1
|
Winter J, Jepsen S. Role of innate host defense proteins in oral cancerogenesis. Periodontol 2000 2024. [PMID: 38265172 DOI: 10.1111/prd.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
It is nowadays well accepted that chronic inflammation plays a pivotal role in tumor initiation and progression. Under this aspect, the oral cavity is predestined to examine this connection because periodontitis is a highly prevalent chronic inflammatory disease and oral squamous cell carcinomas are the most common oral malignant lesions. In this review, we describe how particular molecules of the human innate host defense system may participate as molecular links between these two important chronic noncommunicable diseases (NCDs). Specific focus is directed toward antimicrobial polypeptides, such as the cathelicidin LL-37 and human defensins, as well as S100 proteins and alarmins. We report in which way these peptides and proteins are able to initiate and support oral tumorigenesis, showing direct mechanisms by binding to growth-stimulating cell surface receptors and/or indirect effects, for example, inducing tumor-promoting genes. Finally, bacterial challenges with impact on oral cancerogenesis are briefly addressed.
Collapse
Affiliation(s)
- Jochen Winter
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University Hospital, University of Bonn, Bonn, Germany
| | - Søren Jepsen
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Kompuinen J, Keskin M, Yilmaz D, Gürsoy M, Gürsoy UK. Human β-Defensins in Diagnosis of Head and Neck Cancers. Cells 2023; 12:cells12060830. [PMID: 36980171 PMCID: PMC10047923 DOI: 10.3390/cells12060830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Head and neck cancers are malignant growths with high death rates, which makes the early diagnosis of the affected patients of utmost importance. Over 90% of oral cavity cancers come from squamous cells, and the tongue, oral cavity, and salivary glands are the most common locations for oral squamous cell carcinoma lesions. Human β-defensins (hBDs), which are mainly produced by epithelial cells, are cationic peptides with a wide antimicrobial spectrum. In addition to their role in antimicrobial defense, these peptides also take part in the regulation of the immune response. Recent studies produced evidence that these small antimicrobial peptides are related to the gene and protein expression profiles of tumors. While the suppression of hBDs is a common finding in head and neck cancer studies, opposite findings were also presented. In the present narrative review, the aim will be to discuss the changes in the hBD expression profile during the onset and progression of head and neck cancers. The final aim will be to discuss the use of hBDs as diagnostic markers of head and neck cancers.
Collapse
Affiliation(s)
- Jenna Kompuinen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Mutlu Keskin
- Oral and Dental Health Department, Altınbaş University, İstanbul 34147, Turkey
| | - Dogukan Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Sakarya University, Sakarya 54050, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Welfare Division, Oral Health Care, 20101 Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
3
|
Occurrence of Human Defensins and S100 Proteins in Head and Neck Basal Cell Carcinoma (BCC) Entities: hBD3 and S100A4 as Potential Biomarkers to Evaluate Successful Surgical Therapy. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2023. [DOI: 10.3390/ohbm4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Background: The goal of this study is the identification of potential marker molecules for characterizing different basal cell carcinoma entities, to help improve clinical decisions for surgical resection therapy. Methods: Three different entities, sclerodermiform, solid and superficial basal cell carcinomas, were subjected to immunohistochemical microscopy and histomorphometric analyses for human α- (DEFA1/3; DEFA4) and β-defensins (hBD1/2/3) and special S100 proteins (S100A4/7/8/9). Thirty specimens of the three entities were evaluated. Analyses were performed by comparing tissue and cellular localization and staining intensities of tumorous with non-tumorous areas. Staining intensities were semiquantitatively examined by using an RGB-based model. Results: Human defensins are present in all three entities of basal cell carcinomas. They all show cytoplasmic immunostaining in cells of the epithelium, stroma and tumor. Notably, human β-defensin3 is accumulated in the cell nuclei of sclerodermiform and superficial basal cell carcinomas. S100A4 and A7 are undetectable in tumor regions. However, S100A4 occurs in cancer-associated stroma cells with nuclear staining in superficial basal cell carcinomas. Conclusion: Two candidates, namely hBD3 and S100A4, might be used as potential clinical tools for evaluating successful surgical resection therapy to avoid aesthetic and functional facial deformation.
Collapse
|
4
|
Sun CQ, Arnold RS, Hsieh CL, Dorin JR, Lian F, Li Z, Petros JA. Discovery and mechanisms of host defense to oncogenesis: targeting the β-defensin-1 peptide as a natural tumor inhibitor. Cancer Biol Ther 2019; 20:774-786. [PMID: 30900935 PMCID: PMC6605992 DOI: 10.1080/15384047.2018.1564564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/27/2018] [Accepted: 12/25/2018] [Indexed: 12/28/2022] Open
Abstract
Human beta-defensin-1 (hBD-1) is one of a number of small cationic host-defense peptides. Besides its well-known broad-spectrum antimicrobial function, hBD-1 has recently been identified as a chromosome 8p tumor-suppressor gene. The role of hBD-1 in modulating the host immune response to oncogenesis, associated with cell signaling and potential therapeutic applications, has become increasingly appreciated over time. In this study, multiple approaches were used to illustrate hBD-1 anti-tumor activities. Results demonstrate that hBD-1 peptide alters human epidermal growth factor receptor 2 (HER2) signal transduction and represses retroviral-mediated transgene expression in cancer cells. Loss of orthologous murine defense-1 (mBD1) in mice enhances nickel sulfate-induced leiomyosarcoma and causes mouse kidney cells to exhibit increased susceptibility to HPV-16 E6/7-induced neoplastic transformation. Furthermore, for the first time, a novel function of the urine-derived hBD-1 peptide was discovered to suppress bladder cancer growth and this may lead to future applications in the treatment of malignancy.
Collapse
Affiliation(s)
- Carrie Q. Sun
- Department of Urology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Rebecca S. Arnold
- Department of Urology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Chia-Ling Hsieh
- Department of Molecular Medicine, China Medical University Hospital, Taipei, Taiwan
| | - Julia R. Dorin
- Center for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Fei Lian
- Emory University School of Medicine, Emory University, Atlanta, Georgia
| | - Zhenghong Li
- School of Medicine, Central South University, Changsha City, Human Province, P. R. China
| | - John A. Petros
- Department of Urology and Winship Cancer Institute, Emory University, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|
5
|
Sowa P, Goroszkiewicz K, Szydelko J, Chechlinska J, Pluta K, Domka W, Misiolek M, Scierski W. A Review of Selected Factors of Salivary Gland Tumour Formation and Malignant Transformation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2897827. [PMID: 30155477 PMCID: PMC6092996 DOI: 10.1155/2018/2897827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
Salivary gland tumours represent about 6% of head and neck neoplasms and about 0.5% of all malignancies in humans. Tumour growth and malignant transformation are complex processes involving various actions of molecules. Furthermore, some malignant salivary gland tumours are deemed to be caused by dedifferentiation or malignant transformation of benign tumours. The mechanisms of this transformation depend on a variety of different elements, such as cell cycle regulators, oncogenes, proteins, angiogenesis factors, and adipocytokines. The authors used PubMed, Medline, and Google websites to find and review the most significant papers related to malignant transformation in benign salivary gland tumours.
Collapse
Affiliation(s)
- Pawel Sowa
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Karolina Goroszkiewicz
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Szydelko
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Chechlinska
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Pluta
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Domka
- Department of Otorhinolaryngology, Faculty of Medicine, University of Rzeszow, Poland
| | - Maciej Misiolek
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Scierski
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
Abstract
More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity.
Collapse
Affiliation(s)
- De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
7
|
Li Q, Huang P, Zheng C, Wang J, Ge M. Prognostic significance of p53 immunohistochemical expression in adenoid cystic carcinoma of the salivary glands: a meta-analysis. Oncotarget 2018; 8:29458-29473. [PMID: 28206977 PMCID: PMC5438744 DOI: 10.18632/oncotarget.15297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/06/2017] [Indexed: 12/20/2022] Open
Abstract
Adenoid cystic carcinoma of salivary glands is a rare adenocarcinoma and has been placed in “high-risk” category as poor long-term prognosis. The purpose of this study was to investigate p53 protein expression in adenoid cystic carcinoma of salivary glands and its correlation with clinicopathological parameters and prognosis. Literatures were searched from PubMed, Embase, Cochrane Library and Web of Science, which investigated the relationships between p53 expression and pathological type, clinical stage, local recurrence, metastasis, nerve infiltration and overall survival. A total of 1,608 patients from 36 studies were included in the analysis. The results showed that p53-postive expression rate was 49% in adenoid cystic carcinoma of salivary glands (OR=10.34, 95%CI: 4.93-21.71, P < 0.0001). The p53-postive expression was closely related to tumor types (OR=0.30, 95%CI: 0.14-0.65, P < 0.0001). The tumor with solid histological subtype had a strong positive correlation with p53 expression. The combined analysis revealed that the p53-positive expression rate among patients in T1and T2 stage was 41.4%, compared to 53.2% among those in T3 and T4 stage. However, there was no significant correlation between tumor stage and p53 expression (OR=0.47, 95% CI: 0.17-1.29, P = 0.14). Besides, compared to patients with p53-negative expression, those with p53-positive expression had a greater chance of developing metastasis, local recurrence and nerve infiltration as well as poorer 5-year overall survival (P < 0.01). In conclusion, the p53 expression is related to the survival of adenoid cystic carcinoma of salivary glands. It can be considered as the auxiliary detection index in treatment and prognosis of adenoid cystic carcinoma of salivary glands.
Collapse
Affiliation(s)
- Qinglin Li
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Head and Neck Tumor, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Head and Neck Tumor, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
| | - Chuanming Zheng
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Head and Neck Tumor, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
| | - Jiafeng Wang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Head and Neck Tumor, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
| | - Minghua Ge
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Head and Neck Tumor, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Meyle J, Dommisch H, Groeger S, Giacaman RA, Costalonga M, Herzberg M. The innate host response in caries and periodontitis. J Clin Periodontol 2017; 44:1215-1225. [PMID: 28727164 DOI: 10.1111/jcpe.12781] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Innate immunity rapidly defends the host against infectious insults. These reactions are of limited specificity and exhaust without providing long-term protection. Functional fluids and effector molecules contribute to the defence against infectious agents, drive the immune response, and direct the cellular players. AIM To review the literature and present a summary of current knowledge about the function of tissues, cellular players and soluble mediators of innate immunity relevant to caries and periodontitis. METHODS Historical and recent literature was critically reviewed based on publications in peer-reviewed scientific journals. RESULTS The innate immune response is vital to resistance against caries and periodontitis and rapidly attempts to protect against infectious agents in the dental hard and soft tissues. Soluble mediators include specialized proteins and lipids. They function to signal to immune and inflammatory cells, provide antimicrobial resistance, and also induce mechanisms for potential repair of damaged tissues. CONCLUSIONS Far less investigated than adaptive immunity, innate immune responses are an emerging scientific and therapeutic frontier. Soluble mediators of the innate response provide a network of signals to organize the near immediate molecular and cellular response to infection, including direct and immediate antimicrobial activity. Further studies in human disease and animal models are generally needed.
Collapse
Affiliation(s)
- Joerg Meyle
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité - Medical University Berlin, Berlin, Germany
| | - Sabine Groeger
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEIES), University of Talca, Talca, Chile
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Mark Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Hoppe T, Kraus D, Novak N, Probstmeier R, Frentzen M, Wenghoefer M, Jepsen S, Winter J. Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins. Tumour Biol 2016; 37:13789-13798. [PMID: 27481514 DOI: 10.1007/s13277-016-5281-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.
Collapse
Affiliation(s)
- T Hoppe
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - D Kraus
- Department of Prosthodontics, Preclinical Education, and Material Science, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - N Novak
- Department of Dermatology and Allergy, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - R Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - M Frentzen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - M Wenghoefer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - S Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - J Winter
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| |
Collapse
|
10
|
Winter J, Kraus D, Reckenbeil J, Probstmeier R. Oncogenic relevant defensins: expression pattern and proliferation characteristics of human tumor cell lines. Tumour Biol 2015; 37:7959-66. [PMID: 26711780 DOI: 10.1007/s13277-015-4701-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to investigate gene expression levels of oncogenic relevant human defensins and their impact on proliferation rates of 29 cell lines derived from main types of different tumor origins. Differential gene expression analysis of human defensins was performed by real-time PCR experiments. The proliferation rate of tumor cells that had been cultivated in the absence or presence of biologically active peptides was analyzed with a lactate dehydrogenase assay kit. At least one member of the defensin family was expressed in each tumor cell line, whereby α-defensin (DEFA1), DEFA2, or DEFA3 transcripts could be ubiquitously detected. Cell lines of neural origin (glioma, neuroblastoma, and small-cell lung carcinoma) expressed far less human β-defensins (hBDs) in comparison to other tumor types. The expression level of a specific defensin in various cell lines could vary by more than five orders of magnitude. Compensatory mechanisms on the expression levels of the different defensins could not be strictly observed. Only in 3 out of 29 tumor cell lines the proliferation rate was affected after defensin stimulation. The variable appearance of defensins, as well as the cell line-restricted functional activity, argues for the integration of defensins in complex cellular and molecular networks that tolerate rather flexible expression patterns.
Collapse
Affiliation(s)
- Jochen Winter
- Oral Cell Biology Group, Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | - Dominik Kraus
- Department of Prosthodontics, Preclinical Education, and Material Science, University of Bonn, 53111, Bonn, Germany
| | - Jan Reckenbeil
- Department of Prosthodontics, Preclinical Education, and Material Science, University of Bonn, 53111, Bonn, Germany
| | - Rainer Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University of Bonn, 53105, Bonn, Germany
| |
Collapse
|
11
|
Dommisch H, Jepsen S. Diverse functions of defensins and other antimicrobial peptides in periodontal tissues. Periodontol 2000 2015; 69:96-110. [DOI: 10.1111/prd.12093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
|
12
|
Yılmaz D, Güncü GN, Könönen E, Barış E, Çağlayan F, Gursoy UK. Overexpressions of hBD-2, hBD-3, and hCAP18/LL-37 in Gingiva of Diabetics with Periodontitis. Immunobiology 2015; 220:1219-26. [PMID: 26092093 DOI: 10.1016/j.imbio.2015.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Antimicrobial peptides of the epithelium play a significant role in the innate immune response in the oral cavity, which is constantly exposed to microbes. Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disease which is related to periodontal disease. To date, little is known about expressions of antimicrobial peptides in gingival epithelia of diabetics. Our aim was to examine the expression and localization of human beta-defensins (hBD)-2 and -3 and cathelicidin (hCAP18/LL-37) in diabetic subjects suffering from generalized periodontitis (GP). Gingival tissue sections were collected from three subject groups: 14 T2DM subjects with GP (T2DM+GP), 11 systemically healthy GP patients (GP), and 13 systemically and periodontally healthy subjects (control). Surgical incisions targeted the sulcular epithelium and/or the bottom of the selected periodontal pocket. Tissue specimens were fixed in paraformaldehyde and embedded in paraffin blocks. Immunohistochemistry stainings were performed for cytokeratin19, hBD-2, hBD-3 and hCAP18/LL-37. Stainings were examined under light microscope with 40× magnification. Results were statistically evaluated by the t-test. In controls, hBD-2 was localized at the superficial layers of the gingival epithelium, hBD-3 and hCAP18/LL-37 were at the basal layers, whereas in subjects with periodontitis both defensins were visible at all epithelial layers. hBD-2 was detected in the nucleus and cytoplasm, while hBD-3 and hCAP18/LL-37 were detected only in the cytoplasm of the cells. Expressions of hBD-2 (p=0.005), hBD-3 (p=0.007), and hCAP18/LL-37 (p=0.002) were elevated in subjects with T2DM+GP in comparison to controls. No statistically significant difference was found in the expression of hBD-2, -3, and hCAP18/LL-37 between the GP group and the control or T2DM+GP groups. Gingival antimicrobial peptides are overexpressed in T2DM. This outcome can be part of impaired immune response in diabetics, and underlying factors and mechanisms need to be elucidated.
Collapse
Affiliation(s)
- Dogukan Yılmaz
- Institute of Dentistry, University of Turku, Turku, Finland; Faculty of Dentistry, University of Hacettepe, Ankara, Turkey
| | - Guliz N Güncü
- Faculty of Dentistry, University of Hacettepe, Ankara, Turkey.
| | - Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland; Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Emre Barış
- Faculty of Dentistry, University of Gazi, Ankara, Turkey
| | - Feriha Çağlayan
- Faculty of Dentistry, University of Hacettepe, Ankara, Turkey
| | | |
Collapse
|
13
|
Casalicchio G, Freato N, Maestri I, Comar M, Crovella S, Segat L. Beta defensin-1 gene polymorphisms and susceptibility to atypical squamous cells of undetermined significance lesions in Italian gynecological patients. J Med Virol 2014; 86:1999-2004. [PMID: 24435641 DOI: 10.1002/jmv.23878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 11/11/2022]
Abstract
The role of the human beta-defensin 1 (hBD-1) in the susceptibility to the onset of the Atypical Squamous Cells of Undetermined Significance (ASCUS) lesion, in the presence or not of HPV infection, is still unknown. In the current study, the three functional single nucleotide polymorphisms (SNPs) -52G > A, -44C > G, and -20G > A at the 5' un-translated region (UTR) of DEFB1 gene, encoding hBD-1, were analyzed in ASCUS lesion gynecological patients and healthy women from the north-east of Italy (Trieste). Cervical samples from 249 European-Caucasian women were collected, screened for HPV and cytologically evaluated; DEFB1 genotyping has been performed by direct sequencing. No significant differences were found for -52G > A, -44C > G, and -20G > A SNPs allele and genotype frequencies between women with and without ASCUS lesions. DEFB1 minor haplotypes were significantly more frequent in ASCUS lesion positive than negative women, associating with an increased risk of this type of lesion. When women were stratified according to HPV infection status, significant differences in the distribution of -52G > A SNP genotype frequencies were found: the presence of the A allele in the homozygous genotype A/A associated with a lower risk of developing ASCUS lesions in HPV negative women. DEFB1 minor haplotypes were also associated with an increased risk of developing ASCUS lesions, being significantly more frequent in HPV negative women with lesions, than without lesions. Although these results highlight the possible involvement of DEFB1, further studies are needed to support the role of DEFB1 in the modulation of the susceptibility to ASCUS lesions.
Collapse
Affiliation(s)
- Giorgia Casalicchio
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Winter J, Pantelis A, Kraus D, Reckenbeil J, Reich R, Jepsen S, Fischer HP, Allam JP, Novak N, Wenghoefer M. Human α-defensin (DEFA) gene expression helps to characterise benign and malignant salivary gland tumours. BMC Cancer 2012; 12:465. [PMID: 23050799 PMCID: PMC3518101 DOI: 10.1186/1471-2407-12-465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/02/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Because of the infrequence of salivary gland tumours and their complex histopathological diagnosis it is still difficult to exactly predict their clinical course by means of recurrence, malignant progression and metastasis. In order to define new proliferation associated genes, purpose of this study was to investigate the expression of human α-defensins (DEFA) 1/3 and 4 in different tumour entities of the salivary glands with respect to malignancy. METHODS Tissue of salivary glands (n=10), pleomorphic adenomas (n=10), cystadenolymphomas (n=10), adenocarcinomas (n=10), adenoidcystic carcinomas (n=10), and mucoepidermoid carcinomas (n=10) was obtained during routine surgical procedures. RNA was extracted according to standard protocols. Transcript levels of DEFA 1/3 and 4 were analyzed by quantitative realtime PCR and compared with healthy salivary gland tissue. Additionally, the proteins encoded by DEFA 1/3 and DEFA 4 were visualized in paraffin-embedded tissue sections by immunohistochemical staining. RESULTS Human α-defensins are traceable in healthy as well as in pathological altered salivary gland tissue. In comparison with healthy tissue, the gene expression of DEFA 1/3 and 4 was significantly (p<0.05) increased in all tumours - except for a significant decrease of DEFA 4 gene expression in pleomorphic adenomas and a similar transcript level for DEFA 1/3 compared to healthy salivary glands. CONCLUSIONS A decreased gene expression of DEFA 1/3 and 4 might protect pleomorphic adenomas from malignant transformation into adenocarcinomas. A similar expression pattern of DEFA-1/3 and -4 in cystadenolymphomas and inflamed salivary glands underlines a potential importance of immunological reactions during the formation of Warthin's tumour.
Collapse
Affiliation(s)
- Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr, 1753111, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Weinberg A, Jin G, Sieg S, McCormick TS. The yin and yang of human Beta-defensins in health and disease. Front Immunol 2012; 3:294. [PMID: 23060878 PMCID: PMC3465815 DOI: 10.3389/fimmu.2012.00294] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/03/2012] [Indexed: 12/03/2022] Open
Abstract
Rapidly evolving research examining the extended role of human beta-defensins (hBDs) in chemoattraction, innate immune-mediated response, and promotion of angiogenesis suggest that the collective effects of hBDs extend well beyond their antimicrobial mechanism(s). Indeed, the numerous basic cellular functions associated with hBDs demonstrate that these peptides have dual impact on health, as they may be advantageous under certain conditions, but potentially detrimental in others. The consequences of these functions are reflected in the overexpression of hBDs in diseases, such as psoriasis, and recently the association of hBDs with pro-tumoral signaling. The mechanisms regulating hBD response in health and disease are still being elucidated. Clearly the spectrum of function now attributed to hBD regulation identifies these molecules as important cellular regulators, whose appropriate expression is critical for proper immune surveillance; i.e., expression of hBDs in proximity to areas of cellular dysregulation may inadvertently exacerbate disease progression. Understanding the mechanism(s) that regulate contextual signaling of hBDs is an important area of concentration in our laboratories. Using a combination of immunologic, biochemical, and molecular biologic approaches, we have identified signaling pathways associated with hBD promotion of immune homeostasis and have begun to dissect the inappropriate role that beta-defensins may assume in disease.
Collapse
Affiliation(s)
- Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine Cleveland, OH, USA
| | | | | | | |
Collapse
|
16
|
Alan E, Liman N. Immunohistochemical localization of beta defensins in the endometrium of rat uterus during the postpartum involution period. Vet Res Commun 2012; 36:173-85. [PMID: 22777508 DOI: 10.1007/s11259-012-9529-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2012] [Indexed: 01/23/2023]
Abstract
β-Defensins are small cationic molecules that have antimicrobial actions against bacteria, fungi and viruses and contribute to mucosal immune responses at epithelial sites. The female reproductive tract is an important site of defensin production. This study was conducted to determine the possible changes in proportions and localization of β-defensin 1-4 in the rat uterus at the 1st, 3th, 5th, 10th and 15th days of postpartum and at the period of diestrus using immunohistochemical techniques. In the present study, it was determined that β-defensin 1-4 were generally found in all structural components of the endometrium (luminal and glandular epithelium, stromal cells and blood vessels) in both the nucleus and the cytoplasm of cells during the involution period and diestrus. Suprisingly, immunoreaction of β-defensin 2 was also observed in the lateral membrane of the luminal and glandular epithelial cells on the 10th day of involution and immunostaining of β-defensin 4 was also localized in the apical membrane of the luminal and glandular epithelial cells. The current study demonstrated β-defensin 1-4 immunoreactivities in the endothelium of blood vessels were stronger throughout the involution period. Although β-defensins 2 and 3 were localized in both the nuclei and the cytoplasm of endothelial cells, β-defensins 1 and 4 were present in only cytoplasm. These results show that the most component of rat endometrium expresses human β-defensin 1-4 in a involution-dependent manner. Therefore it may be asserted that these molecules constitute a organised protection to prevent uterus from probable infections during the involution process.
Collapse
Affiliation(s)
- Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38090, Kayseri, Turkey
| | | |
Collapse
|
17
|
Winter J, Mohr S, Pantelis A, Kraus D, Allam JP, Novak N, Reich R, Martini M, Jepsen S, Götz W, Wenghoefer M. IGF-1 deficiency in combination with a low basic hBD-2 and hBD-3 gene expression might counteract malignant transformation in pleomorphic adenomas in vitro. Cancer Invest 2012; 30:106-13. [PMID: 22250586 DOI: 10.3109/07357907.2011.640651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study investigated the IGF-1-influence on oncological relevant genes in pleomorphic adenomas. Therefore A64-tumor cells were stimulated by recombinant IGF-1. After RNA-extraction, transcript levels of hBD-1, hBD-2, hBD-3, DEFA1/3, DEFA4, S100A4, Psoriasin, DOC-1, EGF, EGFR, and IGFR were analyzed by qRT-PCR at t = 0, 4, 8, 24, 48, and 72 hr. The gene-products were visualized by immunostaining. A64-tumor-cells were deficient for hBD-1 and IGF-1. IGF-1 downregulates hBD-2 and hBD-3 without influencing hBD-1-expression. IGF-1 only slightly affects DEFA1/3-, DEFA4-, S100A4-, Psoriasin-, DOC-1-, EGF-, EGFR-, and IGFR-gene-expression. IGF-1-deficiency combined with low basic hBD-2-gene-expression and hBD-3-gene-expression might counteract, whereas hBD-1-deficiency promotes malignant transformation in pleomorphic adenomas.
Collapse
Affiliation(s)
- J Winter
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kesting MR, Stoeckelhuber M, Kuppek A, Hasler R, Rohleder N, Wolff KD, Nieberler M. Human β-defensins and psoriasin/S100A7 expression in salivary glands: anti-oncogenic molecules for potential therapeutic approaches. BioDrugs 2012; 26:33-42. [PMID: 22149099 DOI: 10.2165/11597570-000000000-00000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Host defence peptides (HDPs), including human β-defensins (hBDs) and psoriasin/S100A7, exert antimicrobial and immunoregulatory functions of the innate defense system. In addition to these functions, the search for cancer biomarkers has identified HDPs as playing a potential role in both tumor suppression and oncogenesis. Although HDPs are highly expressed in salivary glands, their role as molecules for potential diagnostic and therapeutic approaches has not yet been analyzed. OBJECTIVE The aim of the present study was to investigate whether expression levels of putative pro- or anti-oncogenic hBDs, including hBD-1, -2, -3, and psoriasin/S100A7, are altered in salivary gland tumor tissue as potential targets for molecular-based therapeutic approaches. METHODS We analyzed the expression levels of hBD-1, -2, -3, and psoriasin/S100A7 by quantitative real-time polymerase chain reaction (qrt-PCR) and immunohistochemistry in a case control study by comparing salivary gland tumor samples relative to healthy control specimens from 58 patients. Expression level analysis of hBD-1, -2, -3, and psoriasin/S100A7 by qrt-PCR was normalized to the endogenous 18S rRNA expression levels. RESULTS The results demonstrate the significant downregulation of hBD-1 (p < 0.001), hBD-2 (p = 0.003), hBD-3 (p = 0.002), and psoriasin/S100A7 (p = 0.003) mRNA in human salivary gland tumors compared with healthy control specimens. Protein expression levels of hBD-1, -2, -3, and psoriasin/S100A7 in salivary gland tumor tissue were strongly reduced compared with healthy control specimens. CONCLUSION The data indicates a putative role of the innate defense system in salivary gland tumor formation. The identification of immunoregulatory molecules as diagnostic biomarkers or therapeutic targets could provide new approaches for molecular-based diagnostic and therapeutic support to treat salivary gland tumors as well as other malignancies. We suggest that HDPs should be taken into consideration for use in molecular-based therapeutic approaches.
Collapse
Affiliation(s)
- Marco R Kesting
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Kraus D, Deschner J, Jäger A, Wenghoefer M, Bayer S, Jepsen S, Allam JP, Novak N, Meyer R, Winter J. Human β-defensins differently affect proliferation, differentiation, and mineralization of osteoblast-like MG63 cells. J Cell Physiol 2011; 227:994-1003. [DOI: 10.1002/jcp.22808] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Stockmann P, Wehrhan F, Schwarz-Furlan S, Stelzle F, Trabert S, Neukam FW, Nkenke E. Increased human defensine levels hint at an inflammatory etiology of bisphosphonate-associated osteonecrosis of the jaw: an immunohistological study. J Transl Med 2011; 9:135. [PMID: 21843332 PMCID: PMC3163206 DOI: 10.1186/1479-5876-9-135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/15/2011] [Indexed: 11/17/2022] Open
Abstract
Background Human β-defensins (hBD) are antimicrobial peptides that are an integral part of bone innate immunity. Recently, it could be shown that expression of hBD-1, -2 and -3 were upregulated in cases of osteomyelitis of the jaws. In order to gain insight into the possible impairment of hBD metabolism in bisphosphonate-associated osteonecrosis of the jaws (BONJ), the present exploratory study was designed so as to determine the qualitative and quantitative expression of afore mentioned hBDs in BONJ and infected osteoradionecrosis (ORN), both of which represent inflammatory bone diseases. Methods Bone samples were collected from patients with BONJ (n = 20) and ORN (n = 20). Non-infected healthy bone samples (n = 20) were included as controls. Immunohistological staining in an autostainer was carried out by the (Strept-ABC)-method against hBD-1,-2,-3. Specific positive vs. negative cell reaction of osteocytes (labeling index) near the border of bony resection was determined and counted for quantitative analysis. Number of vital osteocytes vs. empty osteocytes lacunae was compared between groups. Results hBD-1,-2 and -3 could be detected in BONJ as well as ORN and healthy bone samples. Immunoreactivity against hBD-2 and -3 was significantly higher in BONJ than in ORN and healthy jaw bone samples. Number of empty osteocyte lacunae was significantly higher in ORN compared with BONJ (P = 0.001). Conclusion Under the condition of BONJ an increased expression of hBD-1,-2,-3 is detectable, similarly to the recently described upregulation of defensins in chronically infected jaw bones. It remains still unclear how these findings may relate to the pathoetiology of these diseases and whether this is contributing to the development of BONJ and ORN or simply an after effect of the disease.
Collapse
Affiliation(s)
- Philipp Stockmann
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Initially identified as broad-spectrum antimicrobial peptides, the members of the β-defensin family have increasingly been observed to exhibit numerous other activities, both in vitro and in vivo, that do not always relate directly to host defense. Much research has been carried out in the oral cavity, where the presence of commensal bacteria further complicates the definition of their role. In addition to direct antimicrobial activity, β-defensins exhibit potent chemotactic activity for a variety of innate immune cells, as well as stimulating other cells to secrete cytokines. They can also inhibit the inflammatory response, however, by the specific binding of microbe-associated molecular patterns. These patterns are also able to induce the expression of β-defensins in gingival epithelial cells, although significant differences are observed between different species of bacteria. Together these results suggest a complex model of a host-defense related function in maintenance of bacterial homeostasis and response to pathogens. This model is complicated, however, by numerous other observations of β-defensin involvement in cell proliferation, wound healing and cancer. Together, the in vitro, in vivo and human studies suggest that these peptides are important in the biology of the oral cavity; exactly how is still subject to speculation.
Collapse
Affiliation(s)
- G Diamond
- Department of Oral Biology, UMDNJ-New Jersey Dental School, Newark, NJ 07101, USA.
| | | |
Collapse
|
23
|
Winter J, Pantelis A, Reich R, Martini M, Kraus D, Jepsen S, Allam JP, Novak N, Wenghoefer M. Human beta-defensin-1, -2, and -3 exhibit opposite effects on oral squamous cell carcinoma cell proliferation. Cancer Invest 2011; 29:196-201. [PMID: 21280982 DOI: 10.3109/07357907.2010.543210] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to investigate the impact of human beta-defensins (hBDs) on oral squamous cell carcinoma (OSCC) proliferation and hBD expression in vitro. BHY-OSCC cell lines were stimulated with hBD-1, -2, and -3. Proliferation of BHY cells was ascertained and hBD-mRNA expression was evaluated by real-time PCR. Proliferation of BHY cells decreased by 25% in response to hBD-1 stimulation but increased after stimulation with hBD-2 and -3. HBD-1 stimulation enhanced hBD-3 expression, whereas HBD-2 stimulation decreased early hBD-3 expression. HBD-3 stimulation enhanced hBD-1 expression. HBDs profoundly impact on OSCC proliferation and hBD expression in vitro. Therefore, hBD-1 might function as a tumor suppressor gene in OSCCs, while hBD-2 and -3 might be protooncogenes.
Collapse
Affiliation(s)
- Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kohlgraf KG, Pingel LC, Dietrich DE, Brogden KA. Defensins as anti-inflammatory compounds and mucosal adjuvants. Future Microbiol 2010; 5:99-113. [PMID: 20020832 DOI: 10.2217/fmb.09.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human neutrophil peptide alpha-defensins and human beta-defensins are small, well-characterized peptides with broad antimicrobial activities. In mixtures with microbial antigens, defensins attenuate proinflammatory cytokine responses by dendritic cells in culture, attenuate proinflammatory cytokine responses in the nasal fluids of exposed mice and enhance antibody responses in the serum of vaccinated mice. Although the exact mechanisms are unknown, defensins first start by binding to microbial antigens and adhesins, often attenuating toxic or inflammatory-inducing capacities. Binding is not generic; it appears to be both defensin-specific and antigen-specific with high affinities. Binding of defensins to antigens may, in turn, alter the interaction of antigens with epithelial cells and antigen-presenting cells attenuating the production of proinflammatory cytokines. The binding of defensins to antigens may also facilitate the delivery of bound antigen to antigen-presenting cells in some cases via specific receptors. These interactions enhance the immunogenicity of the bound antigen in an adjuvant-like fashion. Future research will determine the extent to which defensins can suppress early events in inflammation and enhance systemic antibody responses, a very recent and exciting concept that could be exploited to develop therapeutics to prevent or treat a variety of oral mucosal infections, particularly where inflammation plays a role in the pathogenesis of disease and its long-term sequelae.
Collapse
Affiliation(s)
- Karl G Kohlgraf
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|