 0.014), gastrointestinal histology (P < 0.0001), PTEN (P < 0.0001), and CDKN2A alterations (P = 0.0001). The variables associated with a shorter time to metastases/recurrence were gastrointestinal histology (P = 0.004), APC (P = 0.008), PTEN (P = 0.026) and TP53 (P = 0.044) alterations. TP53 (P = 0.003) and PTEN (P = 0.034) alterations were independent predictors of a shorter best PFS. A personalized treatment approach (matching the molecular aberration with a cognate targeted drug) also correlated with a longer best PFS (P = 0.046). Our study demonstrated that, across diverse cancers, anomalies in specific tumor suppressor genes (PTEN, CDKN2A, APC, and/or TP53) were independently associated with a worse outcome, as reflected by time to metastases/recurrence, best PFS on treatment, and/or overall survival. These observations suggest that molecular diagnostic tests may provide important prognostic information in patients with cancer.
Collapse
Affiliation(s)
- Maria Schwaederle
- a Center for Personalized Cancer Therapy, and Division of Hematology and Oncology; UCSD Moores Cancer Center ; La Jolla , CA , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity. Proc Natl Acad Sci U S A 2015; 112:15160-5. [PMID: 26598692 DOI: 10.1073/pnas.1505283112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Wee1 cell cycle checkpoint kinase prevents premature mitotic entry by inhibiting cyclin-dependent kinases. Chemical inhibitors of Wee1 are currently being tested clinically as targeted anticancer drugs. Wee1 inhibition is thought to be preferentially cytotoxic in p53-defective cancer cells. However, TP53 mutant cancers do not respond consistently to Wee1 inhibitor treatment, indicating the existence of genetic determinants of Wee1 inhibitor sensitivity other than TP53 status. To optimally facilitate patient selection for Wee1 inhibition and uncover potential resistance mechanisms, identification of these currently unknown genes is necessary. The aim of this study was therefore to identify gene mutations that determine Wee1 inhibitor sensitivity. We performed a genome-wide unbiased functional genetic screen in TP53 mutant near-haploid KBM-7 cells using gene-trap insertional mutagenesis. Insertion site mapping of cells that survived long-term Wee1 inhibition revealed enrichment of G1/S regulatory genes, including SKP2, CUL1, and CDK2. Stable depletion of SKP2, CUL1, or CDK2 or chemical Cdk2 inhibition rescued the γ-H2AX induction and abrogation of G2 phase as induced by Wee1 inhibition in breast and ovarian cancer cell lines. Remarkably, live cell imaging showed that depletion of SKP2, CUL1, or CDK2 did not rescue the Wee1 inhibition-induced karyokinesis and cytokinesis defects. These data indicate that the activity of the DNA replication machinery, beyond TP53 mutation status, determines Wee1 inhibitor sensitivity, and could serve as a selection criterion for Wee1-inhibitor eligible patients. Conversely, loss of the identified S-phase genes could serve as a mechanism of acquired resistance, which goes along with development of severe genomic instability.
Collapse
|
21
|
Wen Y, Li XY, Luo J. Regulatory effect of Wee1 on proliferation of colorectal cancer cells. Shijie Huaren Xiaohua Zazhi 2015; 23:5164-5170. [DOI: 10.11569/wcjd.v23.i32.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of Wee1 and phosphorylated Wee1 protein in colorectal cancer and normal tissues, and analyze the regulatory effect of Wee1 on cell proliferation in the human colorectal cancer cell line HCT116.
METHODS: The expression of Wee1, p-Wee1 (Ser53) and p-Wee1 (Ser642) was detected by immunohistochemistry in colorectal cancer and normal tissues. The changes in Wee1, p-Wee1 (Ser53) and p-Wee1 (Ser642) expression were detected by Western blot in starved HCT116 cells. HCT116 cells were then cultured in medium containing different concentrations of Wee1 inhibitor PD407824. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay, and the morphology of the cells was observed by light microscopy.
RESULTS: The positive rates of Wee1, p-Wee1 (ser53), and p-Wee1 (ser642) expression (68.00%, 85.00% and 91.00%) in colorectal cancer were significantly higher than those in normal tissues (9.62%, 21.15% and 42.31%) (P < 0.05 or P < 0.01). The expression of the Wee1 and its phosphorylated forms rose mainly at 6, 12 and 24 h. The proliferation of HCT116 cells was inhibited by Wee1 inhibitor PD407824.
CONCLUSION: The levels of Wee1 and its phosphorylation forms closely relate to the proliferation of colorectal cancer cells. Wee1 inhibitor may be a potential new treatment for colorectal cancer in the future.
Collapse
|
22
|
Affiliation(s)
- Sabine Mueller
- University of California at San Francisco, San Francisco, CA
| | | |
Collapse
|
23
|
Barrón EV, Roman-Bassaure E, Sánchez-Sandoval AL, Espinosa AM, Guardado-Estrada M, Medina I, Juárez E, Alfaro A, Bermúdez M, Zamora R, García-Ruiz C, Gomora JC, Kofman S, Pérez-Armendariz EM, Berumen J. CDKN3 mRNA as a Biomarker for Survival and Therapeutic Target in Cervical Cancer. PLoS One 2015; 10:e0137397. [PMID: 26372210 PMCID: PMC4570808 DOI: 10.1371/journal.pone.0137397] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/17/2015] [Indexed: 01/07/2023] Open
Abstract
The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, involved in mitosis, is upregulated in cervical cancer (CC). We investigated CDKN3 mRNA as a survival biomarker and potential therapeutic target for CC. CDKN3 mRNA was measured in 134 CC and 25 controls by quantitative PCR. A 5-year survival study was conducted in 121 of these CC patients. Furthermore, CDKN3-specific siRNAs were used to investigate whether CDKN3 is involved in proliferation, migration, and invasion in CC-derived cell lines (SiHa, CaSki, HeLa). CDKN3 mRNA was on average 6.4-fold higher in tumors than in controls (p = 8 x 10−6, Mann-Whitney). A total of 68.2% of CC patients over expressing CDKN3 gene (fold change ≥ 17) died within two years of diagnosis, independent of the clinical stage and HPV type (Hazard Ratio = 5.0, 95% CI: 2.5–10, p = 3.3 x 10−6, Cox proportional-hazards regression). In contrast, only 19.2% of the patients with lower CDKN3 expression died in the same period. In vitro inactivation of CDKN3 decreased cell proliferation on average 67%, although it had no effect on cell migration and invasion. CDKN3 mRNA may be a good survival biomarker and potential therapeutic target in CC.
Collapse
Affiliation(s)
- Eira Valeria Barrón
- Unidad de Medicina Genómica, Facultad de Medicina, Universidad Nacional Autónoma de México/ Hospital General de México, México City, México
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | | | - Ana Laura Sánchez-Sandoval
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Ana María Espinosa
- Unidad de Medicina Genómica, Facultad de Medicina, Universidad Nacional Autónoma de México/ Hospital General de México, México City, México
| | - Mariano Guardado-Estrada
- Unidad de Medicina Genómica, Facultad de Medicina, Universidad Nacional Autónoma de México/ Hospital General de México, México City, México
| | - Ingrid Medina
- Unidad de Medicina Genómica, Facultad de Medicina, Universidad Nacional Autónoma de México/ Hospital General de México, México City, México
| | - Eligia Juárez
- Unidad de Medicina Genómica, Facultad de Medicina, Universidad Nacional Autónoma de México/ Hospital General de México, México City, México
| | - Ana Alfaro
- Unidad de Medicina Genómica, Facultad de Medicina, Universidad Nacional Autónoma de México/ Hospital General de México, México City, México
| | - Miriam Bermúdez
- Unidad de Medicina Genómica, Facultad de Medicina, Universidad Nacional Autónoma de México/ Hospital General de México, México City, México
| | - Rubén Zamora
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
- Laboratorio de Biología Molecular, Asociación para Evitar la Ceguera en México Hospital Dr. Luis Sánchez-Bulnes, México City, México
| | - Carlos García-Ruiz
- Unidad de Medicina Genómica, Facultad de Medicina, Universidad Nacional Autónoma de México/ Hospital General de México, México City, México
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Susana Kofman
- Servicio de Genética, Hospital General de México/Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | - E. Martha Pérez-Armendariz
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | - Jaime Berumen
- Unidad de Medicina Genómica, Facultad de Medicina, Universidad Nacional Autónoma de México/ Hospital General de México, México City, México
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
- * E-mail:
| |
Collapse
|