1
|
Chromosomal Rearrangements and Altered Nuclear Organization: Recent Mechanistic Models in Cancer. Cancers (Basel) 2021; 13:cancers13225860. [PMID: 34831011 PMCID: PMC8616464 DOI: 10.3390/cancers13225860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary New methodologies and technologies developed in the last few decades have highlighted the precise spatial organization of the genome into the cell nucleus, with chromatin architecture playing a central role in controlling several genome functions. Genes are expressed in a well-defined way and at a well-defined time during cell differentiation, and alterations in genome organization can lead to genetic diseases, such as cancers. Here we review how the genome is organized in the cell nucleus and the evidence of genome misorganization leading to cancer diseases. Abstract The last decade has seen significant progress in understanding how the genome is organized spatially within interphase nuclei. Recent analyses have confirmed earlier molecular cytogenetic studies on chromosome positioning within interphase nuclei and provided new information about the topologically associated domains (TADs). Examining the nuances of how genomes are organized within interphase nuclei will provide information fundamental to understanding gene regulation and expression in health and disease. Indeed, the radial spatial positioning of individual gene loci within nuclei has been associated with up- and down-regulation of specific genes, and disruption of normal genome organization within nuclei will result in compromised cellular health. In cancer cells, where reorganization of the nuclear architecture may occur in the presence of chromosomal rearrangements such as translocations, inversions, or deletions, gene repositioning can change their expression. To date, very few studies have focused on radial gene positioning and the correlation to gene expression in cancers. Further investigations would improve our understanding of the biological mechanisms at the basis of cancer and, in particular, in leukemia initiation and progression, especially in those cases where the molecular consequences of chromosomal rearrangements are still unclear. In this review, we summarize the main milestones in the field of genome organization in the nucleus and the alterations to this organization that can lead to cancer diseases.
Collapse
|
2
|
Du Q, Smith GC, Luu PL, Ferguson JM, Armstrong NJ, Caldon CE, Campbell EM, Nair SS, Zotenko E, Gould CM, Buckley M, Chia KM, Portman N, Lim E, Kaczorowski D, Chan CL, Barton K, Deveson IW, Smith MA, Powell JE, Skvortsova K, Stirzaker C, Achinger-Kawecka J, Clark SJ. DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity. Cell Rep 2021; 36:109722. [PMID: 34551299 DOI: 10.1016/j.celrep.2021.109722] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.
Collapse
Affiliation(s)
- Qian Du
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Grady C Smith
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Phuc Loi Luu
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - James M Ferguson
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | | | - Shalima S Nair
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Elena Zotenko
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cathryn M Gould
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Michael Buckley
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kee-Ming Chia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Dominik Kaczorowski
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Chia-Ling Chan
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kirston Barton
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Ira W Deveson
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia; The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Martin A Smith
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia; The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Cellular Genomics Futures Institute, School of Medical Sciences, UNSW Sydney, NSW 2010, Australia
| | - Ksenia Skvortsova
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Susan J Clark
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
3
|
Laish I, Mannasse-Green B, Hadary R, Konikoff FM, Amiel A, Kitay-Cohen Y. Aneuploidy and asynchronous replication in non-alcholic fatty liver disease and cryptogenic cirrhosis. Gene 2016; 593:162-166. [PMID: 27520584 DOI: 10.1016/j.gene.2016.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/24/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS Non-alcoholic fatty liver disease (NAFLD) and cryptogenic cirrhosis (CC), which is largely a late sequela of NAFLD, are considered pre-neoplastic conditions that might progress to hepatocellular carcinoma. Aneuploidy, telomere aggregates and synchronization of replication were evaluated as markers of genetic instability in these patients. METHODOLOGY Peripheral blood lymphocytes from 22 patients with NAFLD, 20 patients with CC and 20 age-matched healthy controls were analyzed. To determine random aneuploidy, we used the fluorescence in situ hybridization (FISH) with probes for chromosomes 9 and 18. The rate of aneuploidy was inferred from the fraction of cells revealing one, three or more hybridization signals per cell. Aggregate size was divided into three fusion groups of 2-5, 6-10 and 11-15 telomeres, relative to the size of a single telomere. The replication pattern was determined by FISH in two pairs of alleles, 15qter and 13qter. Asynchrony was determined by the presence of one single and one set of double dots in the same cell. RESULTS Significantly higher random aneuploidy rate was found in the CC patients than in the control group, and to a lesser degree in NAFLD patients. Telomere aggregates were insignificantly higher in both groups. Only patients with CC showed significantly higher rate of asynchronous replication with proportionately more cells with two single dots among the normal cells (p<0.001). CONCLUSIONS These results likely reflect changes in gene replication and cell cycle progression in these conditions, possibly correlating with their malignant potential.
Collapse
Affiliation(s)
- Ido Laish
- Gastroenterology and Hepatology Institute, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | - Ruth Hadary
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Liver Unit, Meir Medical Center, Kfar Saba, Israel
| | - Fred M Konikoff
- Gastroenterology and Hepatology Institute, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aliza Amiel
- Genetic Institute, Meir Medical Center, Kfar Saba, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Yona Kitay-Cohen
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Liver Unit, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
4
|
Laish I, Biron-Shental T, Katz H, Liberman M, Kitay-Cohen Y, Konikoff FM, Amiel A. Asynchronous Replication in Lymphocytes from Patients with Inflammatory Bowel Disease and Primary Sclerosing Cholangitis. Cytogenet Genome Res 2015; 145:35-41. [DOI: 10.1159/000381406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2015] [Indexed: 11/19/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD) are associated chronic inflammatory diseases with malignant potential. Loss of replication synchrony during the S-phase of the cell cycle has been shown to be linked to several malignant and premalignant states. This study evaluated temporal differences in replication timing between these diseases. The replication pattern of peripheral blood lymphocytes obtained from patients with PSC and IBD and healthy individuals was analyzed by fluorescence in situ hybridization (FISH) in 2 pairs of alleles, in 15qter and 13qter. Asynchrony was determined by the presence of 1 single and 1 set of double dots in the same cell. Samples from subjects with PSC showed significantly greater temporal differences in replication timing, in contrast to the high level of synchrony observed in samples from healthy individuals (p = 0.045). Samples from IBD patients exhibited a nonsignificant increase in replication asynchrony. We believe that these results reflect impairment in the replication control of structural homologous loci in PSC, and that this phenomenon may be correlated with the inflammation-induced malignant potential of this condition.
Collapse
|
5
|
R/G-band boundaries: genomic instability and human disease. Clin Chim Acta 2013; 419:108-12. [PMID: 23434413 DOI: 10.1016/j.cca.2013.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/19/2023]
Abstract
The human genome is composed of large-scale compartmentalized structures resulting from variations in the amount of guanine and cytosine residues (GC%) and in the timing of DNA replication. These compartmentalized structures are related to the light- and dark-staining bands along chromosomes after the appropriate staining. Here we describe our current understanding of the biological importance of the boundaries between these light and dark bands (the so-called R/G boundaries). These R/G boundaries were identified following integration of information obtained from analyses of chromosome bands and genome sequences. This review also discusses the potential medical significance of these chromosomal regions for conditions related to genomic instability, such as cancer and neural disease. We propose that R/G-chromosomal boundaries, which correspond to regions showing a switch in replication timing from early to late S phase (early/late-switch regions) and of transition in GC%, have an extremely low number of replication origins and more non-B-form DNA structures than other genomic regions. Further, we suggest that genes located at R/G boundaries and which contain such DNA sequences have an increased risk of genetic instability and of being associated with human diseases. Finally, we propose strategies for genome and epigenome analyses based on R/G boundaries.
Collapse
|
6
|
Donley N, Thayer MJ. DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. Semin Cancer Biol 2013; 23:80-9. [PMID: 23327985 DOI: 10.1016/j.semcancer.2013.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Normal cellular division requires that the genome be faithfully replicated to ensure that unaltered genomic information is passed from one generation to the next. DNA replication initiates from thousands of origins scattered throughout the genome every cell cycle; however, not all origins initiate replication at the same time. A vast amount of work over the years indicates that different origins along each eukaryotic chromosome are activated in early, middle or late S phase. This temporal control of DNA replication is referred to as the replication-timing program. The replication-timing program represents a very stable epigenetic feature of chromosomes. Recent evidence has indicated that the replication-timing program can influence the spatial distribution of mutagenic events such that certain regions of the genome experience increased spontaneous mutagenesis compared to surrounding regions. This influence has helped shape the genomes of humans and other multicellular organisms and can affect the distribution of mutations in somatic cells. It is also becoming clear that the replication-timing program is deregulated in many disease states, including cancer. Aberrant DNA replication timing is associated with changes in gene expression, changes in epigenetic modifications and an increased frequency of structural rearrangements. Furthermore, certain replication timing changes can directly lead to overt genomic instability and may explain unique mutational signatures that are present in cells that have undergone the recently described processes of "chromothripsis" and "kataegis". In this review, we will discuss how the normal replication timing program, as well as how alterations to this program, can contribute to the evolution of the genomic landscape in normal and cancerous cells.
Collapse
Affiliation(s)
- Nathan Donley
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Knight Cancer Institute, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
7
|
Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol 2012; 13:1114-24. [PMID: 23059046 DOI: 10.1016/s1470-2045(12)70372-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Biomarkers are urgently needed to dissect the heterogeneity of prostate cancer between patients to improve treatment and accelerate drug development. We analysed blood mRNA expression arrays to identify patients with metastatic castration-resistant prostate cancer with poorer outcome. METHODS Whole blood was collected into PAXgene tubes from patients with castration-resistant prostate cancer and patients with prostate cancer selected for active surveillance. In stage I (derivation set), patients with castration-resistant prostate cancer were used as cases and patients under active surveillance were used as controls. These patients were recruited from The Royal Marsden Hospital NHS Foundation Trust (Sutton, UK) and The Beatson West of Scotland Cancer Centre (Glasgow, UK). In stage II (validation-set), patients with castration-resistant prostate cancer recruited from the Memorial Sloan-Kettering Cancer Center (New York, USA) were assessed. Whole-blood RNA was hybridised to Affymetrix U133plus2 microarrays. Expression profiles were analysed with Bayesian latent process decomposition (LPD) to identify RNA expression profiles associated with castration-resistant prostate cancer subgroups; these profiles were then confirmed by quantative reverse transcriptase (qRT) PCR studies and correlated with overall survival in both the test-set and validation-set. FINDINGS LPD analyses of the mRNA expression data divided the evaluable patients in stage I (n=94) into four groups. All patients in LPD1 (14 of 14) and most in LPD2 (17 of 18) had castration-resistant prostate cancer. Patients with castration-resistant prostate cancer and those under active surveillance comprised LPD3 (15 of 31 castration-resistant prostate cancer) and LDP4 (12 of 21 castration-resistant prostate cancer). Patients with castration-resistant prostate cancer in the LPD1 subgroup had features associated with worse prognosis and poorer overall survival than patients with castration-resistant prostate cancer in other LPD subgroups (LPD1 overall survival 10·7 months [95% CI 4·1-17·2] vs non-LPD1 25·6 months [18·0-33·4]; p<0·0001). A nine-gene signature verified by qRT-PCR classified patients into this LPD1 subgroup with a very low percentage of misclassification (1·2%). The ten patients who were initially unclassifiable by the LPD analyses were subclassified by this signature. We confirmed the prognostic utility of this nine-gene signature in the validation castration-resistant prostate cancer cohort, where LPD1 membership was also associated with worse overall survival (LPD1 9·2 months [95% CI 2·1-16·4] vs non-LPD1 21·6 months [7·5-35·6]; p=0·001), and remained an independent prognostic factor in multivariable analyses for both cohorts. INTERPRETATION Our results suggest that whole-blood gene profiling could identify gene-expression signatures that stratify patients with castration-resistant prostate cancer into distinct prognostic groups. FUNDING AstraZeneca, Experimental Cancer Medicine Centre, Prostate Cancer Charity, Prostate Cancer Foundation.
Collapse
|
8
|
Dimitrova DS. DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci. J Cell Sci 2011; 124:2743-52. [DOI: 10.1242/jcs.082230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Typically, only a fraction of the ≥600 ribosomal RNA (rRNA) gene copies in human cells are transcriptionally active. Expressed rRNA genes coalesce in specialized nuclear compartments – the nucleoli – and are believed to replicate during the first half of S phase. Paradoxically, attempts to visualize replicating rDNA during early S phase have failed. Here, I show that, in human (HeLa) cells, early-replicating rDNA is detectable at the nucleolar periphery and, more rarely, even outside nucleoli. Early-replicated rDNA relocates to the nucleolar interior and reassociates with the transcription factor UBF, implying that it predominantly represents expressed rDNA units. Contrary to the established model for active gene loci, replication initiates randomly throughout the early-replicating rDNA. By contrast, mostly silent rDNA copies replicate inside the nucleoli during mid and late S phase. At this stage, replication origins are fired preferentially within the non-transcribed intergenic spacers (NTSs), and ongoing rDNA transcription is required to maintain this specific initiation pattern. I propose that the unexpected spatial dynamics of the early-replicating rDNA repeats serve to ensure streamlined efficient replication of the most heavily transcribed genomic loci while simultaneously reducing the risk of chromosome breaks and rDNA hyper-recombination.
Collapse
|
9
|
Cytron S, Stepnov E, Bounkin I, Mashevich M, Dotan A, Avivi L. Epigenetic analyses in blood cells of men suspected of prostate cancer predict the outcome of biopsy better than serum PSA levels. Clin Epigenetics 2011; 2:383-388. [PMID: 21949550 PMCID: PMC3156318 DOI: 10.1007/s13148-011-0029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/13/2011] [Indexed: 11/26/2022] Open
Abstract
Lymphocytes from the peripheral blood of patients with prostate cancer-the most frequent (noncutaneous) tumor in men-display epigenetic aberrations (altered modes of allelic replication) characteristic of the malignant phenotype. The present study aims to determine whether replication aberrations add certainty to the suspicion of prostate cancer provided by the prostate-specific antigen (PSA) blood test. The allelic replication mode (whether synchronous or asynchronous) was exemplified for RB1 and AML1. These two genes normally exhibit a synchronous mode of allelic replication. Fluorescence in situ hybridization (FISH) replication assay was used for replication analyses. The FISH assays were applied to PHA-stimulated lymphocytes, established from peripheral blood samples of 35 men referred to biopsy due to suspected prostate cancer. Following biopsy 13 out of these 35 men were found positive for prostate malignancy. The FISH assay-showing asynchronous or synchronous RB1 and AML1 replication-was able to predict, respectively, the results of all biopsy-positive men and in 18 out of the 22 biopsy-negative ones. These measurements, distinguishing biopsy-positive from biopsy-negative men, were highly significant (P < 10(-8); 100% sensitivity and 81.8% specificity). Yet, distinguishing between the two groups of men based on the PSA measurements was nonsignificant (P > 0.70). The FISH replication assay applied to peripheral blood lymphocytes of 35 men referred for biopsy significantly predicted the outcome of the pathological examination, more precisely than the serum PSA test. As such, the epigenetic alteration offers a potential noninvasive blood marker, complementary to the PSA, for a preliminary prostate cancer diagnosis.
Collapse
Affiliation(s)
- Samuel Cytron
- Department of Urology, Barzilai Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Ashkelon, 78306 Israel
| | - Evgeni Stepnov
- Department of Urology, Barzilai Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Ashkelon, 78306 Israel
| | - Igor Bounkin
- Department of Urology, Barzilai Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Ashkelon, 78306 Israel
| | - Maya Mashevich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Aviva Dotan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Lydia Avivi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
10
|
Replication timing aberrations and aneuploidy in peripheral blood lymphocytes of breast cancer patients. Neoplasia 2010; 12:668-74. [PMID: 20689761 DOI: 10.1593/neo.10568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/23/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Peripheral blood lymphocytes of patients with hematological malignancies or solid tumors, such as renal cell carcinoma or prostate cancer, display epigenetic aberrations (loss of synchronous replication of allelic counterparts) and genetic changes (aneuploidy) characteristic of the cancerous phenotype. This study sought to determine whether such alterations could differentiate breast cancer patients from cancer-free subjects. METHODS The HER2 locus-an oncogene assigned to chromosome 17 whose amplification is associated with breast cancer (BCA)-and the pericentromeric satellite sequence of chromosome 17 (CEN17) were used for replication timing assessments. Aneuploidy was monitored by enumerating the copy numbers of chromosome 17. Replication timing and aneuploidy were detected cytogenetically using fluorescence in situ hybridization technology applied to phytohemagglutinin-stimulated lymphocytes of 20 women with BCA and 10 control subjects. RESULTS We showed that both the HER2 and CEN17 loci in the stimulated BCA lymphocytes altered their characteristic pattern of synchronous replication and exhibited asynchronicity. In addition, there was an increase in chromosome 17 aneuploidy. The frequency of cells displaying asynchronous replication in the patients' samples was significantly higher (P < 10(-12) for HER2 and P < 10(-6) for CEN17) than the corresponding values in the control samples. Similarly, aneuploidy in patients' cells was significantly higher (P < 10(-9)) than that in the controls. CONCLUSIONS The HER2 and CEN17 aberrant replication differentiated clearly between BCA patients and control subjects. Thus, monitoring the replication of these genes offers potential blood markers for the detection and monitoring of breast cancer.
Collapse
|
11
|
Nagler A, Cytron S, Mashevich M, Korenstein-Ilan A, Avivi L. The aberrant asynchronous replication - characterizing lymphocytes of cancer patients - is erased following stem cell transplantation. BMC Cancer 2010; 10:230. [PMID: 20497575 PMCID: PMC2887401 DOI: 10.1186/1471-2407-10-230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrations of allelic replication timing are epigenetic markers observed in peripheral blood cells of cancer patients. The aberrant markers are non-cancer-type-specific and are accompanied by increased levels of sporadic aneuploidy. The study aimed at following the epigenetic markers and aneuploidy levels in cells of patients with haematological malignancies from diagnosis to full remission, as achieved by allogeneic stem cell transplantation (alloSCT). METHODS TP53 (a tumor suppressor gene assigned to chromosome 17), AML1 (a gene assigned to chromosome 21 and involved in the leukaemia-abundant 8;21 translocation) and the pericentomeric satellite sequence of chromosome 17 (CEN17) were used for replication timing assessments. Aneuploidy was monitored by enumerating the copy numbers of chromosomes 17 and 21. Replication timing and aneuploidy were detected cytogenetically using fluorescence in situ hybridization (FISH) technology applied to phytohemagglutinin (PHA)-stimulated lymphocytes. RESULTS We show that aberrant epigenetic markers are detected in patients with hematological malignancies from the time of diagnosis through to when they are scheduled to undergo alloSCT. These aberrations are unaffected by the clinical status of the disease and are displayed both during accelerated stages as well as in remission. Yet, these markers are eradicated completely following stem cell transplantation. In contrast, the increased levels of aneuploidy (irreversible genetic alterations) displayed in blood lymphocytes at various stages of disease are not eliminated following transplantation. However, they do not elevate and remain unchanged (stable state). A demethylating anti-cancer drug, 5-azacytidine, applied in vitro to lymphocytes of patients prior to transplantation mimics the effect of transplantation: the epigenetic aberrations disappear while aneuploidy stays unchanged. CONCLUSIONS The reversible nature of the replication aberrations may serve as potential epigenetic blood markers for evaluating the success of transplant or other treatments and for long-term follow up of the patients who have overcome a hematological malignancy.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Aneuploidy
- Azacitidine/pharmacology
- Cells, Cultured
- Child
- Child, Preschool
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 21
- Core Binding Factor Alpha 2 Subunit/genetics
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- DNA Replication Timing/drug effects
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Female
- Hematologic Neoplasms/diagnosis
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/pathology
- Hematologic Neoplasms/surgery
- Humans
- In Situ Hybridization, Fluorescence
- Lymphocytes/drug effects
- Lymphocytes/pathology
- Male
- Middle Aged
- Stem Cell Transplantation
- Time Factors
- Transplantation, Homologous
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
- Young Adult
Collapse
Affiliation(s)
- Arnon Nagler
- Bone Marrow Transplantation Department, Institute of Hematology, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Samuel Cytron
- Department of Urology, Barzilai Medical Center, affiliated to the Faculty of Health Sciences, Ben-Gurion University of The Negev, Askelon 78306, Israel
| | - Maya Mashevich
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Avital Korenstein-Ilan
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Lydia Avivi
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
12
|
Yeshaya J, Amir I, Rimon A, Freedman J, Shohat M, Avivi L. Microdeletion syndromes disclose replication timing alterations of genes unrelated to the missing DNA. Mol Cytogenet 2009; 2:11. [PMID: 19284877 PMCID: PMC2660353 DOI: 10.1186/1755-8166-2-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/14/2009] [Indexed: 11/26/2022] Open
Abstract
Background The temporal order of allelic replication is interrelated to the epigenomic profile. A significant epigenetic marker is the asynchronous replication of monoallelically-expressed genes versus the synchronous replication of biallelically-expressed genes. The present study sought to determine whether a microdeletion in the genome affects epigenetic profiles of genes unrelated to the missing segment. In order to test this hypothesis, we checked the replication patterns of two genes – SNRPN, a normally monoallelically expressed gene (assigned to 15q11.13), and the RB1, an archetypic biallelically expressed gene (assigned to 13.q14) in the genomes of patients carrying the 22q11.2 deletion (DiGeorge/Velocardiofacial syndrome) and those carrying the 7q11.23 deletion (Williams syndrome). Results The allelic replication timing was determined by fluorescence in situ hybridization (FISH) technology performed on peripheral blood cells. As expected, in the cells of normal subjects the frequency of cells showing asynchronous replication for SNRPN was significantly (P < 10-12) higher than the corresponding value for RB1. In contrast, cells of the deletion-carrying patients exhibited a reversal in this replication pattern: there was a significantly lower frequency of cells engaging in asynchronous replication for SNRPN than for RB1 (P < 10-4 and P < 10-3 for DiGeorge/Velocardiofacial and Williams syndromes, respectively). Accordingly, the significantly lower frequency of cells showing asynchronous replication for SNRPN than for RB1 is a new epigenetic marker distinguishing these deletion syndrome genotypes from normal ones. Conclusion In cell samples of each deletion-carrying individual, an aberrant, reversed pattern of replication is delineated, namely, where a monoallelic gene replicates more synchronously than a biallelic gene. This inverted pattern, which appears to be non-deletion-specific, clearly distinguishes cells of deletion-carriers from normal ones. As such, it offers a potential epigenetic marker for suspecting a hidden microdeletion that is too small to be detected by conventional karyotyping methods.
Collapse
Affiliation(s)
- Josepha Yeshaya
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel
| | - Itay Amir
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel.,Department of Human Molecular Genetics & Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ayelet Rimon
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel
| | - Jane Freedman
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel
| | - Mordechai Shohat
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel.,Department of Human Molecular Genetics & Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pediatrics C, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Lydia Avivi
- Department of Human Molecular Genetics & Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|