1
|
Alarcón-Sánchez MA, Luna-Bonilla G, Romero-Servin S, Heboyan A. Podoplanin immunoexpression in odontogenic lesions: a systematic review, meta-analysis, and integrated bioinformatic analysis. Diagn Pathol 2024; 19:115. [PMID: 39182093 PMCID: PMC11344317 DOI: 10.1186/s13000-024-01540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Podoplanin (PDPN) is a transmembrane glycoprotein implicated in the pathogenesis of odontogenic lesions (OL). It is localized at the membrane and cytoplasmic level, and its interaction with other proteins could trigger cell proliferation, invasion and migration. The main objective of this systematic review is to explore the immunoexpression pattern of podoplanin in OL. In addition, as secondary objectives, we aimed to compare the immunostaining intensity of PDPN in OL, to analyze its interaction networks by bioinformatic analysis and to highlight its importance as a potential diagnostic marker useful in the pathogenesis of OL. METHODS The protocol was developed following PRISMA and Cochrane guidelines. The digital search was performed in the databases: PubMed/MEDLINE, ScienceDirect, Scopus, Web of Science and Google Schoolar from August 15, 2010 to June 15, 2023. We included cross-sectional and cohort studies that will analyze the pattern of PDPN immunoexpression in OL. Two investigators independently searched for eligible articles, selected titles and abstracts, analyzed full text, conducted data collection, and performed assessment of study quality and risk of bias. In addition, part of the results were summarized through a random-effects meta-analysis. STRING database was used for protein-protein interaction analysis. RESULTS Twenty-nine relevant studies were included. The ages of the subjects ranged from 2 to 89 years, with a mean age of 33.41 years. Twenty-two point two percent were female, 21.4% were male, and in 56.4% the gender of the participants was not specified. A total of 1,337 OL samples were analyzed for PDPN immunoexpression pattern. Ninety-four (7.03%) were dental follicles and germs, 715 (53.47%) were odontogenic cysts, and 528 (39.49%) were odontogenic tumors. Meta-analysis indicated that the immunostaining intensity was significantly stronger in odontogenic keratocysts compared to dentigerous cysts (SMD=3.3(CI=1.85-4.82, p=0.000*). Furthermore, bioinformatic analysis revealed that PECAM-1, TNFRF10B, MSN, EZR and RDX interact directly with PDPN and their expression in OL was demonstrated. CONCLUSIONS The results of the present systematic review support the unique immunoexpression of PDPN as a potential useful diagnostic marker in the pathogenesis of OL.
Collapse
Affiliation(s)
- Mario Alberto Alarcón-Sánchez
- Biomedical Science, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, 39090, Chilpancingo de los Bravo, Guerrero, Mexico.
| | - Getsemani Luna-Bonilla
- Biomedical Science, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, 39090, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Selenne Romero-Servin
- Oral and Maxillofacial Pathology, National School of Higher Studies, Leon Unit of the National Autonomous University of Mexico, Leon, Guanajuato, 37684, Mexico
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, 0025, Armenia.
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, North Karegar St., Tehran, Iran.
| |
Collapse
|
2
|
de Villalaín L, Álvarez-Teijeiro S, Rodríguez-Santamarta T, Fernández del Valle Á, Allonca E, Rodrigo JP, de Vicente JC, García-Pedrero JM. Emerging Role of Decoy Receptor-2 as a Cancer Risk Predictor in Oral Potentially Malignant Disorders. Int J Mol Sci 2023; 24:14382. [PMID: 37762685 PMCID: PMC10531848 DOI: 10.3390/ijms241814382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to evaluate the expression of the senescence markers, Decoy Receptor 2 (DcR2) and Differentiated Embryo-Chondrocyte expressed gen 1 (DEC1), in oral potentially malignant disorders (OPMDs) to ascertain their possible association with oral cancer risk. The immunohistochemical analysis of DcR2 and DEC1 expression (along with p16 and Ki67 expression) was carried out in 60 patients with clinically diagnosed oral leukoplakia. Fifteen cases (25%) subsequently developed an invasive carcinoma. Correlations between protein marker expression, histological grade and oral cancer risk were assessed. DcR2, DEC1 and Ki67 protein expressions were found to correlate significantly with increased oral cancer risk, and also with an increased grade of dysplasia. Multivariate analysis demonstrated that DcR2 and Ki67 expression are independent predictors of oral cancer development. Our results evidence for the first time the potential of DcR2 as an early biomarker to assess oral cancer risk in patients with oral leukoplakia (HR = 59.7, p = 0.015), showing a superior predictive value to histology (HR = 4.225, p = 0.08). These findings reveal that the increased expression of DcR2 and DEC1 occurred frequently in OPMDs. In addition, DcR2 expression emerges as a powerful biomarker for oral cancer risk assessment in patients with oral leukoplakia.
Collapse
Affiliation(s)
- Lucas de Villalaín
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.d.V.); (T.R.-S.); (Á.F.d.V.)
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (S.Á.-T.); (E.A.); (J.P.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tania Rodríguez-Santamarta
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.d.V.); (T.R.-S.); (Á.F.d.V.)
| | - Álvaro Fernández del Valle
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.d.V.); (T.R.-S.); (Á.F.d.V.)
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (S.Á.-T.); (E.A.); (J.P.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Juan P. Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (S.Á.-T.); (E.A.); (J.P.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan Carlos de Vicente
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.d.V.); (T.R.-S.); (Á.F.d.V.)
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (S.Á.-T.); (E.A.); (J.P.R.)
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (S.Á.-T.); (E.A.); (J.P.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Wu W, Wen K, Zhong Y. Research progress in the establishment of pancreatic cancer models and preclinical applications. CANCER INNOVATION 2022; 1:207-219. [PMID: 38089760 PMCID: PMC10686130 DOI: 10.1002/cai2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2024]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor in the digestive system. The transformation of tissue from normal to pancreatic intraepithelial neoplasm is driven by certain oncogenes, among which the mutation rate of the KRAS gene is as high as 90%. Currently, PC has limited treatment options, low therapeutic effects, and poor prognosis. Thus, more effective methods to combat PC are urgently needed. Some models that can more accurately reflect the biological behaviors and genomic characteristics of PC, such as its morphology, pathology, proliferation, and invasion, are being continuously developed. These include genetic engineering models, orthotopic xenograft models, and heterotopic xenograft models. Using these PC models, scientists have further verified promising drugs and potential therapeutic targets for PC treatment. This is of great significance for limiting the progression of PC with clinical intervention, improving patient outcomes, and improving survival rates.
Collapse
Affiliation(s)
- Weizheng Wu
- Departments of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Kunming Wen
- Departments of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Dall’Ora M, Rovesti G, Reggiani Bonetti L, Casari G, Banchelli F, Fabbiani L, Veronesi E, Petrachi T, Magistri P, Di Benedetto F, Spallanzani A, Chiavelli C, Spano MC, Maiorana A, Dominici M, Grisendi G. TRAIL receptors are expressed in both malignant and stromal cells in pancreatic ductal adenocarcinoma. Am J Cancer Res 2021; 11:4500-4514. [PMID: 34659901 PMCID: PMC8493377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023] Open
Abstract
This study assesses the expression of all TNF-related apoptosis-inducing ligand (TRAIL) receptors in pancreatic ductal adenocarcinoma (PDAC) tumor tissue. We aimed to include TRAIL receptor expression as an inclusion parameter in a future clinical study using a TRAIL-based therapy approach for PDAC patients. Considering the emerging influence of PDAC desmoplastic stroma on the efficacy of anti-PDAC therapies, this analysis was extended to tumor stromal cells. Additionally, we performed PDAC stroma characterization. Our retrospective cohort study (N=50) included patients with histologically confirmed PDAC who underwent surgery. The expression of TRAIL receptors (DR4, DR5, DcR1, DcR2, and OPG) in tumor and stromal cells was evaluated by immunohistochemistry (IHC). The amount of tumor stroma was assessed by anti-vimentin IHC and Mallory's trichrome staining. The prognostic impact was determined by the univariate Cox proportional hazards regression model. An extensive expression of functional receptors DR4 and DR5 and a variable expression of decoy receptors were detected in PDAC tumor and stromal cells. Functional receptors were detected also in metastatic tumor and stromal cells. A poor prognosis was associated with low or absent expression of decoy receptors in tumor cells of primary PDAC. After assessing that almost 80% of tumor mass was composed of stroma, we correlated a cellular-dense stroma in primary PDAC with reduced relapse-free survival. We demonstrated that TRAIL functional receptors are widely expressed in PDAC, representing a promising target for TRAIL-based therapies. Further, we demonstrated that a low expression of DcR1 and the absence of OPG in tumor cells, as well as a cellular-dense tumor stroma, could negatively impact the prognosis of PDAC patients.
Collapse
Affiliation(s)
| | - Giulia Rovesti
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Giulia Casari
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Federico Banchelli
- Department of Medical and Surgical Sciences of Children & Adults, Statistics Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Luca Fabbiani
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Elena Veronesi
- Scientific and Technological Park of Medicine “Mario Veronesi”Mirandola 41037, Italy
| | - Tiziana Petrachi
- Scientific and Technological Park of Medicine “Mario Veronesi”Mirandola 41037, Italy
| | - Paolo Magistri
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Andrea Spallanzani
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Chiara Chiavelli
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | | | - Antonino Maiorana
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| |
Collapse
|
5
|
Kim SH, Seung BJ, Bae MK, Lim HY, Cho SH, Sur JH. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) loss in canine mammary carcinoma. Vet Comp Oncol 2021; 20:207-214. [PMID: 34423555 DOI: 10.1111/vco.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 06/13/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022]
Abstract
Escaping apoptosis is a hallmark of cancer. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), a central molecule that regulates the extrinsic apoptotic pathway, has been widely investigated in human oncology; however, investigations focusing on the endogenous expression of TRAIL in canine tumours are lacking. Therefore, we aimed to examine the expression of endogenous TRAIL in canine mammary tumours and analysed its correlation with downstream molecules Fas-associated protein with death domain (FADD) and caspase-3, and to the apoptotic index. A total of 147 samples, classified as normal mammary gland (n = 9), mammary adenoma (n = 30), low-grade carcinoma (n = 42) and high-grade carcinoma (n = 66), were included in the immunohistochemical analyses, and 43 samples with sufficient levels of RNA were analysed via RNA in situ hybridization and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. In immunohistochemistry, TRAIL protein expression was significantly decreased in high-grade carcinoma compared to those in normal mammary gland and adenoma, with similar downregulation of TRAIL mRNA expression. Also, FADD and caspase-3 expression positively correlated with TRAIL expression. However, the apoptotic index was paradoxically elevated in high-grade tumours. Overall, these results suggest that the loss of TRAIL accompanied by dysregulation of TRAIL-induced extrinsic apoptotic pathway molecules could affect malignant progression of canine mammary tumours.
Collapse
Affiliation(s)
- Soo-Hyeon Kim
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Byung-Joon Seung
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Min-Kyung Bae
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ha-Young Lim
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Hee Cho
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Hyang Sur
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Yamamoto J, Miyake K, Han Q, Tan Y, Inubushi S, Sugisawa N, Higuchi T, Tashiro Y, Nishino H, Homma Y, Matsuyama R, Chawla SP, Bouvet M, Singh SR, Endo I, Hoffman RM. Oral recombinant methioninase increases TRAIL receptor-2 expression to regress pancreatic cancer in combination with agonist tigatuzumab in an orthotopic mouse model. Cancer Lett 2020; 492:174-184. [PMID: 32739322 DOI: 10.1016/j.canlet.2020.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Methionine addiction is a fundamental and general hallmark of cancer. Gene expression analysis showed that methionine restriction (MR) of methionine-addicted cancer cells increases TNF-related apoptosis-induced ligand receptor-2 (TRAIL-R2) expression. Here, we determined the effects of MR on TRAIL-R2 targeted therapy in pancreatic cancer by the TRAIL-R2 agonist tigatuzumab. Human pancreatic cancer cell lines were cultured in control or methionine-free medium. The effects of MR on TRAIL-R2 expression and sensitivity to tigatuzumab were evaluated in vitro. An orthotopic pancreatic cancer mouse model was established to evaluate the efficacy of MR using oral recombinant methioninase (o-rMETase), and the efficacy of tigatuzumab and their combination. MR enabled tigatuzumab-induced apoptosis, by increasing TRAIL-R2 expression in pancreatic cancer cells in vitro. The protein expression level of the melanoma-associated antigen MAGED2, which reduces TRAIL-R2 expression, was decreased by MR. In the orthotopic pancreatic cancer mouse model, o-rMETase increased TRAIL-R2 expression level in the tumors and enabled the antitumor efficacy of tigatuzumab. MR, effected by o-rMETase, enabled the efficacy of the TRAIL-R2 agonist tigatuzumab by increasing TRAIL-R2 expression in pancreatic cancer. Our results suggest that o-rMETase has clinical potential for treating pancreatic cancer.
Collapse
Affiliation(s)
- Jun Yamamoto
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Miyake
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | - Sachiko Inubushi
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norihiko Sugisawa
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Higuchi
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yoshihiko Tashiro
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiroto Nishino
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yuki Homma
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
7
|
Dwivedi R, Pandey R, Chandra S, Mehrotra D. Apoptosis and genes involved in oral cancer - a comprehensive review. Oncol Rev 2020; 14:472. [PMID: 32685111 PMCID: PMC7365992 DOI: 10.4081/oncol.2020.472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Oral cancers needs relentless research due to high mortality and morbidity associated with it. Despite of the comparable ease in accessibility to these sites, more than 2/3rd cases are diagnosed in advanced stages. Molecular/genetic studies augment clinical assessment, classification and prediction of malignant potential of oral lesions, thereby reducing its incidence and increasing the scope for early diagnosis and treatment of oral cancers. Herein we aim to review the role of apoptosis and genes associated with it in oral cancer development in order to aid in early diagnosis, prediction of malignant potential and evaluation of possible treatment targets in oral cancer. An internet-based search was done with key words apoptosis, genes, mutations, targets and analysis to extract 72 articles after considering inclusion and exclusion criteria. The knowledge of genetics and genomics of oral cancer is of utmost need in order to stop the rising prevalence of oral cancer. Translational approach and interventions at the early stage of oral cancer, targeted destruction of cancerous cells by silencing or promoting involved genes should be the ideal intervention.
Collapse
Affiliation(s)
- Ruby Dwivedi
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Pandey
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shaleen Chandra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Bisheshar SK, De Ruiter EJ, Devriese LA, Willems SM. The prognostic role of NK cells and their ligands in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 2020; 9:1747345. [PMID: 32363116 PMCID: PMC7185215 DOI: 10.1080/2162402x.2020.1747345] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background : Despite the improvement in therapeutic interventions, 5-year survival rates in Head and Neck Squamous Cell Carcinoma (HNSCC) are limited. HNSCC is an immunogenic cancer type for which molecular stratification markers are lacking. Tumor-infiltrating lymphocytes (TILs) have shown a favorable prognostic role in different cancer types. This study focused on the prognostic role of NK cells in HNSCC. Methods : A systematic search was conducted in Pubmed/Medline and Embase. Articles that correlated the presence of intratumoral NK cells, activating/inhibiting receptors, death receptors, or their ligands with clinicopathologic characteristics or survival were included. A meta-analysis was performed that assessed the association between CD56+ and CD57+ and overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). Results : A pooled analysis indicated a favorable prognostic role of CD56+ and CD57+ NK cells for OS (HR 0.19 CI 0.11-0.35). NK cell markers NKp46 and Granzyme B (GrB) also have a favorable prognostic role. NK cell ligand Fas correlated with better survival and better characteristics. NK cell marker Fas-L, NK cell ligands CEACAM1, RCAS1, CD70 and TRAIL-R, and effector molecules of these ligands, FADD and FAP1, correlated to features of worse prognosis. Conclusion : A favorable prognostic role of NK cells in HNSCC was found in this review. Some studies implied the opposite, indicating the fine balance between pro- and anti-tumor functions of NK cells. Future studies using homogeneous patient cohorts regarding tumor subsite and treatment modality, are necessary to further provide insight into the prognostic role of NK cells.
Collapse
Affiliation(s)
- Sangeeta K. Bisheshar
- Department of Pathology, University Medical Center Utrecht, CX Utrecht 3584, The Netherlands
| | - Emma J. De Ruiter
- Department of Pathology, University Medical Center Utrecht, CX Utrecht 3584, The Netherlands
| | - Lot A. Devriese
- Department of Medical Oncology, University Medical Center Utrecht, CX Utrecht 3584, The Netherlands
| | - Stefan M. Willems
- Department of Pathology, University Medical Center Utrecht, CX Utrecht 3584, The Netherlands
| |
Collapse
|
9
|
Expression of tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) in minor salivary glands and saliva. J Immunol Methods 2019; 476:112681. [PMID: 31629739 DOI: 10.1016/j.jim.2019.112681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to characterize the baseline expression of tumor necrosis factor (tnf)-related apoptosis inducing ligand (TRAIL) in minor salivary glands, gingiva and saliva from healthy individuals. DESIGN Minor salivary gland and gingival tissues were used in the study for immunohistochemical staining. An enzyme-linked immunosorbent assay was used to measure the levels of TRAIL in unstimulated saliva and parotid saliva collected from non-smoking individuals. The salivary levels of TRAIL are presented as secretory output. RESULTS Parotid saliva showed higher secretory output (327.8 ± 41.6 pg/min) for TRAIL compared to unstimulated saliva (212.3 ± 32.1 pg/min; p =0.041). For unstimulated saliva, the young female subjects had the lowest secretory output (119 ± 17.2 pg/min) compared to elderly females (275 ± 62.18 pg/min; p =0.046) and young males (294.4 ± 50.2 pg/min; p =0.021). The ductal cells of salivary glands exhibited the strongest positivity for TRAIL, whereas mucous cells showed no staining for TRAIL. Serous cells displayed an intermediate staining. Gingival tissues showed gradually decreasing staining towards the basal layer. CONCLUSIONS The current study shows that TRAIL is not only expressed by immune cells, but also by the epithelial cells of salivary glands. Saliva contains high concentrations of soluble TRAIL that suggest roles of this protein in the apoptosis of tumor cells.
Collapse
|
10
|
Expression of tumor necrosis factor-related apoptosis-inducing ligand death receptors DR4 and DR5 in human nonmelanoma skin cancer. Am J Dermatopathol 2015; 36:710-7. [PMID: 24212133 DOI: 10.1097/dad.0b013e3182a3d31d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Death receptors 4 and 5 (DR4 and DR5) are cell surface receptors that when activated by their ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in most cancer cells but not in normal cells. Currently, it remains unclear whether DR4 and DR5 are involved in immune surveillance against nonmelanoma skin cancer (NMSC) progression. The aim of this study was to investigate the expression of DR4 and DR5 in NMSC and relate the results to the established clinicopathologic prognostic factors. This study was conducted on about 80 skin specimens from patients with NMSC (40 basal cell carcinoma and 40 squamous cell carcinoma) and diagnosed and confirmed by biopsy. Immunohistochemical analysis for DR4 and DR5 was carried out on formalin-fixed paraffin-embedded sections of skin tissues using avidin-biotin peroxidase method. Significant expression of both DR4 and DR5 was observed in NMSC cases. There was statistically significant association between DR4 and DR5 expression in squamous cell carcinoma and each of tumor site and lymph node metastasis. There was statistically significant association between DR4 expression in basal cell carcinoma and histopathologic subtypes (high expression in nodular type) and between DR5 expression and tumor site (high expression in sun-exposed area). In conclusion, expression of TRAIL receptors that mediate extrinsic apoptotic pathway in NMSC may be suggestive of a reassessment of the suitability of TRAIL-based strategy in future NMSC therapies.
Collapse
|
11
|
TNF-related apoptosis inducing ligand in ocular cancers and ocular diabetic complications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:424019. [PMID: 25834817 PMCID: PMC4365302 DOI: 10.1155/2015/424019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 01/06/2023]
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is an intensively studied cytokine, in particular for its anticancer activity. The discovery that conjunctival sac fluid contains extremely high levels of soluble TRAIL as compared to other body fluids suggested important implications in the context of the immunological surveillance of the eye, in particular of the anterior surface. In this review, we discuss the potential physiopathologic and therapeutic role of the TRAIL/TRAIL receptor system in a variety of ocular cancers. Moreover, since an increasing amount of data has indicated the important biological activities of the TRAIL/TRAIL receptor systems also in a completely different pathologic context such as diabetes mellitus, in the second part of this review we summarize the currently available data on the involvement of TRAIL in the ocular complications of diabetes mellitus as modulator of the inflammatory and angiogenic response in the eye.
Collapse
|
12
|
Lyday B, Chen T, Kesari S, Minev B. Overcoming tumor immune evasion with an unique arbovirus. J Transl Med 2015; 13:3. [PMID: 25592450 PMCID: PMC4307212 DOI: 10.1186/s12967-014-0349-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/01/2014] [Indexed: 12/02/2022] Open
Abstract
Combining dendritic cell vaccination with the adjuvant effect of a strain of dengue virus may be a way to overcome known tumor immune evasion mechanisms. Dengue is unique among viruses as primary infections carry lower mortality than the common cold, but secondary infections carry significant risk of hypovolemic shock. While current immuno-therapies rely on a single axis of attack, this approach combines physiological (hyperthermic reduction of tumor perfusion), immunological (activation of effector cells of the adaptive and innate immune system), and apoptosis-inducing pathways (sTRAIL) to destroy tumor cells. The premise of using multiple mechanisms of action in synergy with a decline in the ability of the tumor cells to employ resistance methods suggests the potential of this combination approach in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Santosh Kesari
- Department of Neurosciences, Translational Neuro-Oncology Laboratories, UC San Diego, La Jolla, CA, 92093, USA. .,Moores UCSD Cancer Center, UC San Diego, La Jolla, CA, 92093, USA.
| | - Boris Minev
- Moores UCSD Cancer Center, UC San Diego, La Jolla, CA, 92093, USA. .,Division of Neurosurgery, UC San Diego, La Jolla, CA, 92093, USA. .,Genelux Corporation, San Diego Science Center, San Diego, CA, 92109, USA.
| |
Collapse
|
13
|
Bertsch U, Röder C, Kalthoff H, Trauzold A. Compartmentalization of TNF-related apoptosis-inducing ligand (TRAIL) death receptor functions: emerging role of nuclear TRAIL-R2. Cell Death Dis 2014; 5:e1390. [PMID: 25165876 PMCID: PMC4454323 DOI: 10.1038/cddis.2014.351] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023]
Abstract
Localized in the plasma membrane, death domain-containing TNF-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induce apoptosis and non-apoptotic signaling when crosslinked by the ligand TRAIL or by agonistic receptor-specific antibodies. Recently, an increasing body of evidence has accumulated that TRAIL receptors are additionally found in noncanonical intracellular locations in a wide range of cell types, preferentially cancer cells. Thus, besides their canonical locations in the plasma membrane and in intracellular membranes of the secretory pathway as well as endosomes and lysosomes, TRAIL receptors may also exist in autophagosomes, in nonmembraneous cytosolic compartment as well as in the nucleus. Such intracellular locations have been mainly regarded as hide-outs for these receptors representing a strategy for cancer cells to resist TRAIL-mediated apoptosis. Recently, a novel function of intracellular TRAIL-R2 has been revealed. When present in the nuclei of tumor cells, TRAIL-R2 inhibits the processing of the primary let-7 miRNA (pri-let-7) via interaction with accessory proteins of the Microprocessor complex. The nuclear TRAIL-R2-driven decrease in mature let-7 enhances the malignancy of cancer cells. This finding represents a new example of nuclear activity of typically plasma membrane-located cytokine and growth factor receptors. Furthermore, this extends the list of nucleic acid targets of the cell surface receptors by pri-miRNA in addition to DNA and mRNA. Here we review the diverse functions of TRAIL-R2 depending on its intracellular localization and we particularly discuss the nuclear TRAIL-R2 (nTRAIL-R2) function in the context of known nuclear activities of other normally plasma membrane-localized receptors.
Collapse
Affiliation(s)
- U Bertsch
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel D-24105, Germany
| | - C Röder
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel D-24105, Germany
| | - H Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel D-24105, Germany
| | - A Trauzold
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel D-24105, Germany
| |
Collapse
|
14
|
Kaposi's sarcoma-associated herpesvirus ORF18 and ORF30 are essential for late gene expression during lytic replication. J Virol 2014; 88:11369-82. [PMID: 25056896 DOI: 10.1128/jvi.00793-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with several human malignances. As saliva is likely the major vehicle for KSHV transmission, we studied in vitro KSHV infection of oral epithelial cells. Through infection of two types of oral epithelial cells, normal human oral keratinocytes (NHOKs) and papilloma-immortalized human oral keratinocyte (HOK16B) cells, we found that KSHV can undergo robust lytic replication in oral epithelial cells. By employing de novo lytic infection of HOK16B cells, we studied the functions of two previously uncharacterized genes, ORF18 and ORF30, during the KSHV lytic cycle. For this purpose, an ORF18-deficient virus and an ORF30-deficient virus were generated using a mutagenesis strategy based on bacterial artificial chromosome (BAC) technology. We found that neither ORF18 nor ORF30 is required for immediately early or early gene expression or viral DNA replication, but each is essential for late gene expression during both de novo lytic replication and reactivation. This critical role of ORF18 and ORF30 in late gene expression was also observed during KSHV reactivation. In addition, global analysis of viral transcripts by RNA sequencing indicated that ORF18 and ORF30 control the same set of viral genes. Therefore, we suggest that these two viral ORFs are involved in the same mechanism or pathway that coregulates the viral late genes as a group. IMPORTANCE While KSHV can infect multiple cell types in vitro, only a few can support a full lytic replication cycle with progeny virions produced. Consequently, KSHV lytic replication is mostly studied through reactivation, which requires chemicals to induce the lytic cycle or overexpression of the viral transcriptional activator, RTA. In this study, we present a robust de novo lytic infection system based on oral epithelial cells. Using this system, we demonstrate the role of two viral ORFs, ORF18 and ORF30, in regulating viral gene expression during KSHV lytic replication. As the major route of KSHV transmission is thought to be via saliva, this new KSHV lytic replication system will have important utility in the field.
Collapse
|
15
|
Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 2013; 8:4399-413. [PMID: 24265551 PMCID: PMC3833323 DOI: 10.2147/ijn.s51881] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are an important class of nanomaterial for a wide range of industrial and biomedical applications. AgNPs have been used as antimicrobial and disinfectant agents due their detrimental effect on target cells. The aim of our study was to determine the cytotoxic effects of biologically synthesized AgNPs using hot aqueous extracts of the mycelia of Ganoderma neo-japonicum Imazeki on MDA-MB-231 human breast cancer cells. METHODS We developed a green method for the synthesis of water-soluble AgNPs by treating silver ions with hot aqueous extract of the mycelia of G. neo-japonicum. The formation of AgNPs was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Furthermore, the toxicity of synthesized AgNPs was evaluated using a series of assays: such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase 3, DNA laddering, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in human breast cancer cells (MDA-MB-231). RESULTS The ultraviolet-visible absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at 420 nm. The X-ray diffraction analysis confirmed that the synthesized AgNPs were single-crystalline, corresponding with the result of transmission electron microscopy. Treatment of MDA-MB-231 breast cancer cells with various concentrations of AgNPs (1-10 μg/mL) for 24 hours revealed that AgNPs could inhibit cell viability and induce membrane leakage in a dose-dependent manner. Cells exposed to AgNPs showed increased reactive oxygen species and hydroxyl radical production. Furthermore, the apoptotic effects of AgNPs were confirmed by activation of caspase 3 and DNA nuclear fragmentation. CONCLUSION The results indicate that AgNPs possess cytotoxic effects with apoptotic features and suggest that the reactive oxygen species generated by AgNPs have a significant role in apoptosis. The present findings suggest that AgNPs could contribute to the development of a suitable anticancer drug, which may lead to the development of a novel nanomedicine for the treatment of cancers.
Collapse
|
16
|
Mathan TSMM, Figdor CG, Buschow SI. Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 2013; 4:372. [PMID: 24282405 PMCID: PMC3825182 DOI: 10.3389/fimmu.2013.00372] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review we will highlight a selection of cell surface proteins expressed by human pDCs that may facilitate communication with other immune cells, and we will discuss the implications of these molecules for pDC-driven immune responses.
Collapse
Affiliation(s)
- Till S M Manuel Mathan
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | | | | |
Collapse
|
17
|
Oncoapoptotic signaling and deregulated target genes in cancers: special reference to oral cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:123-45. [PMID: 23602834 DOI: 10.1016/j.bbcan.2013.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
Abstract
Cancer is a class of diseases characterized by uncontrolled cell growth. The development of cancer takes place in a multi-step process during which cells acquire a series of mutations that eventually lead to unrestrained cell growth and division, inhibition of cell differentiation, and evasion of cell death. Dysregulation of oncoapoptotic genes, growth factors, receptors and their downstream signaling pathway components represent a central driving force in tumor development. The detailed studies of signal transduction pathways for mechanisms of cell growth and apoptosis have significantly advanced our understanding of human cancers, subsequently leading to more effective treatments. Oral squamous cell carcinoma represents a classic example of multi-stage carcinogenesis. It gradually evolves through transitional precursor lesions from normal epithelium to a full-blown metastatic phenotype. Genetic alterations in many genes encoding crucial proteins, which regulate cell proliferation, differentiation, survival and apoptosis, have been implicated in oral cancer. As like other solid tumors, in oral cancer these genes include the ones coding for cell cycle regulators or oncoproteins (e.g. Ras, Myc, cyclins, CDKs, and CKIs), tumor suppressors (e.g. p53 and pRb), pro-survival proteins (e.g. telomerase, growth factors or their receptors), anti-apoptotic proteins (e.g. Bcl2 family, IAPs, and NF-kB), pro-apoptotic proteins (e.g. Bax and BH-3 family, Fas, TNF-R, and caspases), and the genes encoding key transcription factors or elements for signal transduction leading to cell growth and apoptosis. Here we discuss the current knowledge of oncoapoptotic regulation in human cancers with special reference to oral cancers.
Collapse
|
18
|
Pineda DM, Rittenhouse DW, Valley CC, Cozzitorto JA, Burkhart RA, Leiby B, Winter JM, Weber MC, Londin ER, Rigoutsos I, Yeo CJ, Gorospe M, Witkiewicz AK, Sachs JN, Brody JR. HuR's post-transcriptional regulation of Death Receptor 5 in pancreatic cancer cells. Cancer Biol Ther 2012; 13:946-55. [PMID: 22785201 DOI: 10.4161/cbt.20952] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Apoptosis is one of the core signaling pathways disrupted in pancreatic ductal adenocarcinoma (PDA). Death receptor 5 (DR5) is a member of the tumor necrosis factor (TNF)-receptor superfamily that is expressed in cancer cells. Binding of TNF-related apoptosis-inducing ligand (TRAIL) to DR5 is a potent trigger of the extrinsic apoptotic pathway, and numerous clinical trials are based on DR5-targeted therapies for cancer, including PDA. Human antigen R (HuR), an RNA-binding protein, regulates a select number of transcripts under stress conditions. Here we report that HuR translocates from the nucleus to the cytoplasm of PDA cells upon treatment with a DR5 agonist. High doses of DR5 agonist induce cleavage of both HuR and caspase 8. HuR binds to DR5 mRNA at the 5'-untranslated region (UTR) in PDA cells in response to different cancer-associated stressors and subsequently represses DR5 protein expression; silencing HuR augments DR5 protein production by enabling its translation and thus enhances apoptosis. In PDA specimens (n = 53), negative HuR cytoplasmic expression correlated with elevated DR5 expression (odds ratio 16.1, p < 0.0001). Together, these data demonstrate a feedback mechanism elicited by HuR-mediated repression of the key apoptotic membrane protein DR5.
Collapse
Affiliation(s)
- Danielle M Pineda
- Department of Surgery, Division of Surgical Research, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ferronika P, Triningsih FE, Ghozali A, Moeljono A, Rahmayanti S, Shadrina AN, Naim AE, Wudexi I, Arnurisa AM, Nanwani ST, Harijadi A. p63 Cytoplasmic Aberrance is Associated with High Prostate Cancer Stem Cell Expression. Asian Pac J Cancer Prev 2012; 13:1943-8. [DOI: 10.7314/apjcp.2012.13.5.1943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Huong LD, Shin JA, Choi ES, Cho NP, Kim HM, Leem DH, Cho SD. β-Phenethyl isothiocyanate induces death receptor 5 to induce apoptosis in human oral cancer cells via p38. Oral Dis 2012; 18:513-9. [PMID: 22309674 DOI: 10.1111/j.1601-0825.2012.01905.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES β-Phenylethyl isothiocyanate (PEITC) has been demonstrated to fight many types of cancers through various molecular pathways. In this study, we focused on its effect on the induction of apoptosis to inhibit cell growth and molecular mechanism in oral cancer. MATERIALS AND METHODS 3-(4,5-dimethylthiazol-2-yl)-5-(2,4-disulfophenyl)-2-(4 sulfophenyl)-2H-tetrazolium (MTS) assay was used to examine cell viability. The apoptotic effect was investigated using 4'-6-Diamidino-2-phenylindole (DAPI) staining or Western blotting. Inhibitors were used to determine the molecular target and mechanism of PEITC-mediated apoptosis. RESULTS β-Phenylethyl isothiocyanate inhibited the growth of HN22 human oral cancer cells and induced caspase-dependent apoptosis in HN22 cells as evidenced by nuclear fragmentation and the activation of caspase 3. It increased cleaved caspase 8, truncated BID, and death receptor 5 (DR5) through the activation of p38 MAPK. This result was confirmed by blockage of PEITC-induced cleavages of Poly(ADP-ribose) Polymerase, caspase-3, caspase-8, and DR5 by p38 MAPK inhibitor, SB203580. We also found that PEITC activated p38 and augmented DR5 to induce apoptosis in other human oral cancer cells. CONCLUSIONS These results suggest that DR5 is a potential molecular target for PEITC-induced apoptosis in oral cancer via p38 MAPK.
Collapse
Affiliation(s)
- L D Huong
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Brain Korea 21, Chonbuk National University, Jeonju, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Szegezdi E, van der Sloot AM, Mahalingam D, O'Leary L, Cool RH, Muñoz IG, Montoya G, Quax WJ, de Jong S, Samali A, Serrano L. Kinetics in signal transduction pathways involving promiscuous oligomerizing receptors can be determined by receptor specificity: apoptosis induction by TRAIL. Mol Cell Proteomics 2012; 11:M111.013730. [PMID: 22213832 PMCID: PMC3316727 DOI: 10.1074/mcp.m111.013730] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Here we show by computer modeling that kinetics and outcome of signal transduction in case of hetero-oligomerizing receptors of a promiscuous ligand largely depend on the relative amounts of its receptors. Promiscuous ligands can trigger the formation of nonproductive receptor complexes, which slows down the formation of active receptor complexes and thus can block signal transduction. Our model predicts that increasing the receptor specificity of the ligand without changing its binding parameters should result in faster receptor activation and enhanced signaling. We experimentally validated this hypothesis using the cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its four membrane-bound receptors as an example. Bypassing ligand-induced receptor hetero-oligomerization by receptor-selective TRAIL variants enhanced the kinetics of receptor activation and augmented apoptosis. Our results suggest that control of signaling pathways by promiscuous ligands could result in apparent slow biological kinetics and blocking signal transmission. By modulating the relative amount of the different receptors for the ligand, signaling processes like apoptosis can be accelerated or decelerated and even inhibited. It also implies that more effective treatments using protein therapeutics could be achieved simply by altering specificity.
Collapse
Affiliation(s)
- Eva Szegezdi
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lund P, Kotova I, Kedinger V, Khanwalkar H, Voltz E, Hahn WC, Gronemeyer H. Transformation-dependent silencing of tumor-selective apoptosis-inducing TRAIL by DNA hypermethylation is antagonized by decitabine. Mol Cancer Ther 2011; 10:1611-23. [PMID: 21697397 DOI: 10.1158/1535-7163.mct-11-0140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) kills tumor cells selectively. We asked how emerging tumor cells escape elimination by TRAIL and how tumor-specific killing by TRAIL could then be restored. We found that TRAIL expression is consistently downregulated in HRAS(G12V)-transformed cells in stepwise tumorigenesis models derived from four different tissues due to DNA hypermethylation of CpG clusters within the TRAIL promoter. Decitabine de-silenced TRAIL, which remained inducible by interferon, while induction of TRAIL by blocking the HRAS(G12V)-activated mitogen-activated protein kinase pathway was subordinated to epigenetic silencing. Decitabine induced apoptosis through upregulation of endogenous TRAIL in cooperation with favorable regulation of key players acting in TRAIL-mediated apoptosis. Apoptosis induction by exogenously added TRAIL was largely increased by decitabine. In vivo treatment of xenografted human HRAS(G12V)-transformed human epithelial kidney or syngenic mice tumors by decitabine blocked tumor growth induced TRAIL expression and apoptosis. Our results emphasize the potential of decitabine to enhance TRAIL-induced apoptosis in tumors and thus provide a rationale for combination therapies with decitabine to increase tumor-selective apoptosis.
Collapse
Affiliation(s)
- Per Lund
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université de Strasbourg, 1 Rue Laurent Fries, BP 10142, IGBMC, 67404 Illkirch CEDEX, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Sun XS, Bandura-Morgan L, Zacharias W. Induction of Apoptosis in Lung Cancer Cells by TRAIL and L-leucyl-L-leucine Methyl Ester. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jct.2011.23057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Yoldas B, Ozer C, Ozen O, Canpolat T, Dogan I, Griffith TS, Sanlioglu S, Ozluoglu LN. Clinical significance of TRAIL and TRAIL receptors in patients with head and neck cancer. Head Neck 2010; 33:1278-84. [PMID: 21837697 DOI: 10.1002/hed.21598] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/14/2010] [Accepted: 07/29/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a death ligand currently under clinical trials for cancer. The molecular profile of TRAIL and TRAIL receptors has not yet been mapped for patients with laryngeal squamous cell carcinoma (SCC) or patients with oral cavity squamous cell carcinoma (OCSCC). METHODS Paraffin-embedded tissues from 60 patients with laryngeal SCC and 14 patients with OCSCC were retrospectively analyzed using immunohistochemistry. RESULTS An increase in decoy-R1 (DcR1) but a decrease in decoy-R2 (DcR2) expression were observed in patients with laryngeal SCC and in patients with OCSCC compared with control individuals with benign lesions. Clinical and pathologic grading revealed distinctive TRAIL and TRAIL receptor profiles in patients with squamous cell carcinoma of the head and neck (SCCHN). CONCLUSIONS TRAIL and a TRAIL receptor expression profile might be useful to follow-up disease progression by virtue of its connection with clinical staging and pathologic grading in patients with laryngeal SCC.
Collapse
Affiliation(s)
- Burcak Yoldas
- Human Gene Therapy Division of the Department of Medical Genetics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
25
|
De Carvalho DD, Binato R, Pereira WO, Leroy JMG, Colassanti MD, Proto-Siqueira R, Bueno-Da-Silva AEB, Zago MA, Zanichelli MA, Abdelhay E, Castro FA, Jacysyn JF, Amarante-Mendes GP. BCR-ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients. Oncogene 2010; 30:223-33. [PMID: 20838376 DOI: 10.1038/onc.2010.409] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand-TNFSF10 (TRAIL), a member of the TNF-α family and a death receptor ligand, was shown to selectively kill tumor cells. Not surprisingly, TRAIL is downregulated in a variety of tumor cells, including BCR-ABL-positive leukemia. Although we know much about the molecular basis of TRAIL-mediated cell killing, the mechanism responsible for TRAIL inhibition in tumors remains elusive because (a) TRAIL can be regulated by retinoic acid (RA); (b) the tumor antigen preferentially expressed antigen of melanoma (PRAME) was shown to inhibit transcription of RA receptor target genes through the polycomb protein, enhancer of zeste homolog 2 (EZH2); and (c) we have found that TRAIL is inversely correlated with BCR-ABL in chronic myeloid leukemia (CML) patients. Thus, we decided to investigate the association of PRAME, EZH2 and TRAIL in BCR-ABL-positive leukemia. Here, we demonstrate that PRAME, but not EZH2, is upregulated in BCR-ABL cells and is associated with the progression of disease in CML patients. There is a positive correlation between PRAME and BCR-ABL and an inverse correlation between PRAME and TRAIL in these patients. Importantly, knocking down PRAME or EZH2 by RNA interference in a BCR-ABL-positive cell line restores TRAIL expression. Moreover, there is an enrichment of EZH2 binding on the promoter region of TRAIL in a CML cell line. This binding is lost after PRAME knockdown. Finally, knocking down PRAME or EZH2, and consequently induction of TRAIL expression, enhances Imatinib sensibility. Taken together, our data reveal a novel regulatory mechanism responsible for lowering TRAIL expression and provide the basis of alternative targets for combined therapeutic strategies for CML.
Collapse
Affiliation(s)
- D D De Carvalho
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bilski A, Pasz-Walczak G, Kubiak R, Sek P, Chalubinska J, Fendler W, Wronski K, Piekarska A, Pluta P, Potemski P, Jeziorski A, Piekarski J. TRAIL protein expression in breast cancer cells correlates with nuclear grade. Arch Med Sci 2010; 6:545-51. [PMID: 22371798 PMCID: PMC3284069 DOI: 10.5114/aoms.2010.14466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/15/2009] [Accepted: 01/02/2010] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION TRAIL protein may serve as an escape mechanism for cancer cells from the immune response. The aim of the study was to assess whether the presence of TRAIL protein correlates with unfavourable prognostic factors in breast carcinoma. MATERIAL AND METHODS The study group was composed of breast cancer patients treated surgically in the Department of Surgical Oncology, Medical University of Lodz, Poland, from January to December 2003. Inclusion criteria for the study were fulfilled by 117 women. The immunohistochemical study of TRAIL protein expression was performed in 118 breast carcinomas diagnosed in the study group. TRAIL protein expression was correlated with other variables: tumour size, lymph node status, grade, histological type of carcinoma, oestrogen and progesterone receptor status, HER2 expression, presence of lymphovascular invasion and age of the patient. RESULTS Expression of TRAIL protein was present in 73% of breast carcinomas. The percentage of TRAIL-expressing breast carcinoma cells correlated with the nuclear grade (τ = 0.26, p < 0.05; Tau Kendall test). The intensity of TRAIL expression (intensity of staining) in breast carcinoma cells correlated with the nuclear grade (τ = 0.15, p < 0.05; Tau Kendall test). TRAIL expression in breast carcinoma did not correlate with other studied variables. CONCLUSIONS Our analysis revealed that expression of TRAIL protein in breast carcinoma cells correlates with nuclear grade of carcinoma.
Collapse
Affiliation(s)
- Adam Bilski
- Department of Surgical Oncology, Chair of Oncology, Medical University of Lodz, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The extrinsic apoptosis pathway and its prognostic impact in ovarian cancer. Gynecol Oncol 2010; 116:549-55. [DOI: 10.1016/j.ygyno.2009.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/31/2009] [Accepted: 09/06/2009] [Indexed: 12/31/2022]
|
28
|
Secchiero P, Lamberti G, Corallini F, Melloni E, Guarnotta C, Sebastiani A, Zauli G. Conjunctival sac fluid contains elevated levels of soluble TRAIL: Implications for the anti-tumoral surveillance of the anterior surface of the eye. J Cell Physiol 2009; 218:199-204. [DOI: 10.1002/jcp.21589] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A. TRAIL receptor signalling and modulation: Are we on the right TRAIL? Cancer Treat Rev 2008; 35:280-8. [PMID: 19117685 DOI: 10.1016/j.ctrv.2008.11.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/03/2008] [Accepted: 11/13/2008] [Indexed: 01/16/2023]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand or Apo2 ligand (TRAIL/Apo2L) is a member of the tumour necrosis factor (TNF) superfamily of cytokines that induces apoptosis upon binding to its death domain-containing transmembrane receptors, death receptors 4 and 5 (DR4, DR5). Importantly, TRAIL preferentially induces apoptosis in cancer cells while exhibiting little or no toxicity in normal cells. To date, research has focused on the mechanism of apoptosis induced by TRAIL and the processes involved in the development of TRAIL resistance. TRAIL-resistant tumours can be re-sensitized to TRAIL by a combination of TRAIL with chemotherapeutics or irradiation. Studies suggest that in many cancer cells only one of the two death-inducing TRAIL receptors is functional. These findings as well as the aim to avoid decoy receptor-mediated neutralization of TRAIL led to the development of receptor-specific TRAIL variants and agonistic antibodies. These molecules are predicted to be more potent than native TRAIL in vivo and may be suitable for targeted treatment of particular tumours. This review focuses on the current status of TRAIL receptor-targeting for cancer therapy, the apoptotic signalling pathway induced by TRAIL receptors, the prognostic implications of TRAIL receptor expression and modulation of TRAIL sensitivity of tumour cells by combination therapies. The mechanisms of TRAIL resistance and the potential measures that can be taken to overcome them are also addressed. Finally, the status of clinical trials of recombinant TRAIL and DR4-/DR5-specific agonistic antibodies as well as the pre-clinical studies of receptor-selective TRAIL variants is discussed including the obstacles facing the use of these molecules as anti-cancer therapeutics.
Collapse
Affiliation(s)
- Devalingam Mahalingam
- Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | | | | | |
Collapse
|
30
|
Leverkus M, Diessenbacher P, Geserick P. FLIP ing the coin? Death receptor-mediated signals during skin tumorigenesis. Exp Dermatol 2008; 17:614-22. [PMID: 18558995 DOI: 10.1111/j.1600-0625.2008.00728.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Keratinocyte skin cancer is a multi-step process, during which a number of obstacles have to be overcome by the tumor cell to allow the development of a manifest tumor. Beside proliferation and immortality, apoptosis resistance is one additional and critical step during skin carcinogenesis. Over the past two decades, much has been learned about the prototypical membrane-bound inducers of apoptosis, namely the death receptors and their ligands, and the apoptosis signalling pathways activated by death receptors have been elucidated in great detail. In contrast, much less is known about the tissue-specific role of the death receptor/ligands systems during the development of skin cancer. Here, we summarize and discuss the role of this intriguing receptor family and the potential mechanistical impact of the intracellular caspase-8 inhibitor cFLIP for keratinocyte skin cancer. Given more recent data about cFLIP and its isoforms, a more complex regulatory role of cFLIP can be suspected. Indeed, cFLIP may not solely interfere with death receptor-mediated apoptosis signalling pathways, but may positively or negatively influence other, potential harmful signalling pathways such as the production of inflammatory cytokines, tumor cell migration or the activation of transcription factors such as NF-kappaB, considered crucial during skin tumorigenesis. In this respect, cFLIP may act to 'FLIP the coin' during the development of keratinocyte skin cancer.
Collapse
Affiliation(s)
- Martin Leverkus
- Department of Dermatology and Venerology, Laboratory for Experimental Dermatology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | | | | |
Collapse
|
31
|
Wong DT. Salivary Diagnostics: Amazing as it might seem, doctors can detect and monitor diseases using molecules found in a sample of spit. AMERICAN SCIENTIST 2008; 96:37-43. [PMID: 19750202 DOI: 10.1511/2008.69.3669] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David T Wong
- UCLA School of Dentistry, 73-017 CHS, 10833 Le Conte Ave., Los Angeles, CA 90095-1668. Internet:
| |
Collapse
|