1
|
Alneyadi A, Nizami ZN, Aburawi HE, Hisaindee S, Nawaz M, Attoub S, Ramadan G, Benhalilou N, Al Azzani M, Elmahi Y, Almeqbali A, Muhammad K, Eid AH, Vijayan R, Iratni R. Synthesis of New Chromene Derivatives Targeting Triple-Negative Breast Cancer Cells. Cancers (Basel) 2023; 15:2682. [PMID: 37345018 DOI: 10.3390/cancers15102682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 05/06/2023] [Indexed: 06/23/2023] Open
Abstract
Breast cancer continues to be the leading cause of cancer-related deaths among women worldwide. The most aggressive type of breast cancer is triple-negative breast cancer (TNBC). Indeed, not only does TNBC not respond well to several chemotherapeutic agents, but it also frequently develops resistance to various anti-cancer drugs, including taxane mitotic inhibitors. This necessitates the search for newer, more efficacious drugs. In this study, we synthesized two novel chromene derivatives (C1 and C2) and tested their efficacy against a battery of luminal type A and TNBC cell lines. Our results show that C1 and C2 significantly and specifically inhibited TNBC cell viability but had no effect on the luminal A cell type. In addition, these novel compounds induced mitotic arrest, cell multinucleation leading to senescence, and apoptotic cell death through the activation of the extrinsic pathway. We also showed that the underlying mechanisms for these actions of C1 and C2 involved inhibition of microtubule polymerization and disruption of the F-actin cytoskeleton. Furthermore, both compounds significantly attenuated migration of TNBC cells and inhibited angiogenesis in vitro. Finally, we performed an in silico analysis, which revealed that these novel variants bind to the colchicine binding site in β-tubulin. Taken together, our data highlight the potential chemotherapeutic properties of two novel chromene compounds against TNBC.
Collapse
Affiliation(s)
- Aysha Alneyadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Hanan E Aburawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Soleiman Hisaindee
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Gaber Ramadan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nehla Benhalilou
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Yassine Elmahi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Aysha Almeqbali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
AB186 Inhibits Migration of Triple-Negative Breast Cancer Cells and Interacts with α-Tubulin. Int J Mol Sci 2022; 23:ijms23126859. [PMID: 35743305 PMCID: PMC9225035 DOI: 10.3390/ijms23126859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related death among females worldwide. A major challenge is to develop innovative therapy in order to treat breast cancer subtypes resistant to current treatment. In the present study, we examined the effects of two Troglitazone derivatives Δ2-TGZ and AB186. Previous studies showed that both compounds induce apoptosis, nevertheless AB186 was a more potent agent. The kinetic of cellular events was investigated by real-time cell analysis system (RTCA) in MCF-7 (hormone dependent) and MDA-MB-231 (triple negative) breast cancer (TNBC) cells, followed by cell morphology analysis by immuno-localization. Both compounds induced a rapid modification of both impedance-based signals and cellular morphology. This process was associated with an inhibition of cell migration measured by wound healing and transwell assays in TNBC MDA-MB-231 and Hs578T cells. In order to identify cytoplasmic targets of AB186, we performed surface plasmon resonance (SPR) and pull-down analyses. Subsequently, 6 cytoskeleton components were identified as potential targets. We further validated α-tubulin as one of the direct targets of AB186. In conclusion, our results suggested that AB186 could be promising to develop novel therapeutic strategies to treat aggressive forms of breast cancer such as TNBC.
Collapse
|
3
|
Cheng H, Mollica MY, Lee SH, Wang L, Velázquez-Martínez CA, Wu S. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion. Toxicol Appl Pharmacol 2012; 264:161-6. [PMID: 22889880 DOI: 10.1016/j.taap.2012.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 11/20/2022]
Abstract
A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20-30% and fibronectin by 25-44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (~56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion.
Collapse
Affiliation(s)
- Huiwen Cheng
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|
4
|
PPARγ Promotes Growth and Invasion of Thyroid Cancer Cells. PPAR Res 2011; 2011:171765. [PMID: 22194735 PMCID: PMC3236353 DOI: 10.1155/2011/171765] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/17/2011] [Indexed: 11/17/2022] Open
Abstract
Undifferentiated (anaplastic) thyroid cancer (ATC) is one of the most aggressive human malignancies and no effective therapy is currently available. We show here that PPARγ levels are elevated in cells derived from ATC. Depletion of PPARγ in HTh74 ATC cells resulted in decreased cell growth, cell cycle arrest and a reduction in pRb and cyclin A and B1 levels. We further showed that both flank and orthotopic thyroid tumors derived from PPARγ-depleted cells grew more slowly than PPARγ-expressing cells. When PPARγ was overexpressed in more differentiated thyroid cancer BCPAP cells which lack PPARγ, there was increased growth and raised pRb and cyclin A and B1 levels. Finally, PPARγ depletion in ATC cells decreased their invasive capacity whereas overexpression in PTC cells increased invasiveness. These data suggest that PPARγ may play a detrimental role in thyroid cancer and that targeting it therapeutically may lead to improved treatment of advanced thyroid cancer.
Collapse
|
5
|
Ho TC, Chen SL, Shih SC, Chang SJ, Yang SL, Hsieh JW, Cheng HC, Chen LJ, Tsao YP. Pigment epithelium-derived factor (PEDF) promotes tumor cell death by inducing macrophage membrane tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 2011; 286:35943-35954. [PMID: 21846721 DOI: 10.1074/jbc.m111.266064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is an intrinsic anti-angiogenic factor and a potential anti-tumor agent. The tumoricidal mechanism of PEDF, however, has not been fully elucidated. Here we report that PEDF induces the apoptosis of TC-1 and SK-Hep-1 tumor cells when they are cocultured with bone marrow-derived macrophages (BMDMs). This macrophage-mediated tumor killing is prevented by blockage of TNF-related apoptosis-inducing ligand (TRAIL) following treatment with the soluble TRAIL receptor. PEDF also increases the amount of membrane-bound TRAIL on cultured mouse BMDMs and on macrophages surrounding subcutaneous tumors. PEDF-induced tumor killing and TRAIL induction are abrogated by peroxisome proliferator-activated receptor γ (PPARγ) antagonists or small interfering RNAs targeting PPARγ. PEDF also induces PPARγ in BMDMs. Furthermore, the activity of the TRAIL promoter in human macrophages is increased by PEDF stimulation. Chromatin immunoprecipitation and DNA pull-down assays confirmed that endogenous PPARγ binds to a functional PPAR-response element (PPRE) in the TRAIL promoter, and mutation of this PPRE abolishes the binding of the PPARγ-RXRα heterodimer. Also, PPARγ-dependent transactivation and PPARγ-RXRα binding to this PPRE are prevented by PPARγ antagonists. Our results provide a novel mechanism for the tumoricidal activity of PEDF, which involves tumor cell killing via PPARγ-mediated TRAIL induction in macrophages.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Show-Li Chen
- Department of Microbiology, School of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shou-Chuan Shih
- Department of Gastroenterology, Mackay Memorial Hospital, Taipei 104, Taiwan; Mackay Medicine, Nursing, and Management College, Taipei 112, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan; Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Su-Lin Yang
- Centers for Disease Control, Taipei 115, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Jui-Wen Hsieh
- Mackay Medicine, Nursing, and Management College, Taipei 112, Taiwan; Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Huey-Chuan Cheng
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Lee-Jen Chen
- Mackay Medicine, Nursing, and Management College, Taipei 112, Taiwan; Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan; Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
6
|
PPAR Gamma Activators: Off-Target Against Glioma Cell Migration and Brain Invasion. PPAR Res 2011; 2008:513943. [PMID: 18815619 PMCID: PMC2542841 DOI: 10.1155/2008/513943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/02/2008] [Indexed: 11/18/2022] Open
Abstract
Today, there is increasing evidence that PPARγ agonists, including thiazolidinediones (TDZs) and nonthiazolidinediones, block the motility and invasiveness of glioma cells and other highly migratory tumor entities. However, the mechanism(s) by which PPARγ activators mediate their antimigratory and anti-invasive properties remains elusive. This letter gives a short review on the debate and adds to the current knowledge by applying a PPARγ inactive derivative of the TDZ troglitazone (Rezulin) which potently counteracts experimental glioma progression in a PPARγ independent manner.
Collapse
|
7
|
Akinyeke TO, Stewart LV. Troglitazone suppresses c-Myc levels in human prostate cancer cells via a PPARγ-independent mechanism. Cancer Biol Ther 2011; 11:1046-58. [PMID: 21525782 DOI: 10.4161/cbt.11.12.15709] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Troglitazone is a ligand for the peroxisome proliferator activated receptor gamma (PPARγ) that decreases growth of human prostate cancer cells in vitro and in vivo. However, the mechanism by which troglitazone reduces prostate cancer cell growth is not fully understood. To understand the signaling pathways involved in troglitazone-induced decreases in prostate cancer growth, we examined the effect of troglitazone on androgen-independent C4-2 human prostate cancer cells. Initial experiments revealed troglitazone inhibited C4-2 cell proliferation by arresting cells in the G(0)/G(1) phase of the cell cycle and inducing apoptosis. Since the proto-oncogene product c-Myc regulates both apoptosis and cell cycle progression, we next examined whether troglitazone altered expression of c-Myc. Troglitazone decreased c-Myc protein levels as well as expression of downstream targets of c-Myc in a dose-dependent manner. In C4-2 cells, troglitazone-induced decreases in c-Myc protein involve proteasome-mediated degradation of c-Myc protein as well as reductions in c-Myc mRNA levels. It appears that troglitazone stimulates degradation of c-Myc by increasing c-Myc phosphorylation, for the level of phosphorylated c-Myc was elevated in prostate cancer cells exposed to troglitazone. While troglitazone dramatically decreased the amount of c-Myc within C4-2 cells, the PPARγ ligands ciglitazone, rosiglitazone and pioglitazone did not reduce c-Myc protein levels. Furthermore the down-regulation of c-Myc by troglitazone was not blocked by the PPARγ antagonist GW9662 and siRNA-mediated decreases in PPARγ protein. Thus, our data suggest that troglitazone reduces c-Myc protein independently of PPARγ.
Collapse
Affiliation(s)
- Tunde O Akinyeke
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | | |
Collapse
|
8
|
Golubovskaya VM. Focal adhesion kinase as a cancer therapy target. Anticancer Agents Med Chem 2011; 10:735-41. [PMID: 21214510 DOI: 10.2174/187152010794728648] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/07/2010] [Indexed: 11/22/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that resides at the sites of focal adhesions. The 125 kDa FAK protein is encoded by the FAK gene located on human chromosome 8q24. Structurally, FAK consists of an amino-terminal regulatory FERM domain, a central catalytic kinase domain, and a carboxy-terminal focal adhesion targeting domain. FAK has been shown to be an important mediator of cell adhesion, growth, proliferation, survival, angiogenesis and migration, all of which are often disrupted in cancer cells. Normal tissues have low expression of FAK, while primary and metastatic tumors significantly overexpress this protein. This review summarizes expression of FAK by immunohistochemical staining in different tumor types and presents several FAK inhibition therapy approaches.
Collapse
Affiliation(s)
- Vita M Golubovskaya
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
9
|
Wang S, Cheng Z, Yang X, Deng K, Cao Y, Chen H, Pan L. Effect of wild type PTEN gene on proliferation and invasion of multiple myeloma. Int J Hematol 2010; 92:83-94. [PMID: 20582577 DOI: 10.1007/s12185-010-0604-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 01/09/2023]
Abstract
We explored the effect of the wild type PTEN gene on the proliferation, apoptosis and invasive ability of multiple myeloma (MM) cells from MM patients and RPMI 8226 cells (a human myeloma cell line), and the effect of the PTEN/focal adhesion kinase (FAK)/MMP signaling pathway on the invasion activity of RPMI 8226 cells. The proliferation of RPMI 8226 cells and purified myeloma cells from MM patients were markedly inhibited after these cells were transfected with recombinant adenovirus-PTEN vectors containing green fluorescent protein (Ad-PTEN-GFP). Maximum growth inhibition of RPMI 8226 cells and purified myeloma cells from MM patients by AD-PTEN-GFP was 42.01 and 24.75%, respectively. After transfection with PTEN-siRNA, the proliferation of RPMI 8226 cells was increased significantly compared with NS-siRNA transfected controls. The maximal survival rate was 141.55 +/- 8.34% in PTEN-siRNA transfected RPMI 8226 cells. Apoptosis of RPMI 8226 cells or purified myeloma cells from MM patients in the Ad-PTEN-GFP group was increased significantly when compared with that in the Ad-GFP (adenovirus vectors only expressing green fluorescent protein) group (p < 0.01). The cell cycle of RPMI 8226 cells was arrested at the G2/M phase. Furthermore, the number of cells that migrated through the matrigel and filter from the upper chamber to the lower chamber in the transwell assay in the Ad-GFP group was significantly larger than that in the Ad-PTEN-GFP group (52.65 +/- 7.39 vs. 23.50 +/- 6.12, p < 0.01). In the PTEN-siRNA group, the cell number (79.50 +/- 11.89) was significantly larger than that in the NS-siRNA group (47.17 +/- 7.76, p < 0.01). When RPMI 8226 cells were transfected with Ad-PTEN-GFP or NS-siRNA, the expression level of PTEN mRNA was up-regulated, and the expression levels of FAK, MMP-2 and MMP-9 mRNA were down-regulated significantly compared with that of the Ad-GFP group and the PTEN-siRNA group (p < 0.01, p < 0.05). The protein levels of FAK and p-FAK, MMP-2 and MMP-9 in RPMI 8226 cells which were transfected with Ad-PTEN-GFP decreased significantly, but increased significantly in PTEN-siRNA transfected RPMI 8226 cells (p < 0.01, p<0.05). These results indicated that wild type PTEN, which inhibited FAK, MMP-2, and MMP-9, could suppress the proliferation and invasion ability of multiple myeloma cells. Modulating the expression of PTEN may be a potential strategy for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Suyun Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Mankidy R, Ahiahonu PW, Ma H, Jayasinghe D, Ritchie SA, Khan MA, Su-Myat KK, Wood PL, Goodenowe DB. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study. Lipids Health Dis 2010; 9:62. [PMID: 20546600 PMCID: PMC2902472 DOI: 10.1186/1476-511x-9-62] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/14/2010] [Indexed: 02/06/2023] Open
Abstract
Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD), Alzheimer's disease (AD), and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4) and plasmalogen sufficient (HEK293) cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA)-containing ethanolamine plasmalogen (PlsEtn) present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1) levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.
Collapse
Affiliation(s)
- Rishikesh Mankidy
- Phenomenome Discoveries Inc, and Phreedom Pharma, 204-407 Downey Road, Saskatoon, SK S7N 4L8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aizawa J, Sakayama K, Kamei S, Kidani T, Yamamoto H, Norimatsu Y, Masuno H. Effect of troglitazone on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8. BMC Cancer 2010; 10:51. [PMID: 20170548 PMCID: PMC2838820 DOI: 10.1186/1471-2407-10-51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 02/22/2010] [Indexed: 01/31/2023] Open
Abstract
Background Osteosarcoma often develops micrometastases in the lung prior to diagnosis, causing a fatal outcome. Therefore, the prevention of pulmonary metastases is critical for the improvement of the prognosis of patients with osteosarcoma. The purpose of this study was to investigate whether troglitazone (TGZ) is considered as possible therapeutics in the treatment of growth and metastasis of osteosarcoma. Methods LM8 cells were treated for 3 days with various concentrations of TGZ. The effect of TGZ on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine incorporation study. The assay of cell invasion and motility was performed using either the Matrigel-coated cell culture inserts or the uncoated cell culture inserts in the invasion chambers. The effect of TGZ on Akt signaling was assessed by Western blot analysis of Akt and p-Akt. The effects of oral administration of either TGZ (TGZ group) or ethanol (control group) on the growth of primary tumor and the development of pulmonary metastasis were examined in nude mice implanted with LM8 cells on their backs. The expression and activity of matrix metalloproteinase 2 (MMP-2) within the tumor were determined by immunohistochemistry and zymography. The microvessel density (MVD) within the tumor was determined by immunohistochemistry for CD34. Results TGZ dose-dependently inhibits cell proliferation. TGZ-treated cells were less invasive and less motile than untreated cells. The activity of MMP-2 secreted by TGZ-treated cells was lower than that secreted by untreated cells. TGZ decreased the level of p-Akt. The primary tumor mass was smaller in the TGZ group than in the control group. The TGZ group had less metastatic tumors in the lung compared with the control group. The expression and activity of MMP-2 within the tumor of the TGZ group were lower than those of the control group. The MVD within the tumor of the TGZ group was lower than that of the control group. Conclusions Inhibition of Akt signaling by TGZ may decrease the secretion of MMP-2, resulting in the decrease of invasiveness and motility in LM8 cells. Treatment of tumor-bearing mice with TGZ decreases the expression and activity of MMP-2 within the tumor, and inhibits primary tumor growth and pulmonary metastasis development. TGZ may offer a new approach in chemotherapy for osteosarcoma.
Collapse
Affiliation(s)
- Junichi Aizawa
- Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences, Takooda, Tobe-cho, Iyo-gun, Ehime 791-2101, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Schwock J, Dhani N, Hedley DW. Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets 2010; 14:77-94. [PMID: 20001212 DOI: 10.1517/14728220903460340] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IMPORTANCE OF THE FIELD Focal adhesion kinase (FAK), a crucial mediator of integrin and growth factor signaling, is a novel and promising target in cancer therapy. FAK resides within focal adhesions which are contact points between extracellular matrix (ECM) and cytoskeleton, and increased expression of the kinase has been linked with cancer cell migration, proliferation and survival. The aim of this review is to summarize the current research in the area and to assess the potential of different FAK-targeting strategies for cancer therapy. AREAS COVERED IN THIS REVIEW We briefly examine the evidence pointing towards FAK as potential anti-cancer target since its discovery in 1992. Then, we summarize different approaches developed to interfere with FAK signaling and important results reported from these experiments. Finally, we discuss the potential of these strategies to accomplish inhibition of tumor growth and distant spread as well as potentially meaningful combinations with other therapeutic modalities in the context of the currently available evidence. WHAT THE READER WILL GAIN The review emphasizes the link between FAK biology and the consequences of interference with FAK signaling. Based on this foundation an opinion is formed with regard to the future of FAK as therapeutic target. TAKE HOME MESSAGE Inhibition of FAK harbours the potential to restrain malignant growth and progression with minimal side effects in normal tissues. Small molecule inhibitors of the kinase should be examined in further clinical studies and combinations with existing therapies need to be explored. More efforts are required to identify markers which predict response towards FAK inhibition.
Collapse
Affiliation(s)
- Joerg Schwock
- Princess Margaret Hospital/Ontario Cancer Institute (PMH/OCI), Toronto M5G 2M9, Ontario, Canada
| | | | | |
Collapse
|
13
|
Davies GF, Juurlink BHJ, Harkness TAA. Troglitazone reverses the multiple drug resistance phenotype in cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 3:79-88. [PMID: 19920924 PMCID: PMC2769242 DOI: 10.2147/dddt.s3314] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX) resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1) and histone H3 expression. The thiazolidinedione troglitazone (TRG) downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR) phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX). The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp) drug efflux pump multiple drug resistance protein 1 (MDR-1), and the breast cancer resistance protein (BCRP). TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers.
Collapse
Affiliation(s)
- Gerald F Davies
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | | | | |
Collapse
|