1
|
Yu SY, Luan Y, Xu PC, Zhang Y, Dong R, Abazarikia A, Kim SY. Metabolic characteristics of granulosa cell tumor: role of PPARγ signaling†. Biol Reprod 2024; 110:509-520. [PMID: 38123510 PMCID: PMC10941086 DOI: 10.1093/biolre/ioad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Granulosa cell tumors are relatively rare, posing challenges for comprehension and therapeutic development due to limited cases and preclinical models. Metabolic reprogramming, a hallmark of cancer, manifests in granulosa cell tumors with notable lipid accumulation and increased expression of peroxisome proliferator-activated receptor gamma (PPARγ), a key lipid metabolism regulator. The roles of these features, however, remain unclear. In our previous work, we established a granulosa cell tumor model in mice by introducing a constitutively active Pik3ca mutant in oocytes, enabling the study of predictable tumor patterns from postnatal day 50. In this study, we characterized metabolic alterations during tumorigenesis (postnatal day 8 to day 50) and tumor growth (day 50 to day 65) in this model and explored the impact of PPARγ antagonism on human granulosa cell tumor proliferation. The tumor exhibited significant lipid accumulation, with PPARγ and the proliferation marker Ki67 co-localizing at postnatal day 65. Transcriptome analysis demonstrates that pathways for lipid metabolism and mitochondrial oxidation are promoted during tumorigenesis and tumor growth, respectively. Overlappingly upregulated genes during tumorigenesis and tumor growth are associated with lipid metabolism pathways. Correspondingly, mouse granulosa cell tumor shows overexpression of peroxisome proliferator-activated receptor gamma and DGAT2 proteins at postnatal day 65. Furthermore, GW9662 reduces the proliferation of KGN human granulosa cell tumor cells and decreases the phosphorylation of AKT and SMAD3. Our findings identify metabolic abnormalities in ooPIK3CA* granulosa cell tumor model and suggest peroxisome proliferator-activated receptor gamma as a potential driver for primary granulosa cell tumor growth.
Collapse
Affiliation(s)
- Seok-Yeong Yu
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yi Luan
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pauline C Xu
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaqi Zhang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rosemary Dong
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amirhossein Abazarikia
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985860 Nebraska Med Center, Omaha, NE, 68198, USA
| |
Collapse
|
2
|
Kaseder M, Schmid N, Eubler K, Goetz K, Müller-Taubenberger A, Dissen GA, Harner M, Wanner G, Imhof A, Forne I, Mayerhofer A. Evidence of a role for cAMP in mitochondrial regulation in ovarian granulosa cells. Mol Hum Reprod 2022; 28:6659106. [PMID: 35944223 PMCID: PMC9802053 DOI: 10.1093/molehr/gaac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/11/2022] [Indexed: 01/05/2023] Open
Abstract
In the ovary, proliferation and differentiation of granulosa cells (GCs) drive follicular growth. Our immunohistochemical study in a non-human primate, the Rhesus monkey, showed that the mitochondrial activity marker protein cytochrome c oxidase subunit 4 (COX4) increases in GCs in parallel to follicle size, and furthermore, its intracellular localization changes. This suggested that there is mitochondrial biogenesis and trafficking, and implicates the actions of gonadotropins, which regulate follicular growth and ovulation. Human KGN cells, i.e. granulosa tumour cells, were therefore used to study these possibilities. To robustly elevate cAMP, and thereby mimic the actions of gonadotropins, we used forskolin (FSK). FSK increased the cell size and the amount of mitochondrial DNA of KGN cells within 24 h. As revealed by MitoTracker™ experiments and ultrastructural 3D reconstruction, FSK treatment induced the formation of elaborate mitochondrial networks. H89, a protein kinase A (PKA) inhibitor, reduced the network formation. A proteomic analysis indicated that FSK elevated the levels of regulators of the cytoskeleton, among others (data available via ProteomeXchange with identifier PXD032160). The steroidogenic enzyme CYP11A1 (Cytochrome P450 Family 11 Subfamily A Member 1), located in mitochondria, was more than 3-fold increased by FSK, implying that the cAMP/PKA-associated structural changes occur in parallel with the acquisition of steroidogenic competence of mitochondria in KGN cells. In summary, the observations show increases in mitochondria and suggest intracellular trafficking of mitochondria in GCs during follicular growth, and indicate that they may partially be under the control of gonadotropins and cAMP. In line with this, increased cAMP in KGN cells profoundly affected mitochondrial dynamics in a PKA-dependent manner and implicated cytoskeletal changes.
Collapse
Affiliation(s)
| | | | | | - Katharina Goetz
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Annette Müller-Taubenberger
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Gregory A Dissen
- Molecular Virology Core, Oregon Health & Science University Oregon National Primate Research Center, Beaverton, OR, USA
| | - Max Harner
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Ludwig Maximilian University (LMU), Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich (BMC), Protein Analysis Unit, Faculty of Medicine, Ludwig Maximilian University (LMU), Planegg-Martinsried, Germany
| | - Ignasi Forne
- Biomedical Center Munich (BMC), Protein Analysis Unit, Faculty of Medicine, Ludwig Maximilian University (LMU), Planegg-Martinsried, Germany
| | - Artur Mayerhofer
- Correspondence address. Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine Ludwig Maximilian University of Munich, D-82152 Planegg-Martinsried, Germany. E-mail:
| |
Collapse
|
3
|
Sato K, Osaka E, Fujiwara K, Fujii R, Takayama T, Tokuhashi Y, Nakanishi K. miRNA‑218 targets multiple oncogenes and is a therapeutic target for osteosarcoma. Oncol Rep 2022; 47:92. [PMID: 35293593 PMCID: PMC8968766 DOI: 10.3892/or.2022.8303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Survivin is overexpressed in various cancers and is correlated with treatment resistance and prognosis. MicroRNAs (miRNAs) directly regulate several target genes and are potential therapeutic agents for various cancers. The present study evaluated multiple gene targets of miR-218, including survivin, in osteosarcoma and compared the anti-tumor effects of miR-218 with those of YM155, an anti-survivin agent. It assessed the expression levels of miR-218 and survivin in osteosarcoma and osteoblast cell lines, as well as the proliferative, migratory and invasive capacities of cells following treatment with miR-218 or YM155. The form of cell death was assessed using fluorescence-activated cell sorting analysis to examine the expression of invasion ability-related genes. Osteosarcoma cell lines were subcutaneously injected into immunodeficient mice; the mice were then treated with miR-218 or YM155 to assess the anti-tumor effects of these agents. The results showed that miR-218 was downregulated, whereas survivin was overexpressed in the osteosarcoma cell line compared with normal osteoblast cells. The expression of survivin was suppressed upon overexpression of miR-218 (miR-218 group) or administration of YM155 (YM155 group), leading to apoptosis and inhibition of osteosarcoma cell proliferation. Invasion and migration abilities were inhibited in the miR-218 group, but not in the YM155 group. In the animal model, both the miR-218 and YM155 groups showed a reduced tumor volume and decreased survivin expression. In osteosarcoma, miR-218 showed a wider range of therapeutic efficacy compared with YM155, suggesting that miR-218 should be evaluated as a treatment target.
Collapse
Affiliation(s)
- Kentaro Sato
- Department of Orthopedic Surgery, Nihon University Hospital, Chiyoda‑ku, Tokyo 101‑8309, Japan
| | - Eiji Osaka
- Department of Orthopedic Surgery, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| | - Kyoko Fujiwara
- Department of Internal Medicine, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| | - Ryota Fujii
- Department of Orthopedic Surgery, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| | - Tadateru Takayama
- Department of Internal Medicine, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopedic Surgery, Tachikawa Kinen Hospital, Kasama City, Ibaraki 309‑1736, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopedic Surgery, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| |
Collapse
|
4
|
Huttala O, Loreth D, Staff S, Tanner M, Wikman H, Ylikomi T. Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment. Biomedicines 2022; 10:biomedicines10020271. [PMID: 35203480 PMCID: PMC8869401 DOI: 10.3390/biomedicines10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/19/2022] Open
Abstract
Vascularization plays an important role in the microenvironment of the tumor. Therefore, it should be a key element to be considered in the development of in vitro cancer assays. In this study, we decellularized in vitro capillaries to remove genetic material and optimized the medium used to increase the robustness and versatility of applications. The growth pattern and drug responses of cancer cell lines and patient-derived primary cells were studied on decellularized capillaries. Interestingly, two distinct growth patterns were seen when cancer cells were grown on decellularized capillaries: “network” and “cluster”. Network formation correlated with the metastatic properties of the cells and cluster formation was observed in non-metastatic cells. Drug responses of patient-derived cells correlated better with clinical findings when cells were cultured on decellularized capillaries compared with those cultured on plastic. Decellularized capillaries provide a novel method for cancer cell culture applications. It bridges the gap between complex 3D culture methods and traditional 2D culture methods by providing the ease and robustness of 2D culture as well as an in vivo-like microenvironment and scaffolding for 3D cultures.
Collapse
Affiliation(s)
- Outi Huttala
- Cell Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Correspondence: ; Tel.: +358-401909721
| | - Desiree Loreth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (H.W.)
| | - Synnöve Staff
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33520 Tampere, Finland
| | - Minna Tanner
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Department of Oncology, Tampere University Hospital, 33520 Tampere, Finland
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (H.W.)
| | - Timo Ylikomi
- Cell Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
| |
Collapse
|
5
|
Procaspase-Activating Compound-1 Synergizes with TRAIL to Induce Apoptosis in Established Granulosa Cell Tumor Cell Line (KGN) and Explanted Patient Granulosa Cell Tumor Cells In Vitro. Int J Mol Sci 2021; 22:ijms22094699. [PMID: 33946730 PMCID: PMC8124867 DOI: 10.3390/ijms22094699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Granulosa cell tumors (GCT) constitute only ~5% of ovarian neoplasms yet have significant consequences, as up to 80% of women with recurrent GCT will die of the disease. This study investigated the effectiveness of procaspase-activating compound 1 (PAC-1), an activator of procaspase-3, in treating adult GCT (AGCT) in combination with selected apoptosis-inducing agents. Sensitivity of the AGCT cell line KGN to these drugs, alone or in combination with PAC-1, was tested using a viability assay. Our results show a wide range in cytotoxic activity among the agents tested. Synergy with PAC-1 was most pronounced, both empirically and by mathematical modelling, when combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This combination showed rapid kinetics of apoptosis induction as determined by caspase-3 activity, and strongly synergistic killing of both KGN as well as patient samples of primary and recurrent AGCT. We have demonstrated that the novel combination of two pro-apoptotic agents, TRAIL and PAC-1, significantly amplified the induction of apoptosis in AGCT cells, warranting further investigation of this combination as a potential therapy for AGCT.
Collapse
|
6
|
Weis-Banke SE, Lerdrup M, Kleine-Kohlbrecher D, Mohammad F, Sidoli S, Jensen ON, Yanase T, Nakamura T, Iwase A, Stylianou A, Abu-Rustum NR, Aghajanian C, Soslow R, Da Cruz Paula A, Koche RP, Weigelt B, Christensen J, Helin K, Cloos PAC. Mutant FOXL2 C134W Hijacks SMAD4 and SMAD2/3 to Drive Adult Granulosa Cell Tumors. Cancer Res 2020; 80:3466-3479. [PMID: 32641411 DOI: 10.1158/0008-5472.can-20-0259] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/26/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The mutant protein FOXL2C134W is expressed in at least 95% of adult-type ovarian granulosa cell tumors (AGCT) and is considered to be a driver of oncogenesis in this disease. However, the molecular mechanism by which FOXL2C134W contributes to tumorigenesis is not known. Here, we show that mutant FOXL2C134W acquires the ability to bind SMAD4, forming a FOXL2C134W/SMAD4/SMAD2/3 complex that binds a novel hybrid DNA motif AGHCAHAA, unique to the FOXL2C134W mutant. This binding induced an enhancer-like chromatin state, leading to transcription of nearby genes, many of which are characteristic of epithelial-to-mesenchymal transition. FOXL2C134W also bound hybrid loci in primary AGCT. Ablation of SMAD4 or SMAD2/3 resulted in strong reduction of FOXL2C134W binding at hybrid sites and decreased expression of associated genes. Accordingly, inhibition of TGFβ mitigated the transcriptional effect of FOXL2C134W. Our results provide mechanistic insight into AGCT pathogenesis, identifying FOXL2C134W and its interaction with SMAD4 as potential therapeutic targets to this condition. SIGNIFICANCE: FOXL2C134W hijacks SMAD4 and leads to the expression of genes involved in EMT, stemness, and oncogenesis in AGCT, making FOXL2C134W and the TGFβ pathway therapeutic targets in this condition. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3466/F1.large.jpg.
Collapse
Affiliation(s)
- Stine E Weis-Banke
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Mads Lerdrup
- Center for Chromosome Stability, University of Copenhagen, Copenhagen N, Denmark
| | - Daniela Kleine-Kohlbrecher
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Faizaan Mohammad
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, VILLUM Centre for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark.,Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Centre for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Toshihiko Yanase
- Seiwakai Muta Hospital, 3-9-1 Hoshikuma, Sawara-ku, Fukuoka, Japan
| | - Tomoko Nakamura
- Departments of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Anthe Stylianou
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem R Abu-Rustum
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Soslow
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jesper Christensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark. .,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark.,Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul A C Cloos
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark. .,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
7
|
Wang Y, Yao Y. Nanofiber Alignment Mediates the Pattern of Single Cell Migration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2129-2135. [PMID: 32040329 DOI: 10.1021/acs.langmuir.9b03314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In natural tissue, nanofibrils in extracellular matrix (ECM), such as collagen fibrils, direct cell migration through contacting guidance. The contacting nanofibers on cell-ECM interface are reorganized from curl fibers to straightened fibers. However, how these nanofibers regulate single cell migration remains obscure. To investigate this issue, we fabricated collagen/polymer based biomimetic nanofiber sheets of varying topography. And we selected tumorigenic cell KGN and nontumorigenic cell 293T for comparison. We found KGN showed higher sensitivity to the nanofiber alignment rather than the nontumorigenic cell 293T, in morphological change, trajectory adaptation, and velocity variation. We also found aligned nanofibers shaped both KGN and 293T into elongated spindle morphology. Comparatively, KGN had greater perimeter and lower roundness than 293T. To study the dynamics of single cell migration of KGN and 293T, we conducted trajectory tracking and siRNA validation on regulatory proteins. We found nanofibers of varying topography regulated the patterns of single cell migration differently. For KGN cell, β-catenin, Rac1, and Cdc42 participated in its directional migration, but it was impervious to vimentin. Comparatively, epithelial cell 293T involved vimentin in its directional migration.
Collapse
Affiliation(s)
- Yiqun Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| |
Collapse
|
8
|
Wu YL, Lin YY, Sun D. Novel regulation of PKC-induced inflammation by Akt and protein phosphatase 2A in ovarian granulosa cells. CHINESE J PHYSIOL 2020; 63:179-186. [DOI: 10.4103/cjp.cjp_44_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Inhibitor of apoptosis proteins are potential targets for treatment of granulosa cell tumors - implications from studies in KGN. J Ovarian Res 2019; 12:76. [PMID: 31412918 PMCID: PMC6694575 DOI: 10.1186/s13048-019-0549-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 01/23/2023] Open
Abstract
Background Granulosa cell tumors (GCTs) are derived from proliferating granulosa cells of the ovarian follicle. They are known for their late recurrence and most patients with an aggressive form die from their disease. There are no treatment options for this slowly proliferating tumor besides surgery and chemotherapy. In a number of tumors, analogs of the second mitochondria-derived activator of caspases (SMAC), alone or in combination with other molecules, such as TNFα, are evolving as new treatment options. SMAC mimetics block inhibitor of apoptosis proteins (IAPs), which bind caspases (e.g. XIAP), or activate the pro-survival NF-κB pathway (e.g. cIAP1/2). Expression of IAPs by GCTs is yet not fully elucidated but recently XIAP and its inhibition by SMAC mimetics in a combination therapy was described to induce apoptosis in a GCT cell line, KGN. We evaluated the expression of cIAP1 in GCTs and elucidated the effects of the SMAC mimetic BV-6 using KGN as a model. Results Employing immunohistochemistry, we observed cIAP1 expression in a tissue microarray (TMA) of 42 GCT samples. RT-PCR confirmed expression of cIAP1/2, as well as XIAP, in primary, patient-derived GCTs and in KGN. We therefore tested the ability of the bivalent SMAC mimetic BV-6, which is known to inhibit cIAP1/2 and XIAP, to induce cell death in KGN. A dose response study indicated an EC50 ≈ 8 μM for both, early (< 8) and advanced (> 80) passages, which differ in growth rate and presumably aggressiveness. Quantitative RT-PCR showed upregulation of NF-κB regulated genes in BV-6 stimulated cells. Blocking experiments with the pan-caspase inhibitor Z-VAD-FMK indicated caspase-dependence. A concentration of 20 μM Z-VAD-FMK was sufficient to significantly reduce apoptosis. This cell death was further substantiated by results of Western Blot studies. Cleaved caspase 3 and cleaved PARP became evident in the BV-6 treated group. Conclusions Taken together, the results show that BV-6 is able to induce apoptosis in KGN cells. This approach may therefore offer a promising therapeutic avenue to treat GCTs. Electronic supplementary material The online version of this article (10.1186/s13048-019-0549-6) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Chen H, Crosley P, Azad AK, Gupta N, Gokul N, Xu Z, Weinfeld M, Postovit LM, Pangas SA, Hitt MM, Fu Y. RUNX3 Promotes the Tumorigenic Phenotype in KGN, a Human Granulosa Cell Tumor-Derived Cell Line. Int J Mol Sci 2019; 20:ijms20143471. [PMID: 31311113 PMCID: PMC6678151 DOI: 10.3390/ijms20143471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
Granulosa cell tumors of the ovary (GCT) are the predominant type of ovarian sex cord/stromal tumor. Although prognosis is generally favorable, the outcome for advanced and recurrent GCT is poor. A better understanding of the molecular pathogenesis of GCT is critical to developing effective therapeutic strategies. Here we have examined the potential role of the runt-related transcription factor RUNX3. There are only two GCT cell lines available. While RUNX3 is silenced in the GCT cell line KGN cells, it is highly expressed in another GCT cell line, COV434 cells. Re-expression of RUNX3 promotes proliferation, anchorage-independent growth, and motility in KGN cells in vitro and tumor formation in mice in vivo. Furthermore, expression of a dominant negative form of RUNX3 decreases proliferation of COV434 cells. To address a potential mechanism of action, we examined expression of cyclin D2 and the CDK inhibitor p27Kip1, two cell cycle regulators known to be critical determinants of GCT cell proliferation. We found that RUNX3 upregulates the expression of cyclin D2 at the mRNA and protein level, and decreases the level of the p27Kip1 protein, but not p27Kip1 mRNA. In conclusion, we demonstrate that RUNX proteins are expressed in GCT cell lines and human GCT specimens, albeit at variable levels, and RUNX3 may play an oncogenic role in a subset of GCTs.
Collapse
Affiliation(s)
- Huachen Chen
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Powel Crosley
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Abul K Azad
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nidhi Gupta
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nisha Gokul
- Department of Pathology & Immunology and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Stephanie A Pangas
- Department of Pathology & Immunology and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary M Hitt
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
11
|
Vireque AA, Campos JR, Dentillo DB, Bernuci MP, Campos CO, Silva-de-Sá MF, Ferriani RA, Nunes AA, Rosa-e-Silva ACJDS. Driving Human Granulosa-Luteal Cells Recovered From In Vitro Fertilization Cycles Toward the Follicular Phase Phenotype. Reprod Sci 2015; 22:1015-27. [DOI: 10.1177/1933719115570909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Alessandra Aparecida Vireque
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jacira Ribeiro Campos
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Blasioli Dentillo
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Picinin Bernuci
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Oliveira Campos
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Felipe Silva-de-Sá
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Hormones and Woman’s Health, CNPq, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rui Alberto Ferriani
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Hormones and Woman’s Health, CNPq, Porto Alegre, Rio Grande do Sul, Brazil
| | - Altacílio Aparecido Nunes
- Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Carolina Japur de Sá Rosa-e-Silva
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Hormones and Woman’s Health, CNPq, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Fu D, Lv X, Hua G, He C, Dong J, Lele SM, Li DWC, Zhai Q, Davis JS, Wang C. YAP regulates cell proliferation, migration, and steroidogenesis in adult granulosa cell tumors. Endocr Relat Cancer 2014; 21:297-310. [PMID: 24389730 PMCID: PMC4222524 DOI: 10.1530/erc-13-0339] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hippo signaling pathway has been implicated as a conserved regulator of organ size in both Drosophila and mammals. Yes-associated protein (YAP), the central component of the Hippo signaling cascade, functions as an oncogene in several malignancies. Ovarian granulosa cell tumors (GCT) are characterized by enlargement of the ovary, excess production of estrogen, a high frequency of recurrence, and the potential for malignancy and metastasis. Whether the Hippo pathway plays a role in the pathogenesis of GCT is unknown. This study was conducted to examine the expression of YAP in human adult GCTs and to determine the role of YAP in the proliferation and steroidogenesis of GCT cells. Compared with age-matched normal human ovaries, GCT tissues exhibited higher levels of YAP expression. YAP protein was predominantly expressed in the nucleus of tumor cells, whereas the non-tumor ovarian stromal cells expressed very low levels of YAP. YAP was also expressed in cultured primary human granulosa cells and in KGN and COV434 GCT cell lines. siRNA-mediated knockdown of YAP in KGN cells resulted in a significant reduction in cell proliferation (P<0.001). Conversely, overexpression of wild type YAP or a constitutively active YAP (YAP1) mutant resulted in a significant increase in KGN cell proliferation and migration. Moreover, YAP knockdown reduced FSH-induced aromatase (CYP19A1) protein expression and estrogen production in KGN cells. These results demonstrate that YAP plays an important role in the regulation of GCT cell proliferation, migration, and steroidogenesis. Targeting the Hippo/YAP pathway may provide a novel therapeutic approach for GCT.
Collapse
Affiliation(s)
- David Fu
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Xiangmin Lv
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Guohua Hua
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunbo He
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Jixin Dong
- The Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Subodh M. Lele
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198
| | - David Wan-Cheng Li
- Department of Ophthalmology and visual Science, University of Nebraska Medical Center, Omaha, NE 68198
| | - Qiongli Zhai
- Department of Pathology, Tianjin Medical University Cancer Hospital, Tianjin, China
| | - John S. Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198
- The Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Omaha Veterans Affairs Medical Center, Omaha NE 68105
| | - Cheng Wang
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198
- The Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
13
|
Irusta G, Maidana CP, Abramovich D, De Zúñiga I, Parborell F, Tesone M. Effects of an Inhibitor of the Gamma-Secretase Complex on Proliferation and Apoptotic Parameters in a FOXL2-Mutated Granulosa Tumor Cell Line (KGN)1. Biol Reprod 2013; 89:9. [DOI: 10.1095/biolreprod.113.108100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
14
|
Wang C, Lv X, Jiang C, Cordes CM, Fu L, Lele SM, Davis JS. Transforming growth factor alpha (TGFα) regulates granulosa cell tumor (GCT) cell proliferation and migration through activation of multiple pathways. PLoS One 2012; 7:e48299. [PMID: 23155381 PMCID: PMC3498304 DOI: 10.1371/journal.pone.0048299] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 09/28/2012] [Indexed: 12/18/2022] Open
Abstract
Granulosa cell tumors (GCTs) are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.
Collapse
Affiliation(s)
- Cheng Wang
- Departments of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (CW); (JSD)
| | - Xiangmin Lv
- Departments of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Chao Jiang
- Departments of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Crystal M. Cordes
- Departments of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lan Fu
- Departments of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subodh M. Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - John S. Davis
- Departments of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- VA Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (CW); (JSD)
| |
Collapse
|
15
|
Wang C, Lv X, Jiang C, Davis JS. The putative G-protein coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner. Am J Transl Res 2012; 4:390-402. [PMID: 23145207 PMCID: PMC3493027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/19/2012] [Indexed: 06/01/2023]
Abstract
G-protein coupled estrogen receptor 1 (GPER) plays an important role in mediating estrogen action in many different tissues under both physiological and pathological conditions. G-1 (1-[4-(6-bromobenzo[1,3]dioxol-5yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta [c]quinolin-8-yl]-ethanone) has been developed as a selective GPER agonist to distinguish estrogen actions mediated by GPER from those mediated by classic estrogen receptors. In the present study, we surprisingly found that G-1 suppressed proliferation and induced apoptosis of KGN cells (a human ovarian granulosa cell tumor cell line), actions that were not blocked by a selective GPER antagonist G15 or siRNA knockdown of GPER. G-1 also suppressed proliferation and induced cell apoptosis in GPER-negative HEK-293 cells and MDA-MB 231 breast cancer cells. Our results demonstrate that G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner. G-1 may be a candidate for the development of drugs against ovarian and breast cancer.
Collapse
Affiliation(s)
- Cheng Wang
- Olson Center for Women’s Health, University of Nebraska Medical CenterOmaha, NE 68198, USA
- Department of OB/GYN, University of Nebraska Medical CenterOmaha, NE 68198, USA
| | - Xiangmin Lv
- Olson Center for Women’s Health, University of Nebraska Medical CenterOmaha, NE 68198, USA
- Department of OB/GYN, University of Nebraska Medical CenterOmaha, NE 68198, USA
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal UniversityChangsha, Hunan 410081, China
| | - Chao Jiang
- Olson Center for Women’s Health, University of Nebraska Medical CenterOmaha, NE 68198, USA
- Department of OB/GYN, University of Nebraska Medical CenterOmaha, NE 68198, USA
| | - John S Davis
- Olson Center for Women’s Health, University of Nebraska Medical CenterOmaha, NE 68198, USA
- Department of OB/GYN, University of Nebraska Medical CenterOmaha, NE 68198, USA
- VA Medical CenterOmaha, NE 68105, USA
| |
Collapse
|
16
|
Ito M, Imai M, Muraki M, Miyado K, Qin J, Kyuwa S, Yoshikawa Y, Hosoi Y, Saito H, Takahashi Y. GSTT1 is upregulated by oxidative stress through p38-MK2 signaling pathway in human granulosa cells: possible association with mitochondrial activity. Aging (Albany NY) 2012; 3:1213-23. [PMID: 22207314 PMCID: PMC3273902 DOI: 10.18632/aging.100418] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that GSTT1 was upregulated in human granulosa cells during aging and that activation and localization of p38 MAPK was changed in parallel. Although oxidative stress is responsible for these changes, the age-associated expression of GSTT1 regulated by MAPKs and the role of GSTT1 in aged granulosa cells remain unclear. Therefore, we examined the relationship between the expression of GSTT1 and MAPK signaling pathways using human granulosa-like KGN cells stimulated with H2O2 in the presence or absence of various MAPK inhibitors. Interestingly, H2O2-induced GSTT1 was only inhibited by a p38 inhibitor. An inhibitor of MK2, a downstream regulator of p38, also diminished H2O2-induced GSTT1 upregulation. Notably, both p38 and MK2 were significantly inactivated in cells carrying an shRNA construct of GSTT1 (ΔGSTT1 cells), suggesting that the p38-MK2 pathway is essential for age-associated upregulation of GSTT1. The relevance of GSTT1 in mitochondrial activity was then determined. ΔGSTT1 cells displayed enhanced polarization of mitochondrial membrane potential without increasing the apoptosis, suggesting that the age-associated upregulation of GSTT1 may influence the mitochondrial activity of granulosa cells. Collectively, it appears that the age-associated expression of GSTT1 is induced through the p38 signaling pathway and GSTT1 influences homeostatic activities in granulosa cells.
Collapse
Affiliation(s)
- Megumu Ito
- Division of Reproductive Medicine, Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ito M, Miyado K, Nakagawa K, Muraki M, Imai M, Yamakawa N, Qin J, Hosoi Y, Saito H, Takahashi Y. Age-associated changes in the subcellular localization of phosphorylated p38 MAPK in human granulosa cells. Mol Hum Reprod 2010; 16:928-37. [DOI: 10.1093/molehr/gaq076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|