1
|
Demyashkin G, Koryakin S, Moiseev A, Saburov V, Zatsepina M, Epifanova M, Stepanova Y, Shchekin V, Vadyukhin M, Shegay P, Kaprin A. Assessment of Proliferation and Apoptosis in Testes of Rats after Experimental Localized Electron Irradiation. Curr Issues Mol Biol 2022; 44:5768-5777. [PMID: 36421675 PMCID: PMC9689034 DOI: 10.3390/cimb44110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of linear accelerators in radiotherapy, it becomes necessary to accurately select new dosing regimens. The purpose of this study was to assess the morphological changes of spermatogenesis after radiation exposure. MATERIALS AND METHODS Male Wistar rats (n = 40) were subjected to targeted ionizing radiation on a pulsed electron accelerator "NOVAC-11" with doses of 2, 8 and 12 Gy. Spermatogenesis was assessed a week later using light microscopy and immunohistochemical method (antibodies to Ki-67, Bcl-2, p53, Caspase 3). RESULTS A decrease in the number of normal germ cells was seen in all experimental groups, while radioresistant Sertoli and Leydig cells were barely affected. The most serious damage to the tubules and germ cells was observed in 8 and 12 Gy irradiation groups. IHC analysis of testes after irradiation showed a shift in the proliferative-apoptotic balance toward apoptosis of germ cells: a decrease in the expression levels of Ki-67 and Bcl-2, an increase in p53-positive and caspase 3-positive cells by the end of the experiment. CONCLUSION Dose-dependent progressive pathomorphological changes in histoarchitectonics of the testes are traced, and a decrease in the number of germ cells is seen on the seventh day after irradiation with a pulsed electron accelerator "NOVAC-11".
Collapse
Affiliation(s)
- Grigory Demyashkin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Sergey Koryakin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| | - Aleksandr Moiseev
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| | - Vyatcheslav Saburov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| | - Margarita Zatsepina
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Maya Epifanova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Yulia Stepanova
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir Shchekin
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Matvey Vadyukhin
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Petr Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| | - Andrei Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| |
Collapse
|
2
|
Madhavan K, Balakrishnan I, Lakshmanachetty S, Pierce A, Sanford B, Fosmire S, Elajaili HB, Walker F, Wang D, Nozik ES, Mitra SS, Dahl NA, Vibhakar R, Venkataraman S. Venetoclax cooperates with ionizing radiation to attenuate Diffuse Midline Glioma tumor growth. Clin Cancer Res 2022; 28:2409-2424. [PMID: 35344040 DOI: 10.1158/1078-0432.ccr-21-4002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor relapse after radiation therapy (RT) is a major hurdle in treating pediatric H3K27M-mutant diffuse midline gliomas (DMGs). RT-induced stress increases association of BCL2 family of proteins with BH3 pro-apoptotic activators preventing apoptosis. We hypothesized that inhibition of RT-induced BCL2 with a clinically relevant inhibitor, venetoclax, will block BCL2 activity leading to increased apoptosis. BCL2 has never been implicated in DMG as a RT-induced resistant mechanism. EXPERIMENTAL DESIGN We performed an integrated genomic analysis to determine genes responsible for radioresistance and a targeted drug screen to identify drugs that synergize with radiation in DMG. Effect of venetoclax on radiation-na�ve and 6Gy radiation on cells was evaluated by studying cell death, changes in BCL2 phosphorylation, reactive oxygen species (ROS), and apoptosis, as well as BCL2 association with BH3 apoptosis initiators. The efficacy of combining venetoclax with radiation was evaluated in vivo using orthotopic xenograft models. RESULTS BCL2 was identified as a key regulator of tumor growth after radiation in DMGs. Radiation sensitizes DMGs to venetoclax treatment independent of p53 status. Venetoclax as a monotherapy was not cytotoxic to DMG cells. Post-radiation venetoclax treatment significantly increased cell death, reduced BCL2-BIM association and augmented mitochondrial ROS leading to increased apoptosis. Combining venetoclax with RT significantly enhanced the survival of mice with DMG tumors. CONCLUSIONS This study shows that venetoclax impedes the anti-apoptotic function of radiation-induced BCL2 in DMG leading to increased apoptosis. Results from these pre-clinical studies demonstrate the potential use of the BCL2 inhibitor, venetoclax, combined with RT for pediatric DMG.
Collapse
Affiliation(s)
- Krishna Madhavan
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Angela Pierce
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bridget Sanford
- University of Colorado Anschutz Medical Campus, United States
| | - Susan Fosmire
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hanan B Elajaili
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Faye Walker
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dong Wang
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eva S Nozik
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Siddhartha S Mitra
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nathan A Dahl
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | | |
Collapse
|
3
|
Taghavi Bahreghani M, Geraily G, Alizadeh S, Najafi M, Shirazi A. Apigenin Enhanced Radiation-Induced Apoptosis/Necrosis by Sensitization of LNCaP Prostate Cancer Cells to 6 MV Photon Beams. CELL JOURNAL 2021; 23:730-735. [PMID: 34979061 PMCID: PMC8753104 DOI: 10.22074/cellj.2021.7610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Whereas prostate cancer (PrCa) may be unresponsive or moderately responsive to radiation therapy (RT)- most common modality for treatment of PrCa- patients must receive a high dose of RT In order to achieve appropriate tumour control. However, this increase in radiation dose may lead to severe adverse effects in normal tissues. Sensitization of PrCa to radiation provides an alternate approach to improve the therapeutic efficacy of RT. This study aims to assess the radiosensitisation effect of apigenin (Api) on a prostate cancer cell line (LNCaP). MATERIALS AND METHODS In this experimental study, LNCaP cells were treated with 0-80 μM Api to investigate its effect on LNCaP cell viability and determine its half-maximal inhibitory concentration (IC50). Next, the cells were divided into four groups: i. Control, ii. Cells treated with the IC50 concentration of Api, iii. Cells treated with 2 Gy ionizing radiation (IR), and cells co-treated with Api and IR. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, real-time polymerase chain reaction (PCR), and an Annexin V-FITC/PI assay were performed to assess cell survival, Bax and Bcl-2 expressions, and presence of apoptosis and necrosis. RESULTS Api inhibited cell survival in a dose-dependent, but not time-dependent manner. Cells treated with Api had increased amounts of early apoptosis, late apoptosis, and secondary necrosis compared to the control group. This group also had decreased Bcl-2 gene expression and up-regulated Bax gene expression. Co-treatment with Api and IR significantly inhibited cell survival, and increased early apoptosis, late apoptosis and secondary necrosis compared to the other groups. There was a significant decrease in Bcl-2 gene expression along with up-regulation of Bax gene expression, and Bax/Bcl-2 ratio changes that favoured apoptosis. CONCLUSION Api inhibited PrCa cell survival and induced apoptosis as a single agent. In addition, Api significantly sensitized the LNCaP cells to IR and enhanced radiation-induced apoptosis.
Collapse
Affiliation(s)
- Morteza Taghavi Bahreghani
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran,P.O.Box: 13599471Department of Medical Physics and Biomedical EngineeringTehran University of Medical
SciencesTehranIran
| | - Shaban Alizadeh
- Department of Haematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Allied Medical Sciences Kermanshah University of Medical Sciences,
Kermanshah, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol 2020; 86:106761. [PMID: 32629409 DOI: 10.1016/j.intimp.2020.106761] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy is one of the most common modalities for the treatment of cancer. One of the most promising effects of radiotherapy is immunologic cell death and the release of danger alarms, which are known as damage-associated molecular patterns (DAMPs). DAMPs are able to trigger cancer cells and other cells within tumor microenvironment (TME), either for suppression or promotion of tumor growth. Heat shock proteins (HSPs) including HSP70 and HSP90, high mobility group box 1 (HMGB1), and adenosine triphosphate (ATP) and its metabolites such as adenosine are the most common danger alarms that are released after radiotherapy-induced immunologic cell death. Some DAMPs including adenosine is able to interact with both cancer cells as well as other cells in TME to promote tumor growth and resistance to radiotherapy. However, others are able to trigger anti-tumor immunity or both tumor suppressive and immunosuppressive mechanisms depending on affected cells. In this review, we explain the mechanisms behind the release of radiation-induced DAMPs, and its consequences on cells within tumor. Targeting of these mechanisms may be in favor of tumor control in combination with radiotherapy and radioimmunotherapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Wickstroem K, Hagemann UB, Cruciani V, Wengner AM, Kristian A, Ellingsen C, Siemeister G, Bjerke RM, Karlsson J, Ryan OB, Linden L, Mumberg D, Ziegelbauer K, Cuthbertson AS. Synergistic Effect of a Mesothelin-Targeted 227Th Conjugate in Combination with DNA Damage Response Inhibitors in Ovarian Cancer Xenograft Models. J Nucl Med 2019; 60:1293-1300. [PMID: 30850485 PMCID: PMC6735281 DOI: 10.2967/jnumed.118.223701] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/06/2019] [Indexed: 01/06/2023] Open
Abstract
Targeted 227Th conjugates (TTCs) represent a new class of therapeutic radiopharmaceuticals for targeted α-therapy. They comprise the α-emitter 227Th complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the α-particles induce antitumor activity, driven by the induction of complex DNA double-strand breaks. We hypothesized that blocking the DNA damage response (DDR) pathway should further sensitize cancer cells by inhibiting DNA repair, thereby increasing the response to TTCs. Methods: This article reports the evaluation of the mesothelin (MSLN)-TTC conjugate (BAY 2287411) in combination with several DDR inhibitors, each of them blocking different DDR pathway enzymes. MSLN is a validated cancer target known to be overexpressed in mesothelioma, ovarian, lung, breast, and pancreatic cancer, with low expression in normal tissue. In vitro cytotoxicity experiments were performed on cancer cell lines by combining the MSLN-TTC with inhibitors of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related (ATR), DNA-dependent protein kinase, and poly[adenosine diphosphate ribose] polymerase (PARP) 1/2. Further, we evaluated the antitumor efficacy of the MSLN-TTC in combination with DDR inhibitors in human ovarian cancer xenograft models. Results: Synergistic activity was observed in vitro for all tested inhibitors (inhibitors are denoted herein by the suffix “i”) when combined with MSLN-TTC. ATRi and PARPi appeared to induce the strongest increase in potency. Further, in vivo antitumor efficacy of the MSLN-TTC in combination with ATRi or PARPi was investigated in the OVCAR-3 and OVCAR-8 xenograft models in nude mice, demonstrating synergistic antitumor activity for the ATRi combination at doses demonstrated to be nonefficacious when administered as monotherapy. Conclusion: The presented data support the mechanism-based rationale for combining the MSLN-TTC with DDR inhibitors as new treatment strategies in MSLN-positive ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roger M Bjerke
- Thorium Conjugate Research, Bayer American Samoa, Oslo, Norway
| | - Jenny Karlsson
- Thorium Conjugate Research, Bayer American Samoa, Oslo, Norway
| | - Olav B Ryan
- Thorium Conjugate Research, Bayer American Samoa, Oslo, Norway
| | - Lars Linden
- Bayer AG Pharmaceuticals Division, Wuppertal, Germany
| | | | | | | |
Collapse
|
6
|
Yang X, Liu H, Jiang X, Jin C, Xu Z, Li T, Wang Z, Wang J. Cyclooxygenase‑2‑mediated upregulation of heme oxygenase 1 mitigates the toxicity of deuterium‑tritium fusion radiation. Int J Mol Med 2018; 42:1945-1954. [PMID: 30085341 PMCID: PMC6108879 DOI: 10.3892/ijmm.2018.3799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Utilizing the energy released from the nuclear fusion of deuterium with tritium (D-T) may be an important method of supplying energy in the future. The ionizing radiation emitted from nuclear fusion is a potential health risk to humans, including scientists who are currently performing nuclear fusion experiments and the employees of fusion nuclear plants, in the future. However, there have been few reports on the biological effects of fusion radiation. In the present study, using the High Intensity D-T Fusion Neutron Generator, the DNA damage and its regulation in normal human fibroblasts exposed to fusion radiation were investigated. Heme oxygenase 1 (HO-1), which is reported to induce anti-inflammatory activity, was upregulated in the irradiated cells. Pretreatment with the HO-1 inhibitor, protoporphyrin IX zinc (II), exacerbated double strand break formation following exposure to fusion radiation. The expression of cyclooxygenase-2 (COX-2) contributed to the upregulation of HO-1, as demonstrated by the result that its inhibitor, NS-398, inhibited the induction of HO-1 in irradiated cells. It was further clarified that the ataxia telangiectasia mutated DNA damage response was activated and it stimulated the phosphorylation of p38 mitogen-activated protein kinase, which was responsible for the upregulation of COX-2 and HO-1. These results provide novel information on fusion radiation-induced biological effects and potential targets for decreasing the associated health risks.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Hui Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Xu Jiang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Chufeng Jin
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhao Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Taosheng Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhigang Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
7
|
Abstract
INTRODUCTION Cathepsins play an important role in protein degradation and processing. Aberrant cathepsin B or L is closely associated with many serious diseases such as cancer, osteoporosis and autoimmune disorders. Therefore, development of potent and selective cathepsin B and L inhibitors has aroused much attention in recent years. Although several classes of cathepsin inhibitors are presently available, there are still some problems to solve, such as broad-spectrum inhibition to protease, specially cysteine proteases, which lead to unpredictable side effects in clinical trials. Therefore, it is very necessary to discovery new scaffolds and new application of cathepsin B and L inhibitors for developing therapeutic agents for treating diseases mediated by cathepsin B or L. Areas covered: This updated review summarizes new patents on cathepsin B and L inhibitors from 2010 to present. Expert opinion: The review gives the latest development in the area of inhibitors of cathepsin B and L, which have been considered key therapeutic targets for the development of drugs treating related diseases. This review puts emphasis on the discovery of novel small molecule inhibitors of cathepsin B and L, as well as their new application as new therapeutic agents.
Collapse
Affiliation(s)
- Yu-Yao Li
- a College of Pharmaceutical Science , Soochow University , Suzhou , PR China
| | - Jing Fang
- a College of Pharmaceutical Science , Soochow University , Suzhou , PR China
| | - Gui-Zhen Ao
- a College of Pharmaceutical Science , Soochow University , Suzhou , PR China
| |
Collapse
|
8
|
You S, Li R, Park D, Xie M, Sica GL, Cao Y, Xiao ZQ, Deng X. Disruption of STAT3 by niclosamide reverses radioresistance of human lung cancer. Mol Cancer Ther 2014; 13:606-16. [PMID: 24362463 PMCID: PMC3964811 DOI: 10.1158/1535-7163.mct-13-0608] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major challenge affecting the outcomes of patients with lung cancer is the development of acquired radioresistance. However, the mechanisms underlying the development of resistance to therapy are not fully understood. Here, we discovered that ionizing radiation induces phosphorylation of Janus-associated kinase (JAK)-2 and STAT3 in association with increased levels of Bcl2/Bcl-XL in various human lung cancer cells. To uncover new mechanism(s) of radioresistance of lung cancer, we established lung cancer cell model systems with acquired radioresistance. As compared with radiosensitive parental lung cancer cells (i.e., A549, H358, and H157), the JAK2/STAT3/Bcl2/Bcl-XL survival pathway is significantly more activated in acquired radioresistant lung cancer cells (i.e., A549-IRR, H358-IRR, and H157-IRR). Higher levels of STAT3 were found to be accumulated in the nucleus of radioresistant lung cancer cells. Niclosamide, a potent STAT3 inhibitor, can reduce STAT3 nuclear localization in radioresistant lung cancer cells. Intriguingly, either inhibition of STAT3 activity by niclosamide or depletion of STAT3 by RNA interference reverses radioresistance in vitro. Niclosamide alone or in combination with radiation overcame radioresistance in lung cancer xenografts. These findings uncover a novel mechanism of radioresistance and provide a more effective approach to overcome radioresistance by blocking the STAT3/Bcl2/Bcl-XL survival signaling pathway, which may potentially improve lung cancer outcome, especially for those patients who have resistance to radiotherapy.
Collapse
Affiliation(s)
- Shuo You
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Second Affiliated Hospital of Xiangya, Central South University, Changsha, Hunan 410008, China
| | - Rui Li
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Gabriel L. Sica
- Department of Pathology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Zhi-Qiang Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Lee HT, Choi MR, Doh MS, Jung KH, Chai YG. Effects of the monoamine oxidase inhibitors pargyline and tranylcypromine on cellular proliferation in human prostate cancer cells. Oncol Rep 2013; 30:1587-92. [PMID: 23900512 PMCID: PMC3810355 DOI: 10.3892/or.2013.2635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy is one of the therapeutic strategies that has been used for the inhibition of cancer cell proliferation in several types of cancer, including prostate cancer. Although monoamine oxidase (MAO) inhibitors, phytoestrogen and antioxidants used in chemotherapy have been systematically studied, their effects on cancer cell growth remain to be fully understood. The purpose of this study was to investigate the effects of the MAO inhibitors, pargyline and tranylcypromine on cell survival in human prostate carcinoma (LNCaP-LN3) cells. After treating LNCaP-LN3 cells with pargyline or tranylcypromine, we examined cell proliferation, cell cycle pattern, apoptosis and the expression levels of apoptosis-related genes. The proliferation of cells exposed to pargyline decreased in a dose- and time-dependent manner, while tranylcypromine-treated cells showed the opposite results. Treatment with pargyline significantly induced cell cycle arrest at the G1 phase compared to the control and tranylcypromine-treated cells. In addition, pargyline induced an increase in the cell death rate by promoting apoptosis; however, tranylcypromine had no effect on LNCaP-LN3 cells. Based on our results, we suggest that pargyline is more powerful than tranylcypromine for the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Hyung Tae Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan 426-791, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2012; 17:61-75. [PMID: 23173842 DOI: 10.1517/14728222.2013.733001] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation. AREAS COVERED This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors (SMIs) and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics. EXPERT OPINION Strategies to specifically identify and inhibit critical determinants that promote therapy resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying SMIs with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
Collapse
Affiliation(s)
- Shibu Thomas
- Virginia Commonwealth University, Department of Human and Molecular Genetics, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aalinkeel R, Nair B, Reynolds JL, Sykes DE, Law WC, Mahajan SD, Prasad PN, Schwartz SA. Quantum rods as nanocarriers of gene therapy. Drug Deliv 2012; 19:220-31. [DOI: 10.3109/10717544.2012.690001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Factors implicated in radiation therapy failure and radiosensitization of prostate cancer. Prostate Cancer 2011; 2012:593241. [PMID: 22229096 PMCID: PMC3200271 DOI: 10.1155/2012/593241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/09/2011] [Indexed: 11/29/2022] Open
Abstract
Tissue markers may be helpful in enhancing prediction of radiation therapy (RT) failure of prostate cancer (PCa). Among the various biomarkers tested in Phase III randomized trials conducted by the Radiation Therapy Oncology Group, p16, Ki-67, MDM2, COX-2, and PKA yielded the most robust data in predicting RT failure. Other pathways involved in RT failure are also implicated in the development of castration-resistant PCa, including the hypersensitive androgen receptor, EGFR, VEGF-R, and PI3K/Akt. Most of them are detectable in PCa tissue even at the time of initial diagnosis. Emerging evidence suggests that RT failure of PCa results from a multifactorial and heterogeneous disease process. A number of tissue markers are available to identify patients at high risk to fail RT. Some of these markers have the promise to be targeted by drugs currently available to enhance the efficacy of RT and delay disease progression.
Collapse
|