1
|
Hermelo I, Haapala I, Mäkelä M, Jacome Sanz D, Kontunen A, Karjalainen M, Müller P, Lehtimäki K, Nykter M, Frösén J, Haapasalo H, Roine A, Oksala N, Nordfors K, Vehkaoja A, Haapasalo J. Patient-derived glioma organoids real time identification of IDH mutation, 1p/19q-codeletion and CDKN2A/B homozygous deletion with differential ion mobility spectrometry. J Neurooncol 2024:10.1007/s11060-024-04891-0. [PMID: 39578301 DOI: 10.1007/s11060-024-04891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE Extent of brain tumor resection continues to be one of the central decisions taken during standard of care in glioma patients. Here, we aimed to evaluate the most essential molecular factors, such as IDH (isocitrate dehydrogenase) mutation in gliomas classification with patient-derived glioma organoids (PGOs) using differential mobility spectrometry (DMS). METHODS we prospectively recruited 12 glioma patients, 6 IDH-mutated and 6 IDH wild-type tumors, from which PGOs were generated ex-vivo. Altogether, 320 PGOs DMS spectra were analyzed with a classifier algorithm based on linear discriminant analysis (LDA). RESULTS LDA model classification accuracy (CA) obtained between IDH-mutant and IDH wild-type PGOs was 90% (91% sensitivity and 89% specificity). Furthermore, 1p/19q codeletion classification within IDH mutant PGOs reached 98% CA (93% sensitivity and 99% specificity), while CDKN2A/B homozygous loss status had 86% CA (63% sensitivity 93% specificity). CONCLUSION DMS suitability to differentiate IDH-mutated PGOs was thus validated in ex vivo cultured samples, PGOs. Preliminary results regarding 1p/19q codeleted PGOs and CDKN2A/B loss PGOs identification endorse testing in a prospective intraoperative glioma patient cohort. Our results reveal a sample classification set-up that is compatible with real-time intraoperative surgery guidance.
Collapse
Affiliation(s)
- Ismaïl Hermelo
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland.
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Ilkka Haapala
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Meri Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Dafne Jacome Sanz
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anton Kontunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Markus Karjalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Philipp Müller
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kai Lehtimäki
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juhana Frösén
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | | | - Antti Roine
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Niku Oksala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
- Centre for Vascular Surgery and Interventional Radiology, Tampere University Hospital, Tampere, Finland
| | - Kristiina Nordfors
- Department of Pediatric Hematology and Oncology and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Vehkaoja
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joonas Haapasalo
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland.
- Fimlab Laboratories Ltd., Tampere, Finland.
| |
Collapse
|
2
|
Kivioja T, Posti JP, Sipilä J, Rauhala M, Frantzén J, Gardberg M, Rahi M, Rautajoki K, Nykter M, Vuorinen V, Nordfors K, Haapasalo H, Haapasalo J. Motor dysfunction as a primary symptom predicts poor outcome: multicenter study of glioma symptoms. Front Oncol 2024; 13:1305725. [PMID: 38239655 PMCID: PMC10794640 DOI: 10.3389/fonc.2023.1305725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Background and objectives The objectives of this study were to investigate the prognostic value of primary symptoms and leading symptoms in adult patients with diffuse infiltrating glioma and to provide a clinical perspective for evaluating survival. Methods This study included a retrospective cohort from two tertiary university hospitals (n = 604, 2006-2013, Tampere University Hospital and Turku University Hospital) and a prospective cohort (n = 156, 2014-2018, Tampere University Hospital). Preoperative symptoms were divided into primary and leading symptoms. Results were validated with the newer WHO 2021 classification criteria. Results The most common primary symptoms were epileptic seizure (30.8% retrospective, 28.2% prospective), cognitive disorder (13.2% retrospective, 16.0% prospective), headache (8.6% retrospective, 12.8% prospective), and motor paresis (7.0% retrospective, 7.1% prospective). Symptoms that predicted better survival were epileptic seizure and visual or other sense-affecting symptom in the retrospective cohort and epileptic seizure and headache in the prospective cohort. Predictors of poor survival were cognitive disorder, motor dysfunction, sensory symptom, tumor hemorrhage, speech disorder and dizziness in the retrospective cohort and cognitive disorder, motor dysfunction, sensory symptom, and dizziness in the prospective cohort. Motor dysfunction served as an independent predictor of survival in a multivariate model (OR = 1.636). Conclusion Primary and leading symptoms in diffuse gliomas are associated with prognoses in retrospective and prospective settings. Motor paresis was an independent prognostic factor for poor survival in multivariate analysis for grade 2-4 diffuse gliomas, especially in glioblastomas.
Collapse
Affiliation(s)
- Tomi Kivioja
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Jussi Sipilä
- Department of Neurology, Siun Sote, North Karelia Central Hospital, Joensuu, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Minna Rauhala
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Janek Frantzén
- Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Maria Gardberg
- Turku University Hospital, Tyks Laboratories, Pathology and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Melissa Rahi
- Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Kirsi Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Ville Vuorinen
- Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Hannu Haapasalo
- Fimlab Laboratories Ltd., Tampere University Hospital, Tampere, Finland
| | - Joonas Haapasalo
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd., Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Gretenkort L, Thiesler H, Hildebrandt H. Neuroimmunomodulatory properties of polysialic acid. Glycoconj J 2023; 40:277-294. [PMID: 37171513 DOI: 10.1007/s10719-023-10120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Polymeric sialic acid (polysialic acid, polySia) is a remarkable posttranslational modification of only few select proteins. The major, and most prominent polySia protein carrier is the neural cell adhesion molecule NCAM. Here, the key functions of polySia are to regulate interactions of NCAM and to balance cellular interactions in brain development and plasticity. During recent years, however, increasing evidence points towards a role of polySia in the modulation of immune responses. These immunomodulatory functions can be mediated by polySia on proteins other than NCAM, presented either on the cell surface or released into the extracellular space. This perspective review summarizes our current knowledge and addresses major open questions on polySia and polySia receptors in modulating innate immune responses in the brain.
Collapse
Affiliation(s)
- Lina Gretenkort
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Filppu P, Tanjore Ramanathan J, Granberg KJ, Gucciardo E, Haapasalo H, Lehti K, Nykter M, Le Joncour V, Laakkonen P. CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity. JCI Insight 2021; 6:141486. [PMID: 33986188 PMCID: PMC8262342 DOI: 10.1172/jci.insight.141486] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem cells (GSCs) drive propagation and therapeutic resistance of glioblastomas, the most aggressive diffuse brain tumors. However, the molecular mechanisms that maintain the stemness and promote therapy resistance remain poorly understood. Here we report CD109/STAT3 axis as crucial for the maintenance of stemness and tumorigenicity of GSCs and as a mediator of chemoresistance. Mechanistically, CD109 physically interacts with glycoprotein 130 to promote activation of the IL-6/STAT3 pathway in GSCs. Genetic depletion of CD109 abolished the stemness and self-renewal of GSCs and impaired tumorigenicity. Loss of stemness was accompanied with a phenotypic shift of GSCs to more differentiated astrocytic-like cells. Importantly, genetic or pharmacologic targeting of CD109/STAT3 axis sensitized the GSCs to chemotherapy, suggesting that targeting CD109/STAT3 axis has potential to overcome therapy resistance in glioblastoma.
Collapse
Affiliation(s)
- Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kirsi J. Granberg
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Erika Gucciardo
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Haapasalo
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Kaisa Lehti
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Nordfors K, Haapasalo J, Afyounian E, Tuominen J, Annala M, Häyrynen S, Karhu R, Helén P, Lohi O, Nykter M, Haapasalo H, Granberg KJ. Whole-exome sequencing identifies germline mutation in TP53 and ATRX in a child with genomically aberrant AT/RT and her mother with anaplastic astrocytoma. Cold Spring Harb Mol Case Stud 2018; 4:a002246. [PMID: 29602769 PMCID: PMC5880256 DOI: 10.1101/mcs.a002246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
Brain tumors typically arise sporadically and do not affect several family members simultaneously. In the present study, we describe clinical and genetic data from two patients, a mother and her daughter, with familial brain tumors. Exome sequencing revealed a germline missense mutation in the TP53 and ATRX genes in both cases, and a somatic copy-neutral loss of heterozygosity (LOH) in TP53 in both atypical teratoid/rhabdoid tumor (AT/RT) and astrocytoma tumors. ATRX mutation was associated with the loss of ATRX protein expression. In the astrocytoma case, R132C missense mutation was found in the known hotspot site in isocitrate dehydrogenase 1 (IDH1) and LOH was detected in TP53 The mother carried few other somatic alterations, suggesting that the IDH1 mutation and LOH in TP53 were sufficient to drive tumor development. The genome in the AT/RT tumor was atypically aneuploid: Most chromosomes had experienced copy-neutral LOH or whole-chromosome gains. Only Chromosome 18 had normal diploid status. INI1/hSNF5/SMARCB1 was homozygously deleted in the AT/RT tumor. This report provides further information about tumor development in a predisposed genetic background and describes two special Li-Fraumeni cases with a familial brain tumor.
Collapse
Affiliation(s)
- Kristiina Nordfors
- Department of Pediatrics, Tampere University Hospital, FI-33521 Tampere, Finland
- Tampere Center for Child Health Research, University of Tampere, FI-33014 Tampere, Finland
| | - Joonas Haapasalo
- Unit of Neurosurgery, Tampere University Hospital, FI-33521 Tampere, Finland
| | - Ebrahim Afyounian
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland
| | - Joonas Tuominen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland
| | - Matti Annala
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland
| | - Sergei Häyrynen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland
| | - Ritva Karhu
- Laboratory of Cancer Genetics, University of Tampere and Tampere University Hospital, FI-33521 Tampere, Finland
| | - Pauli Helén
- Unit of Neurosurgery, Tampere University Hospital, FI-33521 Tampere, Finland
| | - Olli Lohi
- Department of Pediatrics, Tampere University Hospital, FI-33521 Tampere, Finland
- Tampere Center for Child Health Research, University of Tampere, FI-33014 Tampere, Finland
| | - Matti Nykter
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland
- Science Center, Tampere University Hospital, FI-33521 Tampere, Finland
| | - Hannu Haapasalo
- Fimlab Laboratories Limited, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Kirsi J Granberg
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland
- Science Center, Tampere University Hospital, FI-33521 Tampere, Finland
| |
Collapse
|