1
|
Murillo-Ortiz BO, García-Corrales K, Martínez-Garza S, Romero-Vázquez MJ, Agustín-Godínez E, Escareño-Gómez A, Silva-Guerrero DG, Mendoza-Ramírez S, Murguia-Perez M. Association of hTERT expression, Her2Neu, estrogen receptors, progesterone receptors, with telomere length before and at the end of treatment in breast cancer patients. Front Med (Lausanne) 2024; 11:1450147. [PMID: 39188883 PMCID: PMC11345256 DOI: 10.3389/fmed.2024.1450147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Background Breast cancer shows significant clinical, morphologic, and molecular variation. Telomeres are nucleoprotein complexes composed of hexanucleotide repeat DNA sequence, TTAGGG, and numerous telomere-associated proteins. The maintenance of telomere length is carried out by a ribonucleoprotein called telomerase, which consists of two main components: a catalytic subunit called hTERT (human telomerase reverse transcriptase) and an RNA template called hTR (human telomerase RNA). The importance of evaluating hTERT expression lies in its potential therapeutic application, being an attractive target due to its almost non-existent expression in normal somatic cells. It is also expected that the anti-neoplastic effect would appear earlier in neoplastic cells with shorter telomeres. Additionally, a significant relationship has been observed between Her2-Neu overexpression and Her2-Neu positivity, which could suggest new combined therapies.The aim of this study was to detect the expression of hTERT, estrogen receptor (ER), progesterone receptor (PR), and HER2-Neu in neoplastic breast tissue embedded in paraffin before treatment and to investigate the relationship between them and with baseline and post-treatment telomere length, as well as with various clinicopathological parameters. Materials and methods A cross-sectional-correlational, 21 women diagnosed with breast cancer at the Oncology Service of the High Specialty Medical Unit No. 1 of Bajio of the Mexican Institute of Social Security. The study complies with the Helsinki Declaration and was approved by the Institutional Ethical Committee of the Mexican Institute of Social Security (R-2019-1001-127). A peripheral blood sample was obtained before oncological treatment and at the end of oncological treatment for the measurement of telomere length by extracting DNA from leukocytes, was performed by the quantitative polymerase chain reaction (PCR) method described by Cawthon. Tumor samples were collected from each patient at the oncology department for immunohistochemical determination of biomarker expression (ER, PR, Her2/neu) and hTERT. Results Of the 21 cases included in the study, the median age was 57.57 years. Eighteen cases were classified as invasive ductal carcinoma NOS (85.71%), 10 were histologic grade 2 (47.61%), 16 cases were hormone receptor positive (76.19%), 7 were Her2Neu positive (33.33%), and only 2 cases were triple negative (9.52%). Positive hTERT expression was detected in 11 cases (52.38%) and was negative in the remaining cases. A significant association was identified between hTERT-positive cases and Her2-Neu positive cases (p = 0.04). Baseline and post-treatment telomere lengths showed a significant difference using the non-parametric Wilcoxon t-test (p = 0.002). In hTERT-positive cases, there was significant telomere shortening at the end of oncological treatment (6.14 ± 1.54 vs. 4.75 ± 1.96 Kb, p = 0.007). Conclusion Positive hTERT immunostaining cases were associated with poor prognostic factors, such as Her2-Neu overexpression and post-treatment telomere shortening. In the future, hTERT immunostaining could be used to select patients for therapies with antagonistic effects on hTERT, as well as in the selection of more appropriate chemotherapy regimens for patients who express it.
Collapse
Affiliation(s)
- Blanca Olivia Murillo-Ortiz
- Unidad de Investigación en Epidemiología Clínica, OOAD Guanajuato, Instituto Mexicano del Seguro Social, León, Mexico
| | - Kenia García-Corrales
- Servicio de Anatomía Patológica, Hospital General de Zona No. 33, Instituto Mexicano del Seguro Social, Bahía de Banderas, Mexico
| | - Sandra Martínez-Garza
- Unidad de Investigación en Epidemiología Clínica, OOAD Guanajuato, Instituto Mexicano del Seguro Social, León, Mexico
| | - Marcos Javier Romero-Vázquez
- Unidad de Investigación en Epidemiología Clínica, OOAD Guanajuato, Instituto Mexicano del Seguro Social, León, Mexico
| | - Eduardo Agustín-Godínez
- Laboratorio de Anatomía Patológica e Inmunohistoquímica Especializada DIME, Hospital Médica Campestre, León, Mexico
| | - Andrea Escareño-Gómez
- Departamento de Patología Quirúrgica, UMAE Hospital de Especialidades No. 1, Centro Médico Nacional Bajío, Instituto Mexicano del Seguro Social, León, Mexico
| | | | | | - Mario Murguia-Perez
- Laboratorio de Anatomía Patológica e Inmunohistoquímica Especializada DIME, Hospital Médica Campestre, León, Mexico
- Departamento de Patología Quirúrgica, UMAE Hospital de Especialidades No. 1, Centro Médico Nacional Bajío, Instituto Mexicano del Seguro Social, León, Mexico
| |
Collapse
|
2
|
Atroosh F, Al-Habori M, Al-Eryani E, Saif-Ali R. Impact of khat (Catha edulis) and oral contraceptive use on telomerase levels and tumor suppressor genes p53 and p21 in normal subjects and breast cancer patients. Sci Rep 2024; 14:16365. [PMID: 39013992 PMCID: PMC11252306 DOI: 10.1038/s41598-024-67355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
This study aimed to evaluate the effects of oral contraceptive (OC) use, khat chewing, and their combined effect on telomerase level and tumor suppressor genes, p53 and p21 in breast cancer (BC) patients and normal volunteers. 140 Yemeni women aged 25-40 years old enrolled, 60 newly diagnosed pretreated BC patients, and 80 control subjects. Venous blood (5 ml) was collected and the results showed BC patients to have significantly raised levels of telomerase, p53, and p21 compared to the control group. The use of OCs significantly raised telomerase in control group with no effect in BC patients; whereas p53 and p21 were significantly increased in BC patients. On the other hand, khat chewing significantly increased p53 in controls and BC patients, whereas p21 was significantly raised in BC patients. The combined use of OCs and khat chewing significantly increased telomerase and p53 in control group, and significantly increased p53 and p21 in BC patients. Telomerase was shown to be a risk factor (OR 4.4) for BC, and the use of OCs was a high-risk factor for increasing telomerase (OR 27.8) in normal subjects. In contrast, khat chewing was shown to be protective (OR 0.142), and the combined use of OCs and khat chewing decreased the risk factor of telomerase from OR 27.8 to 2.1.
Collapse
Affiliation(s)
- Fairooz Atroosh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Republic of Yemen
| | - Molham Al-Habori
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Republic of Yemen.
| | - Ekram Al-Eryani
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Republic of Yemen
| | - Riyadh Saif-Ali
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Republic of Yemen
| |
Collapse
|
3
|
Rastmanesh R, Bowirrat A, Gupta A, Gilley E, Blum K. Anti(angiogenic) food components: can be a major source of bias in the investigation of angiogenesis inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:419. [PMID: 38213800 PMCID: PMC10777223 DOI: 10.21037/atm-23-1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/24/2023] [Indexed: 01/13/2024]
Abstract
Background Natural and diet-derived angiogenesis inhibitors/promotors are widely found in diets. These compounds can in several ways impact the results of oncological research of angiogenesis inhibitors. Methods We very briefly overview some of the most important examples to show how these compounds can create a bias in current research of cancer. Implications of this expert opinion cover similar angiogenesis-related diseases. Results Significant intra-individual differences in terms of dietary intake and differential effect of food processing techniques result in differential bioactivity and bioavailability of these compounds. There are only a handful of validated dietary questionnaire to quantify natural angiogenesis inhibitors/promotors. A corollary consequence is that participants in non-randomized clinical trials will have different baseline levels of serum/plasma/tissue/organ diet-derived angiogenesis inhibitors/promotors. This will lead to creation of clinical uncertainty and a hidden bias and consequently creation of translational efficiency bias, sampling efficiency, and waste of resources. We call for developing and validating a semi-quantitative food frequency questionnaire (FFQ) to gather data on these agents, specifically designed for oncological research because there is a clear gap in the literature of oncology. Conclusions This might facilitate the discovery of better prognostic, diagnostic, preventive measures, and therapeutic agents for the management of different cancers. Implications of this paper cover similar settings like ophthalmologic research.
Collapse
Affiliation(s)
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Elizabeth Gilley
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Sehl ME, Henry JE, Storniolo AM, Horvath S, Ganz PA. The impact of reproductive factors on DNA methylation-based telomere length in healthy breast tissue. NPJ Breast Cancer 2022; 8:48. [PMID: 35418123 PMCID: PMC9007943 DOI: 10.1038/s41523-022-00410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Estrogen promotes breast tissue proliferation and telomerase activation. We investigated the effects of reproductive history on cell cycling and telomere length using a DNA methylation-based estimate of telomere length (DNAmTL) in breast and blood from healthy women donors. We demonstrate that DNAmTL is shorter in breast than in blood, and that nulliparous women have longer age-adjusted DNAmTL in both breast and blood, potentially explaining their higher risk of breast cancer.
Collapse
Affiliation(s)
- Mary E Sehl
- Medicine, Hematology-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,UCLA-Jonsson Comprehensive Cancer Center, Los Angeles, USA.
| | - Jill E Henry
- Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Anna Maria Storniolo
- Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Steve Horvath
- Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, Gonda Research Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Patricia A Ganz
- Medicine, Hematology-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Health Policy and Management, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.,UCLA-Jonsson Comprehensive Cancer Center, Los Angeles, USA
| |
Collapse
|
5
|
Gladych M, Wojtyla A, Rubis B. Human telomerase expression regulation. Biochem Cell Biol 2011; 89:359-76. [DOI: 10.1139/o11-037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells, it has become a very promising target for anti-cancer therapy. A correlation between short telomere length and increased mortality was revealed in many studies. The telomerase expression/activity appears to be one of the most crucial factors to study to improve cancer therapy and prevention. However, this multisubunit enzymatic complex can be regulated at various levels. Thus, several strategies have been proposed to control telomerase in cancer cells such as anti-sense technology against TR and TERT, ribozymes against TERT, anti-estrogens, progesterone, vitamin D, retinoic acid, quadruplex stabilizers, telomere and telomerase targeting agents, modulation of interaction with other proteins involved in the regulation of telomerase and telomeres, etc. However, the transcription control of key telomerase subunits seems to play the crucial role in whole complexes activity and cancer cells immortality. Thus, the research of telomerase regulation can bring significant insight into the knowledge concerning stem cells metabolism but also ageing. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms at the transcription level in human that might become attractive anti-cancer therapy targets.
Collapse
Affiliation(s)
- Marta Gladych
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Aneta Wojtyla
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Blazej Rubis
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| |
Collapse
|
6
|
Lu L, Zhang C, Zhu G, Irwin M, Risch H, Menato G, Mitidieri M, Katsaros D, Yu H. Telomerase expression and telomere length in breast cancer and their associations with adjuvant treatment and disease outcome. Breast Cancer Res 2011; 13:R56. [PMID: 21645396 PMCID: PMC3218945 DOI: 10.1186/bcr2893] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/21/2011] [Accepted: 06/06/2011] [Indexed: 12/16/2022] Open
Abstract
Introduction Telomere length plays important roles in maintaining genome stability and regulating cell replication and death. Telomerase has functions not only to extend telomere length but also to repair DNA damage. Studies have shown that telomerase may increase cancer cell resistance to DNA-damaging anticancer agents; tamoxifen may suppress telomerase expression in breast cancer cells. This study aimed to investigate the role of telomere length and telomerase activity in breast cancer prognosis. Methods qPCR and qRT-PCR were used to analyze telomere length and telomerase expression, respectively, in tumor samples of 348 breast cancer patients. Cox regression analysis was performed to examine telomere length and telomerase expression in association with disease-free survival and cause-specific mortality. Results Telomere length had no relation to tumor features or disease outcomes. Telomerase expression was detected in 53% of tumors. Larger tumors or aggressive disease were more likely to have telomerase expression. Among patients treated with chemotherapy, high telomerase was found to be associated with increased risk of death (hazard ratio (HR) = 3.15; 95% CI: 1.34 to 7.40) and disease recurrence (HR = 2.04; 95% CI: 0.96 to 4.30) regardless of patient age, disease stage, tumor grade, histological type or hormone receptor status. Patients treated with endocrine therapy had different results regarding telomerase: high telomerase appeared to be associated with better survival outcomes. Telomerase expression made no survival difference in patients who received both chemotherapy and endocrine therapy. Conclusions Overall, telomerase expression was not associated with disease outcome, but this finding may be masked by adjuvant treatment. Patients with high telomerase expression responded poorly to chemotherapy in terms of disease-free and overall survival, but fared better if treated with endocrine therapy.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Epidemiology and Public Health, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rashid-Kolvear F, Taboski MAS, Nguyen J, Wang DY, Harrington LA, Done SJ. Troglitazone suppresses telomerase activity independently of PPARgamma in estrogen-receptor negative breast cancer cells. BMC Cancer 2010; 10:390. [PMID: 20650001 PMCID: PMC2915983 DOI: 10.1186/1471-2407-10-390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 07/22/2010] [Indexed: 12/03/2022] Open
Abstract
Background Breast cancer is one the highest causes of female cancer death worldwide. Many standard chemotherapeutic agents currently used to treat breast cancer are relatively non-specific and act on all rapidly dividing cells. In recent years, more specific targeted therapies have been introduced. It is known that telomerase is active in over 90% of breast cancer tumors but inactive in adjacent normal tissues. The prevalence of active telomerase in breast cancer patients makes telomerase an attractive therapeutic target. Recent evidence suggests that telomerase activity can be suppressed by peroxisome proliferator activated receptor gamma (PPARγ). However, its effect on telomerase regulation in breast cancer has not been investigated. Methods In this study, we investigated the effect of the PPARγ ligand, troglitazone, on telomerase activity in the MDA-MB-231 breast cancer cell line. Real time RT-PCR and telomerase activity assays were used to evaluate the effect of troglitazone. MDA-MB-231 cells had PPARγ expression silenced using shRNA interference. Results We demonstrated that troglitazone reduced the mRNA expression of hTERT and telomerase activity in the MDA-MB-231 breast cancer cell line. Troglitazone reduced telomerase activity even in the absence of PPARγ. In agreement with this result, we found no correlation between PPARγ and hTERT mRNA transcript levels in breast cancer patients. Statistical significance was determined using Pearson correlation and the paired Student's t test. Conclusions To our knowledge, this is the first time that the effect of troglitazone on telomerase activity in breast cancer cells has been investigated. Our data suggest that troglitazone may be used as an anti-telomerase agent; however, the mechanism underlying this inhibitory effect remains to be determined.
Collapse
Affiliation(s)
- Fariborz Rashid-Kolvear
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Treeck O, Elemenler E, Kriener C, Horn F, Springwald A, Hartmann A, Ortmann O. Polymorphisms in the promoter region of ESR2 gene and breast cancer susceptibility. J Steroid Biochem Mol Biol 2009; 114:207-11. [PMID: 19429453 DOI: 10.1016/j.jsbmb.2009.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 01/18/2023]
Abstract
Genetic variations like single nucleotide polymorphisms (SNPs) in genes involved in estrogen biosynthesis, metabolism and signal transduction have been suggested to affect breast cancer susceptibility. In this study we tested the hypothesis that polymorphisms in the promoter of ESR2 gene may be associated with increased risk for breast cancer. We analyzed three SNPs in the promoter region of human ESR2 gene by means of allele-specific tetra-primer PCR. A total of 318 sporadic breast cancer cases and 318 age-matched controls were included in the study. With regard to homozygous genotypes, women with sporadic breast cancer more frequently carried the CC genotype of ESR2 promoter SNP rs2987983 (OR 1.99, p=0.005). Calculation of allele positivity demonstrated that presence of T allele of this SNP was more frequent in healthy women. Our data suggest that a SNP in the promoter region of ESR2 gene might be able to affect breast cancer risk. These results further support the emerging hypothesis that ERbeta is an important factor in breast cancer development.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Obstetrics and Gynecology, University of Regensburg, Landshuter Strasse 65, Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Skvortzov DA, Rubzova MP, Zvereva ME, Kiselev FL, Donzova OA. The regulation of telomerase in oncogenesis. Acta Naturae 2009; 1:51-67. [PMID: 22649586 PMCID: PMC3347505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The influence that the expression of the human (glial-derived neurotrophic factor (GDNF)) neurotrophic factor has on the morphology and proliferative activity of embryonic stem cells (SC) of a mouse with R1 lineage, as well as their ability to form embroid bodies (EB), has been studied. Before that, using a PCR (polymerase chain reaction) coupled with reverse transcription, it was shown that, in this very lineage of the embryonic SC, the expression of the receptors' genes is being fulfilled for the neurotropfic RET and GFRα1 glia factor. The mouse's embryonic SC lineage has been obtained, transfected by the human GDNF gene, and has been fused with the "green" fluorescent protein (GFP) gene. The presence of the expression of the human GDNF gene in the cells was shown by northern hybridization and the synthesis of its albuminous product by immunocitochemical coloration with the use of specific antibodies. The reliable slowing-down of the embriod-body formation by the embryonic SC transfected by the GDNF gene has been shown. No significant influence of the expression of the GDNF gene on the morphology and the proliferative activity of the transfected embryonic SCs has been found when compared with the control ones.
Collapse
Affiliation(s)
- D A Skvortzov
- Department of Chemistry, Moscow State University, 119992 Moscow
| | | | | | | | | |
Collapse
|
10
|
Terrin L, Rampazzo E, Pucciarelli S, Agostini M, Bertorelle R, Esposito G, DelBianco P, Nitti D, De Rossi A. Relationship Between Tumor and Plasma Levels of hTERT mRNA in Patients with Colorectal Cancer: Implications for Monitoring of Neoplastic Disease. Clin Cancer Res 2008; 14:7444-51. [DOI: 10.1158/1078-0432.ccr-08-0478] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Salhab M, Jiang WG, Newbold RF, Mokbel K. The expression of gene transcripts of telomere-associated genes in human breast cancer: correlation with clinico-pathological parameters and clinical outcome. Breast Cancer Res Treat 2007; 109:35-46. [PMID: 17616810 DOI: 10.1007/s10549-007-9622-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Telomerase is a ribonucleoprotein enzyme that synthesises telomeres in human germ cells, embryogenesis and in cancer, maintaining chromosomal length, stability and cellular immortality. The hTERT gene is the rate-limiting determinant of telomerase reactivation during immortalization and malignant transformation. Telomeric DNA-binding proteins have been attracting increasing interest due to their essential role in the regulation of telomeric DNA length and in protecting against chromosomal end-to-end fusion. These proteins include hTR, TRF1, TRF2, TANK1, TANK2, POT1, TIN2, EST1, and TEP. This study represents the first comprehensive investigation of the mRNA expression of key telomere-related genes in human breast cancer. METHODS One hundred and twenty seven tumour tissues and 33 normal tissues were analyzed. Levels of transcription of hTERT, hTR, TRF1, TRF2, TANK1, TANK2, POT1, TIN2, EST1, and TEP1 were determined using real-time quantitative PCR. The mRNA expression of these genes was normalized against CK19 and was then analyzed against the pathological parameters and clinical outcome over a 10 year follow up period. RESULTS The mRNA expressions of hTERT, hTR, TANK1, EST1, and TEP1 were higher in tumour samples compared with normal breast tissue. This reached statistical significance for EST1 when comparing good prognosis tumours with normal breast tissue (means=11013 vs 1160, P=0.05). Both hTERT and TEP1 levels significantly predicted overall survival (P=0.012 and 0.005 respectively) and disease-free survival (P=0.0011 and 0.01 respectively). The mRNA levels of TANK2 and POT1 were lower in malignant tissues compared with non-malignant breast tissues and this difference reached statistical significance when comparing the levels in normal tissues with those in advanced tumours (P=0.0008 and P=0.038 respectively). Their levels fell further with increasing tumour's stage and were higher in tumours from patients who remained disease free compared with those who developed local recurrence or distant metastasis or died from breast cancer.TRF2 showed a trend similar to that of TANK2 and POT1. Furthermore, there was a highly significant correlation between TANK1 expression and that of hTERT, hTR, TRF1, TRF2 and EST1, (r=0.533, 0.586, 0.608, 0.644 and 0.551 respectively, P<0.001). CONCLUSIONS Genes encoding telomere-associated proteins display different patterns of mRNA expression in human breast cancer, and in normal breast tissue, suggesting different and sometimes opposing roles in mammary carcinogenesis. hTERT, hTR, TANK1, EST1 and TEP1 seem to be up-regulated, with hTERT and TEP1 correlating with clinical outcome. Conversely, TANK2 and POT1 transcription levels demonstrate a compelling trend to be lower in malignant tissues and lower still in those patients who develop recurrent disease suggesting that TANK2 and POT1 may act as tumour suppressor genes possibly by negatively regulating telomerase activity.
Collapse
Affiliation(s)
- Mohamed Salhab
- St George's University of London, Blackshaw Road, and The Princess Grace Hospital, London, SW17 OQT, UK
| | | | | | | |
Collapse
|