1
|
Gao Y, Zhou J, Xie Z, Wang J, Ho CK, Zhang Y, Li Q. Mechanical strain promotes skin fibrosis through LRG-1 induction mediated by ELK1 and ERK signalling. Commun Biol 2019; 2:359. [PMID: 31602408 PMCID: PMC6778114 DOI: 10.1038/s42003-019-0600-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Biomechanical force and pathological angiogenesis are dominant features in fibro-proliferative disorders. Understanding the role and regulation of the mechanical microenvironment in which pathological angiogenesis occurs is an important challenge when investigating numerous angiogenesis-related diseases. In skin fibrosis, dermal fibroblasts and vascular endothelial cells are integral to hypertrophic scar formation. However, few studies have been conducted to closely investigate their relationship. Here we show, that leucine-rich-alpha-2-glycoprotein 1 (LRG-1) a regulator of pathological angiogenesis, links biomechanical force to angiogenesis in skin fibrosis. We discover that LRG-1 is overexpressed in hypertrophic scar tissues, and that depletion of Lrg-1 in mouse skin causes mild neovascularization and skin fibrosis formation in a hypertrophic scarring model. Inhibition of FAK or ERK attenuates LRG-1 expression through the ELK1 transcription factor, which binds to the LRG-1 promoter region after transcription initiation by mechanical force. Using LRG-1 to uncouple mechanical force from angiogenesis may prove clinically successful in treating fibro-proliferative disorders.
Collapse
Affiliation(s)
- Ya Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibo Xie
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chia-kang Ho
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Maffía PC, Guerrieri D, Villalonga X, Caro F, Gómez S, Tateosian N, Bogado BP, Sánchez ML, Ambrosi N, Chuluyan E. Cementoin-SLPI fusion protein binds to human monocytes and epithelial cells and shows higher biological activity than SLPI. Sci Rep 2018; 8:5332. [PMID: 29593284 PMCID: PMC5871749 DOI: 10.1038/s41598-018-23680-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/19/2018] [Indexed: 11/23/2022] Open
Abstract
Secretory Leukocyte Proteinase Inhibitor (SLPI) is an antiinflammatory peptide that blocks the activity of serine proteases, primarily the neutrophil elastase. In an attempt to direct the activity of SLPI on inflamed sites, a chimera consisting of the transglutaminase II substrate domain of trappin 2 (cementoin), and the mature SLPI protein was constructed. Cell attachment and biological activity were compared between SLPI and this chimera. By using whole cell ELISA, fluorescence microscopy and flow cytometry assays we observed that the cementoin-SLPI fusion protein (FP) but not SLPI attached to a human lung epithelial cell line and monocytes. A maximum attachment was achieved 15 min after FP was added to the cell cultures. In an elastase activity assay, we observed that FP retained its antiprotease activity and that at equimolar amount of proteins, FP was more efficient than SLPI in the inhibition. Both, FP and SLPI inhibits IL-2-induced lymphocyte proliferation, however, lower amounts of FP were required to achieve this inhibition. Furthermore, FP binds to mycobacteria and maintained the bactericidal activity observed for SLPI. Overall, these results show that this new chimera is able to attach to the cell surfaces retaining and improving some biological activities described for SLPI.
Collapse
Affiliation(s)
- Paulo C Maffía
- Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego Guerrieri
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,Centro de Estudios Farmacológicos y Botánicos-CONICET (CEFYBO), Buenos Aires, Argentina
| | - Ximena Villalonga
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
| | - Fiorella Caro
- Centro de Estudios Farmacológicos y Botánicos-CONICET (CEFYBO), Buenos Aires, Argentina
| | - Sonia Gómez
- Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Nancy Tateosian
- Centro de Estudios Farmacológicos y Botánicos-CONICET (CEFYBO), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Betiana P Bogado
- Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Mercedes L Sánchez
- Centro de Estudios Farmacológicos y Botánicos-CONICET (CEFYBO), Buenos Aires, Argentina
| | - Nella Ambrosi
- Centro de Estudios Farmacológicos y Botánicos-CONICET (CEFYBO), Buenos Aires, Argentina
| | - Eduardo Chuluyan
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina. .,Centro de Estudios Farmacológicos y Botánicos-CONICET (CEFYBO), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Szondy Z, Korponay-Szabó I, Király R, Sarang Z, Tsay GJ. Transglutaminase 2 in human diseases. Biomedicine (Taipei) 2017; 7:15. [PMID: 28840829 PMCID: PMC5571667 DOI: 10.1051/bmdcn/2017070315] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Transglutaminase 2 (TG2) is an inducible transamidating acyltransferase that catalyzes Ca(2+)-dependent protein modifications. In addition to being an enzyme, TG2 also serves as a G protein for several seven transmembrane receptors and acts as a co-receptor for integrin β1 and β3 integrins distinguishing it from other members of the transglutaminase family. TG2 is ubiquitously expressed in almost all cell types and all cell compartments, and is also present on the cell surface and gets secreted to the extracellular matrix via non-classical mechanisms. TG2 has been associated with various human diseases including inflammation, cancer, fibrosis, cardiovascular disease, neurodegenerative diseases, celiac disease in which it plays either a protective role, or contributes to the pathogenesis. Thus modulating the biological activities of TG2 in these diseases will have a therapeutic value.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Dental Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Ilma Korponay-Szabó
- Department of Pediatrics and Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary - Celiac Disease Center, Heim Pál Children's Hospital, Budapest 1089, Hungary
| | - Robert Király
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan - School of medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|