1
|
Klaska IP, Yu T, Fordyce R, Kamoi K, Cornall RJ, Martin-Granados C, Kuffova L, Forrester JV. Targeted delivery of autoantigen to dendritic cells prevents development of spontaneous uveitis. Front Immunol 2023; 14:1227633. [PMID: 37727784 PMCID: PMC10505613 DOI: 10.3389/fimmu.2023.1227633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Restoration of immunological tolerance to self antigens has been a major drive in understanding the mechanisms of, and developing new treatments for, autoimmune and autoinflammatory disease. Sessile dendritic cells (DC) are considered the main instruments underpinning immunological tolerance particularly the CD205+ (DEC205+) cDC1 subset in contrast to DCIR2+ cDC2 which mediate immunogenicity. Targeting DC using autoantigen peptide-antibody fusion proteins has been a well explored methodology for inducing tolerance. Here we show that subcutaneous (s.c.) inoculation of hen-egg lysozyme (HEL)-DEC205 Ig fusion prevents the development of spontaneous uveoretinitis (experimental autoimmune uveoretinitis, EAU) in a transgenic mouse model generated by crossing interphotoreceptor retinol binding protein (IRBP)-HEL (sTg HEL) with HEL specific TCR (sTg TCR) mice. Prolonged suppression of EAU required injections of HEL-DEC205 Ig once weekly, reflecting the half life of s.c. DC. Interestingly, HEL-DCIR2 Ig also had a suppressive effect on development of EAU but less so than DEC205 Ig while it had minimal effect on preventing the retinal atrophy associated with EAU. In addition, HEL-DEC205 Ig was only effective when administered s.c. rather than systemically and had no effect on EAU induced by adoptive transfer of HEL-activated T cells. These data demonstrate the importance of systemic (lymph node) rather than local (eye) antigen presentation in the development of EAU as well as suggest a potential therapeutic approach to controlling sight-threatening immune-mediated uveitis provided relevant antigen(s) can be identified.
Collapse
Affiliation(s)
- Izabela P. Klaska
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tian Yu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Rosie Fordyce
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Koju Kamoi
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Richard J. Cornall
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V. Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
2
|
Specialized Pro-Resolving Mediators and the Lymphatic System. Int J Mol Sci 2021; 22:ijms22052750. [PMID: 33803130 PMCID: PMC7963193 DOI: 10.3390/ijms22052750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Diminished lymphatic function and abnormal morphology are common in chronic inflammatory diseases. Recent studies are investigating whether it is possible to target chronic inflammation by promoting resolution of inflammation, in order to enhance lymphatic function and attenuate disease. Resolution of inflammation is an active process regulated by bioactive lipids known as specialized pro-resolving mediators (SPMs). SPMs can modulate leukocyte migration and function, alter cytokine/chemokine release, modify autophagy, among other immune-related activities. Here, we summarize the role of the lymphatics in resolution of inflammation and lymphatic impairment in chronic inflammatory diseases. Furthermore, we discuss the current literature describing the connection between SPMs and the lymphatics, and the possibility of targeting the lymphatics with innovative SPM therapy to promote resolution of inflammation and mitigate disease.
Collapse
|
3
|
Lymph-directed nitric oxide increases immune cell access to lymph-borne nanoscale solutes. Biomaterials 2020; 265:120411. [PMID: 33080460 DOI: 10.1016/j.biomaterials.2020.120411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Lymph nodes (LNs) are immune organs housing high concentrations of lymphocytes, making them critical targets for therapeutic immunomodulation in a wide variety of diseases. While there is great interest in targeted drug delivery to LNs, many nanoscale drug delivery carriers have limited access to parenchymal resident immune cells compared to small molecules, limiting their efficacy. Nitric oxide (NO) is a potent regulator of vascular and lymphatic transport and a promising candidate for modulating nanocarrier access to LNs, but its lymphatic accumulation is limited by its low molecular weight and high reactivity. In this work, we employ S-nitrosated nanoparticles (SNO-NP), a lymphatic-targeted delivery system for controlled NO release, to investigate the effect of NO application on molecule accumulation and distribution within the LN. We evaluated the LN accumulation, spatial distribution, and cellular distribution of a panel of fluorescent tracers after intradermal administration alongside SNO-NP or a small molecule NO donor. While SNO-NP did not alter total tracer accumulation in draining lymph nodes (dLNs) or affect active cellular transport of large molecules from the injection site, its application enhanced the penetration of nanoscale 30 nm dextrans into the LN and their subsequent uptake by LN-resident lymphocytes, while nontargeted NO delivery did not. These results further extended to a peptide-conjugated NP drug delivery system, which showed enhanced uptake by B cells and dendritic cells when administered alongside SNO-NP. Together, these results highlight the utility of LN-targeted NO application for the enhancement of nanocarrier access to therapeutically relevant LN-resident immune cells, making NO a potentially useful tool for improving LN drug delivery and immune responses.
Collapse
|
4
|
Jabbehdari S, Rafii AB, Yazdanpanah G, Hamrah P, Holland EJ, Djalilian AR. Update on the Management of High-Risk Penetrating Keratoplasty. CURRENT OPHTHALMOLOGY REPORTS 2017; 5:38-48. [PMID: 28959505 DOI: 10.1007/s40135-017-0119-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In this article, we review the indications and latest management of high-risk penetrating keratoplasty. RECENT FINDINGS Despite the immune-privilege status of the cornea, immune-mediated graft rejection still remains the leading cause of corneal graft failure. This is particularly a problem in the high-risk graft recipients, namely patients with previous graft failure due to rejection and those with inflamed and vascularized corneal beds. A number of strategies including both local and systemic immunosuppression are currently used to increase the success rate of high-risk corneal grafts. Moreover, in cases of limbal stem cell deficiency, limbal stem cells transplantation is employed. SUMMARY Corticosteroids are still the top medication for prevention and treatment in cases of corneal graft rejection. Single and combined administration of immunosuppressive agents e.g. tacrolimus, cyclosporine and mycophenolate are promising adjunctive therapies for prolonging graft survival. In the future, cellular and molecular therapies should allow us to achieve immunologic tolerance even in high-risk grafts.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| | - Alireza Baradaran Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| | - Pedram Hamrah
- Department of Ophthalmology, Tufts University Medical School, Boston, MA
| | - Edward J Holland
- Cincinnati Eye Institute, University of Cincinnati, Cincinnati, Ohio
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
5
|
Kuffova L, Knickelbein JE, Yu T, Medina C, Amescua G, Rowe AM, Hendricks RL, Forrester JV. High-Risk Corneal Graft Rejection in the Setting of Previous Corneal Herpes Simplex Virus (HSV)-1 Infection. Invest Ophthalmol Vis Sci 2016; 57:1578-87. [PMID: 27050878 PMCID: PMC4824377 DOI: 10.1167/iovs.15-17894] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The “high-risk phenotype” of corneal graft recipients is considered to be related to preexisting vascularization such as that associated with herpes simplex virus-1 (HSV-1) keratitis (HSK). The purpose of this study was to investigate the immunologic mechanisms underlying accelerated corneal graft rejection using a mouse model of HSK. Methods Herpes simplex virus type 1 keratitis was induced in BALB/c mice. Syngeneic and allogeneic (C57BL/6 mice) corneal grafts were performed in mice with HSK at different times after infection. Some grafts were performed on HSV-infected CD4 T cell–deficient BALB/c mice. Clinical, histologic, immunologic, and virus detection studies were performed on samples of cornea, draining lymph node (LN), and trigeminal ganglion (TG) cells. Results Corneal grafts in mice with HSK rejected with higher frequency and more rapid tempo compared with grafts in uninfected mice. In corneas with HSK and vascularization at the time of grafting, both syngeneic and allogeneic corneal grafts failed with similar frequency and tempo. However, in the absence of preexisting inflammation and vascularization, syngeneic grafts were accepted when the grafts were performed at a late time point after HSV infection (42 days), whereas allografts were rejected at this time. In contrast, syngeneic grafts in nonvascularized HSV-infected recipients failed if they were performed within 10 days of HSV infection, an effect that was dependent on CD4 T cells, as demonstrated using CD4 deficient mice. Importantly, a variably sustained but strongly positive anti-HSV T-cell response was detected in allografted HSK recipients with a similar but lesser response in syngeneic hosts. Conclusions A previous HSV-1 corneal infection predisposes donor grafts to a high risk of failure by both innate and adaptive immune mechanisms in which an anti-HSV CD4 T-cell response plays a prominent role.
Collapse
Affiliation(s)
- Lucia Kuffova
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, School of Medicine and Dentistry, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Jared E Knickelbein
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Tian Yu
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, School of Medicine and Dentistry, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Carlos Medina
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Guillermo Amescua
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Alexander M Rowe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Robert L Hendricks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States 3Departments of Immunology, Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, Unite
| | - John V Forrester
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, School of Medicine and Dentistry, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom 4Ocular Immunology
| |
Collapse
|
6
|
Yu T, Rajendran V, Griffith M, Forrester JV, Kuffová L. High-risk corneal allografts: A therapeutic challenge. World J Transplant 2016; 6:10-27. [PMID: 27011902 PMCID: PMC4801785 DOI: 10.5500/wjt.v6.i1.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/03/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Corneal transplantation is the most common surgical procedure amongst solid organ transplants with a high survival rate of 86% at 1-year post-grafting. This high success rate has been attributed to the immune privilege of the eye. However, mechanisms originally thought to promote immune privilege, such as the lack of antigen presenting cells and vessels in the cornea, are challenged by recent studies. Nevertheless, the immunological and physiological features of the cornea promoting a relatively weak alloimmune response is likely responsible for the high survival rate in “low-risk” settings. Furthermore, although corneal graft survival in “low-risk” recipients is favourable, the prognosis in “high-risk” recipients for corneal graft is poor. In “high-risk” grafts, the process of indirect allorecognition is accelerated by the enhanced innate and adaptive immune responses due to pre-existing inflammation and neovascularization of the host bed. This leads to the irreversible rejection of the allograft and ultimately graft failure. Many therapeutic measures are being tested in pre-clinical and clinical studies to counter the immunological challenge of “high-risk” recipients. Despite the prevailing dogma, recent data suggest that tissue matching together with use of systemic immunosuppression may increase the likelihood of graft acceptance in “high-risk” recipients. However, immunosuppressive drugs are accompanied with intolerance/side effects and toxicity, and therefore, novel cell-based therapies are in development which target host immune cells and restore immune homeostasis without significant side effect of treatment. In addition, developments in regenerative medicine may be able to solve both important short comings of allotransplantation: (1) graft rejection and ultimate graft failure; and (2) the lack of suitable donor corneas. The advances in technology and research indicate that wider therapeutic choices for patients may be available to address the worldwide problem of corneal blindness in both “low-risk” and “high-risk” hosts.
Collapse
|
7
|
Engendering allograft ignorance in a mouse model of allogeneic skin transplantation to the distal hind limb. Ann Surg 2015; 261:611-8. [PMID: 24509194 DOI: 10.1097/sla.0000000000000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study was to demonstrate lymphatic isolation in a model of hind limb lymph node (LN) excision, consisting of ipsilateral popliteal and inguinal LN excision and to evaluate the immunologic response to allogeneic skin transplanted onto this region of lymphatic isolation. METHODS To study lymphatic flow, C57BL/6 mice underwent lymphadenectomy (n = 5), sham lymphadenectomy (n = 5), or no intervention (n = 5), followed by methylene blue injection. Mice were dissected to determine whether methylene blue traveled to the iliac LN. To study host response to skin transplantation, C57BL/6 mice underwent allogeneic skin transplantation with LN excision (n = 6), allogeneic skin transplantation alone (n = 6), or syngeneic skin transplantation (n = 4). Skin grafts were placed distal to the popliteal fossa and mice were euthanized at day 10. Grafts were stained for endothelial cell and proliferation markers (CD31 and Ki67, respectively). Secondary lymphoid tissues (spleen, ipsilateral axillary LN, and contralateral inguinal LN) were removed and rechallenged with BALB/c alloantigen in vitro with subsequent assay of interferon-γ and interleukin 4 cell expression using ELISPOT technique. RESULTS Mice that underwent LN excision had no evidence of methylene blue in the iliac nodes; mice without surgical intervention or with sham LN excision consistently had methylene blue visible in the ipsilateral iliac nodes. Mice treated with allogeneic skin transplantation and LN excision had lower expression of interferon-γ and interleukin 4 in the secondary lymphoid tissues. CONCLUSIONS Lymph node excision completely interrupts lymphatic flow of the hind limb. This model of lymphatic isolation impairs the ability of the transplant recipient to acutely mount a Th1 or Th2 response to allogeneic skin transplants.
Collapse
|
8
|
van Essen TH, Roelen DL, Williams KA, Jager MJ. Matching for Human Leukocyte Antigens (HLA) in corneal transplantation - to do or not to do. Prog Retin Eye Res 2015; 46:84-110. [PMID: 25601193 DOI: 10.1016/j.preteyeres.2015.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/15/2022]
Abstract
As many patients with severe corneal disease are not even considered as candidates for a human graft due to their high risk of rejection, it is essential to find ways to reduce the chance of rejection. One of the options is proper matching of the cornea donor and recipient for the Human Leukocyte Antigens (HLA), a subject of much debate. Currently, patients receiving their first corneal allograft are hardly ever matched for HLA and even patients undergoing a regraft usually do not receive an HLA-matched graft. While anterior and posterior lamellar grafts are not immune to rejection, they are usually performed in low risk, non-vascularized cases. These are the cases in which the immune privilege due to the avascular status and active immune inhibition is still intact. Once broken due to infection, sensitization or trauma, rejection will occur. There is enough data to show that when proper DNA-based typing techniques are being used, even low risk perforating corneal transplantations benefit from matching for HLA Class I, and high risk cases from HLA Class I and probably Class II matching. Combining HLA class I and class II matching, or using the HLAMatchmaker could further improve the effect of HLA matching. However, new techniques could be applied to reduce the chance of rejection. Options are the local or systemic use of biologics, or gene therapy, aiming at preventing or suppressing immune responses. The goal of all these approaches should be to prevent a first rejection, as secondary grafts are usually at higher risk of complications including rejections than first grafts.
Collapse
Affiliation(s)
- T H van Essen
- Department of Ophthalmology, J3-S, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - D L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - K A Williams
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - M J Jager
- Department of Ophthalmology, J3-S, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, USA; Peking University Eye Center, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
9
|
Schewitz-Bowers LP, Lee RWJ, Dick AD. Immune mechanisms of intraocular inflammation. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.09.68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
|
11
|
Vitova A, Kuffová L, Klaska IP, Holan V, Cornall RJ, Forrester JV. The high-risk corneal regraft model: a justification for tissue matching in humans. Transpl Int 2013; 26:453-61. [PMID: 23398177 DOI: 10.1111/tri.12055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/18/2012] [Accepted: 12/14/2012] [Indexed: 12/17/2022]
Abstract
Models of high-risk corneal graft rejection involve neovascularization induced via innate immune responses, e.g., suture-mediated trauma. We describe a model of high-risk corneal graft rejection using corneal graft donor-recipient pairing based on a single-antigen disparity. Donor corneas from transgenic mice on B10.BR (H-2k ) background, in which hen-egg lysozyme (HEL) as a membrane-bound antigen (mHEL) was expressed under the major histocompatibility complex (MHC) class I promoter (KLK-mHEL, H-2k), were transplanted into wild type B10.BR recipient mice. Unmanipulated wild type recipient mice rejected KLK-mHEL grafts (39%) slowly over 50-60 days. Graft rejection incidence was maximized (100%) and tempo accelerated (27 days) by priming with HEL-pulsed syngeneic dendritic cells and less so by increasing T-cell precursor frequency. Rejection also reached maximum levels (100%) and tempo (3-8 days) when mice which had rejected a first graft ('rejectors') were regrafted, and was associated with induction of HEL-specific memory T cells. In contrast, 'acceptors' rejected a second graft at rates and tempo similar to naïve mice. These data reveal the importance of (i) donor MHC antigens as alloantigens for indirect recognition, (ii) alloantigen-specific memory in high-risk graft rejection involving regrafts, and (iii) suggest a role for tissue matching in human corneal graft to avoid sensitization to donor MHC antigens.
Collapse
Affiliation(s)
- Andrea Vitova
- Section of Immunology and Infection, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
12
|
Buettner M, Bode U. Lymph node dissection--understanding the immunological function of lymph nodes. Clin Exp Immunol 2012; 169:205-12. [PMID: 22861359 DOI: 10.1111/j.1365-2249.2012.04602.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lymph nodes (LN) are one of the important sites in the body where immune responses to pathogenic antigens are initiated. This immunological function induced by cells within the LN is an extensive area of research. To clarify the general function of LN, to identify cell populations within the lymphatic system and to describe the regeneration of the lymph vessels, the experimental surgical technique of LN dissection has been established in various animal models. In this review different research areas in which LN dissection is used as an experimental tool will be highlighted. These include regeneration studies, immunological analysis and studies with clinical questions. LN were dissected in order to analyse the different cell subsets of the incoming lymph in detail. Furthermore, LN were identified as the place where the induction of an antigen-specific response occurs and, more significantly, where this immune response is regulated. During bacterial infection LN, as a filter of the lymph system, play a life-saving role. In addition, LN are essential for the induction of tolerance against harmless antigens, because tolerance could not be induced in LN-resected animals. Thus, the technique of LN dissection is an excellent and simple method to identify the important role of LN in immune responses, tolerance and infection.
Collapse
Affiliation(s)
- M Buettner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
13
|
Zaher SS, Germain C, Fu H, Larkin DFP, George AJT. 3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival. Invest Ophthalmol Vis Sci 2011; 52:2640-8. [PMID: 21212175 DOI: 10.1167/iovs.10-5793] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE IDO (indoleamine 2,3-dioxygenase) modulates the immune response by depletion of the essential amino acid tryptophan, and IDO overexpression has been shown to prolong corneal allograft survival. This study was conducted to examine the effect of kynurenines, the products of tryptophan breakdown and known to act directly on T lymphocytes, on corneal graft survival. METHODS The effects of kynurenines on T-cell proliferation and death, T-regulatory-cell development, and dendritic cell function, phenotype, and viability were analyzed in vitro. The effect of topical and systemic administration of 3-hydroxykynurenine (3HK) on orthotopic murine corneal allograft survival was examined. RESULTS T-lymphocyte proliferation was inhibited by two of the four different kynurenines: 3HK and 3-hydroxyanthranilic acid (3HAA). This effect was accompanied by significant T-cell death. Neither 3HK nor 3HAA altered dendritic cell function, nor did they induce apoptosis or pathogenicity to corneal endothelial cells. Administration of systemic and topical 3HK to mice receiving a fully mismatched corneal graft resulted in significant prolongation of graft survival (median survival of control grafts, 12 days; of treated, 19 and 15 days, respectively; P < 0.0003). While systemic administration of 3HK was associated with a significant depletion of CD4(+) T, CD8(+) T, and B lymphocytes in peripheral blood, no depletion was found after topical administration. CONCLUSIONS The production of kynurenines, in particular 3HK and 3HAA, may be one mechanism (in addition to tryptophan depletion) by which IDO prolongs graft survival. These molecules have potential as specific agents for preventing allograft rejection in patients at high rejection risk.
Collapse
Affiliation(s)
- Sarah S Zaher
- Department of Immunology, Division of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Maenz M, Morcos M, Ritter T. A comprehensive flow-cytometric analysis of graft infiltrating lymphocytes, draining lymph nodes and serum during the rejection phase in a fully allogeneic rat cornea transplant model. Mol Vis 2011; 17:420-9. [PMID: 21321672 PMCID: PMC3038210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/02/2011] [Indexed: 11/01/2022] Open
Abstract
PURPOSE To establish a cornea transplant model in a pigmented rat strain and to define the immunologic reaction toward corneal allografts, by studying the cellular and humoral immune response after keratoplasty. METHODS Full thickness penetrating keratoplasty was performed on Brown Norway (RT1n) recipients using fully major histocompatibility complex (MHC)-mismatched Piebald-Viral-Glaxo (PVG; RT1c) donors. Using multicolor flow cytometry (FACS) we quantified and compared the cellular composition of draining versus non-draining lymph nodes (LN). Furthermore, we developed an isolation method to release viable graft infiltrating lymphocytes (GIL) and subjected them to phenotypic analysis and screened serum from transplanted animals for allo-antibodies. RESULTS Assessing ipsi-lateral submandibular LN we find ample evidence for post surgical inflammation such as elevated absolute numbers of cluster of differentiation (CD)4+, CD8+, B-cells, and differential expression of CD134. However, we could not unequivocally identify an allo-antigen-specific immune response. FACS analysis of lymphocytes isolated from collagenase digested rejected corneas revealed the following six distinct subpopulations: MHC-2+ cells, CD4+ T-cells, CD8+ T-cells, CD161(dull) large granular lymphocytes, CD3+ CD8+ CD161(dull) natural killer (NK)-T-cells and CD161(high) CD3⁻ NK cells. At post-operation day (POD)-07 only CD161(dull) MHC-2(neg) large granular lymphocytes (LGLs) were detected in syngeneic and allo-grafts. In concordance with an increase in B-cell numbers we often detected copious amounts of allo-antibodies in serum of rejecting animals, in particular immunoglobulin (Ig) M (IgM), immunoglobulin (Ig) G1 (IgG1), and IgG2a. CONCLUSIONS Our results demonstrate that despite its immune privileged status and low-responder characteristics of the strain combination, allogeneic corneal grafts mount a full fledged T helper1 (Th1) and Th2 response. The presence of NK-T-cells and NK-cells in rejecting corneas shows the synergy between innate and adaptive immunity during allograft destruction.
Collapse
|
15
|
|
16
|
Topical inhibition of T cell costimulatory pathways in draining lymph nodes may suppress allograft rejection. Med Hypotheses 2010; 76:441-4. [PMID: 21134721 DOI: 10.1016/j.mehy.2010.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 11/09/2010] [Accepted: 11/13/2010] [Indexed: 11/22/2022]
Abstract
Topical immune suppression is an attractive and practical therapeutic option to prolong survival time of allografts, before the appearance of new agent with higher immunosuppressive efficacy and lower undesirable side effects. The initiation of rejection and outcome of allografts is principally mediated by alloantigen reactive T cells. The activation of T cells requires at least two signals, first is T-cell receptor signal and second is costimulatory signal. T cells that encounter antigen without the appropriate costimulatory signal become anergy or tolerance. Migration of alloantigen-bearing dendritic cells into the T-cell zone of secondary lymphoid tissues, which are essential for primary alloimmune responses, effectively induces T-cell activation and expansion with the presence of two signals. Draining lymph nodes are the promising targets for topical immune suppression, as disrupting lymphatic drainage from the transplanted graft to lymph nodes prevented rejection of skin allografts and lymphadenectomy prolong the survival time of skin and corneal allografts in experimental animals. Therefore, we hypothesize that inhibition of T cell costimulatory pathways in draining lymph nodes could impair the alloantigen-specific immune response and reduce systemic immunosuppressive drugs dose for allografts survival. Further investigations are required to identify most efficient way for draining lymph nodes transfer of costimulatory molecule gene or topical drug administration of costimulatory inhibitors to draining lymph nodes.
Collapse
|
17
|
Ren S, Zhang F, Li C, Jia C, Li S, Xi H, Zhang H, Yang L, Wang Y. Selection of housekeeping genes for use in quantitative reverse transcription PCR assays on the murine cornea. Mol Vis 2010; 16:1076-86. [PMID: 20596249 PMCID: PMC2893048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/06/2010] [Indexed: 11/03/2022] Open
Abstract
PURPOSE To evaluate the suitability of common housekeeping genes (HKGs) for use in quantitative reverse transcription PCR (qRT-PCR) assays of the cornea in various murine disease models. METHODS CORNEAL DISEASE MODELS STUDIED WERE: 1) corneal neovascularization (CorNV) induced by suture or chemical burn, 2) corneal infection with Candida albicans or Aspergillus fumigatus by intrastromal injection of live spores, and 3) perforating corneal injury (PCI) in Balb/c mice or C57BL/6 mice. Expression of 8 HKGs (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], beta-actin [ACTB], lactate dehydrogenase A [LDHA], ribosomal protein L5 [RPL5], ubiquitin C [UBC], peptidylprolyl isomerase A [PPIA], TATA-box binding protein [TBP1], and hypoxanthine guanine phosphoribosyl transferase [HPRT1]) in the cornea were measured at various time points by microarray hybridization or qRT-PCR and the data analyzed using geNorm and NormFinder. RESULTS Microarray results showed that under the CorNV condition the expression stability of the 8 HKGs decreased in order of PPIA>RPL5>HPRT1>ACTB>UBC>TBP1>GAPDH>LDHA. qRT-PCR analyses demonstrated that expression of none of the 8 HKGs remained stable under all conditions, while GAPDH and ACTB were among the least stably expressed markers under most conditions. Both geNorm and NormFinder analyses proposed best HKGs or HKG combinations that differ between the various models. NormFinder proposed PPIA as best HKG for three CorNV models and PCI model, as well as UBC for two fungal keratitis models. geNorm analysis demonstrated that a similar model in different mice strains or caused by different stimuli may require different HKGs or HKG pairs for the best normalization. Namely, geNorm proposed PPIA and HRPT1 and PPIA and RPL5 pairs for chemical burn-induced CorNV in Balb/c and C57BL/6 mice, respectively, while UBC and HPRT1 and UBC and LDHA were best for Candida and Aspergillus induced keratitis in Balb/c mice, respectively. CONCLUSIONS When qRT-PCR is designed for studies of gene expression in murine cornea, preselection of situation-specific reference genes is recommended. In the absence of knowledge about situation-specific HKGs, PPIA and UBC, either alone or in combination with HPRT1 or RPL5, can be employed.
Collapse
|
18
|
Abstract
Corneal transplantation has been performed successfully for over 100 years. Normally, HLA typing and systemic immunosuppressive drugs are not utilized, yet 90% of corneal allografts survive. In rodents, corneal allografts representing maximal histoincompatibility enjoy >50% survival even without immunosuppressive drugs. By contrast, other categories of transplants are invariably rejected in such donor/host combinations. The acceptance of corneal allografts compared to other categories of allografts is called immune privilege. The cornea expresses factors that contribute to immune privilege by preventing the induction and expression of immune responses to histocompatibility antigens on the corneal allograft. Among these are soluble and cell membrane molecules that block immune effector elements and also apoptosis of T lymphocytes. However, some conditions rob the corneal allograft of its immune privilege and promote rejection, which remains the leading cause of corneal allograft failure. Recent studies have examined new strategies for restoring immune privilege to such high-risk hosts.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | | |
Collapse
|
19
|
Forrester JV. Privilege revisited: an evaluation of the eye's defence mechanisms. Eye (Lond) 2008; 23:756-66. [PMID: 18989350 DOI: 10.1038/eye.2008.259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immune privilege has been considered for many years to be an interesting phenomenon associated with certain specialised tissues such as the eye and the brain. In recent years however, it has become clear that the active and passive mechanisms which underpin immune privilege are in fact a form of tissue-based immunological tolerance, perhaps of equal importance in providing defence against antigenic attack as the well established mechanisms based on the thymus (central tolerance) and circulating regulatory cells (peripheral tolerance). It would appear that each tissue possesses a degree of intrinsic immunological resistance which varies depending on the tissues and provides some degree of protection. In some tissues, such as the eye, this is protection from 'danger' has been developed to a high level of sophistication, but at a price. The mechanisms involved are presented in his lecture.
Collapse
Affiliation(s)
- J V Forrester
- Department of Ophthalmology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland, UK.
| |
Collapse
|
20
|
Forrester JV, Xu H, Lambe T, Cornall R. Immune privilege or privileged immunity? Mucosal Immunol 2008; 1:372-81. [PMID: 19079201 DOI: 10.1038/mi.2008.27] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immune privilege is a concept that has come of age. Where previously it was considered to be a passive phenomenon restricted to certain specialized tissues, it is now viewed as comprising several mechanisms, both active and passive, shared in many aspects with emerging notions of the mechanisms of peripheral tolerance. The relative degrees of immune privilege vary from tissue to tissue depending on the number and strength of each of the mechanisms contained in that tissue. Immune privilege can be generated in non-privileged sites such as the skin and allografts, and is a property of the tissue itself. We therefore propose that, in addition to canonical central and peripheral tolerance mechanisms, there is a third route whereby the organism promotes self-antigen non-reactivity centered on the specific properties of each tissue and varying accordingly (relative degrees of immune privilege). This third mechanism of inducing immunological tolerance, as it is a local tissue phenomenon, might have particular therapeutic significance, for instance in devising strategies for induction of immunity to tumors by disrupting immune privilege or in preventing graft rejection by promoting immune privilege.
Collapse
Affiliation(s)
- J V Forrester
- Department of Ophthalmology, University of Aberdeen, Aberdeen, Scotland.
| | | | | | | |
Collapse
|
21
|
Effect of CXCL-1/KC production in high risk vascularized corneal allografts on T cell recruitment and graft rejection. Transplantation 2008; 85:615-25. [PMID: 18347542 DOI: 10.1097/tp.0b013e3181636d9d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The survival rate of corneal allografts in high-risk vascularized corneal bed recipients is poor, similar to vascularized solid organ allografts. Although the early induction of selective chemokines in solid organs is required for the optimal recruitment of T cells into rejecting allografts, little is known about the role of these chemokines in high risk corneal allografts. METHODS Orthotopic corneal allotransplants were performed in low-risk (nonvascularized) and high-risk (vascularized) C57BL/6 (H-2b) recipients using Balb/c (H-2d) donors. Intragraft production of CXC chemokines was measured by Luminex and enzyme-linked immunosorbent assay on corneal transplant extracts at different times after surgery. Rabbit anti-KC serum was used to test its role in high risk corneal allograft survival. RESULTS Early upregulation of CXCL1/KC occurs 3 days after transplantation in high risk allograft only. Moreover, the T-cell chemoattractants, CXCL9/Mig and CXCL10/IP10, are produced late (day 10) after surgery and their production correlates with the recruitment of CD4 T cells into the graft. Furthermore, in vivo neutralization of CXCL1/KC with anti-KC sera results in increased graft survival and decreased recruitment of T cells into high-risk allografts. CONCLUSION We propose that a high risk vascularized cornea behaves like a vascularized solid organ transplant. The early production of CXCL1/KC is crucial to the induction of T-cell chemoattractants necessary for the recruitment of allospecific CD4 T cells into the graft. In vivo neutralization of CXCL1/KC represents a potential novel therapy that could be used to increase the survival rate of high-risk vascularized corneal allografts.
Collapse
|
22
|
Abstract
Penetrating keratoplasty is the most widely practiced type of transplantation in humans. Irreversible immune rejection of the transplanted cornea is the major cause of human allograft failure in the intermediate and late postoperative period. This immunological process causes reversible or irreversible damage to the grafted cornea in several cases despite the use of intensive immunosuppressive therapy. Corneal graft rejection comprises a sequence of complex immune responses that involves the recognition of the foreign histocompatibility antigens of the corneal graft by the host's immune system, leading to the initiation of the immune response cascade. An efferent immune response is mounted by the host immune system against these foreign antigens culminating in rejection and graft decompensation in irreversible cases. A variety of donor- and host-related risk factors contribute to the corneal rejection episode. Epithelial rejection, chronic stromal rejection, hyperacute rejection, and endothelial rejection constitute the several different types of corneal graft rejection that might occur in isolation or in conjunction. Corneal graft failure subsequent to graft rejection remains an important cause of blindness and hence the need for developing new strategies for suppressing graft rejection is colossal. New systemic pharmacological interventions recommended in corneal transplantation need further evaluation and detailed guidelines. Two factors, prevention and management, are of significant importance among all aspects of immunological graft rejection. Preventive aspects begin with the recipient selection, spread through donor antigenic activity, and end with meticulous surgery. Prevention of corneal graft rejection lies with reduction of the donor antigenic tissue load, minimizing host and donor incompatibility by tissue matching and suppressing the host immune response. Management of corneal graft rejection consists of early detection and aggressive therapy with corticosteroids. Corticosteroid therapy, both topical and systemic, is the mainstay of management. Addition of immunosuppressive to the treatment regimen helps in quick and long term recovery. Knowledge of the immunopathogenesis of graft rejection may allow a better understanding of the immunological process thus helping in its prevention, early detection and management.
Collapse
Affiliation(s)
- Anita Panda
- Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
23
|
Liu L, Kuffová L, Griffith M, Dang Z, Muckersie E, Liu Y, McLaughlin CR, Forrester JV. Immunological responses in mice to full-thickness corneal grafts engineered from porcine collagen. Biomaterials 2007; 28:3807-14. [PMID: 17537502 DOI: 10.1016/j.biomaterials.2007.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/03/2007] [Indexed: 12/18/2022]
Abstract
Tissue-engineered (TE) corneas were fabricated from porcine collagen cross-linked with 1-ethyl-3-(3-dimethyl aminoproplyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS), and were transplanted into BALB/c mice orthotopically using a full-thickness penetrating keratoplasty (PKP) procedure. The biocompatibility was evaluated by assessing both local and systemic immune responses. Myeloid cells including granulocytes and macrophages were the main infiltrating cells in recipient cornea and in retro-TE corneal membrane which developed 7-10 days post surgery. Sodium citrate was found to be effective in reducing fibrin accumulation in anterior chamber post grafting at early time points, but it did not prevent formation of the retro-TE corneal membrane. No significant T cell activation was observed in the submandibular draining lymph nodes (SMDLN) by flow cytometry. Anti-porcine type I collagen IgG antibodies were detected in the serum of grafted mice from 2 weeks post grafting and the concentration of antibodies increased with time. Overall, porcine collagen-EDC/NHS TE corneas were tolerated well in murine recipients, causing mainly a self-limiting local innate immune response and a low-grade humoral response with little evidence of sustained T cell activation. Retro-TE corneal membrane formation was the main complication and barrier to clarity.
Collapse
Affiliation(s)
- Lei Liu
- Department of Ophthalmology, Institute of Medical Science, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Boudreau J, Hoffman-Goetz L. Long-duration freewheel running and submandibular lymphocyte response to forced exercise in older mice. Can J Physiol Pharmacol 2006; 84:565-72. [PMID: 16902602 DOI: 10.1139/y06-011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Submandibular lymph nodes (SLN) are crucial for immune surveillance of the anterior ocular chamber and upper respiratory tract; little is known about how training and exercise affect SLN lymphocytes. The intent of this study was to describe the impact of long term freewheel running followed by acute strenuous exercise on SLN lymphocytes in mice. Female C57BL/6 mice were assigned to running wheels or remained sedentary for 8 months, and further randomized to treadmill exercise and sacrifice immediately, treadmill exercise and sacrifice 24 h after exercise cessation, or no treadmill exposure. SLN lymphocytes were isolated and analyzed for CD3, CD4, CD8, and CD19 cell surface markers, phosphatidylserine externalization as a marker of apoptosis, and intracellular glutathione as a marker of oxidative stress. Compared with running wheel mice, older sedentary mice had a lower percent of T cells and higher percent of B cells (p < 0.05). Although intracellular glutathione did not differ between groups, running mice had a lower percent of Annexin V+ SLN lymphocytes 24 h after treadmill exercise. Further research will be needed to determine if voluntary exercise translates into improved anterior ocular and upper respiratory tract health.
Collapse
Affiliation(s)
- J Boudreau
- Department of Health Studies and Gerontology, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada
| | | |
Collapse
|
25
|
Abstract
Recently published experimental data on the distribution of bone marrow (BM)-derived cells in human and mouse corneas in comparison with in human skin/oral mucosa are reviewed. In mouse corneal epithelium, major histocompatibility complex (MHC) class II-negative dendritic cells (DC) are present. Immature MHC class II-negative and mature MHC class II-positive DC are present in the center and periphery of the anterior corneal stroma, respectively. Monocyte (Mo)/macrophage (MPhi) lineage cells including the MPhi marker F4/80-expressing cells reside in the posterior stroma. In human cornea, MHC class II (HLA-DR)-positive immature myeloid DC (CD11cCD16, CD11cCD16, and CD11cCD1c) and Mo/MPhi lineage cells are detectable in the corneal epithelium and stroma, respectively. Distribution of Mo/MPhi lineage cells (HLA.DRCD11bCD11cCD14) is predominant in the anterior stroma of the central cornea and all layers of the peripheral cornea. Both the phenotypes and distribution pattern of these cells in human cornea are different from those of human skin and nasal mucosa. These findings suggest that BM-derived cells in normal human cornea are present in situ in preparation for foreign antigen and pathogens and have critical roles in innate and acquired immunity of the ocular surface.
Collapse
Affiliation(s)
- Satoru Yamagami
- Department of Corneal Tissue Regeneration, Tokyo University Graduate School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|