1
|
de la Fuente J, Kocan KM. The Impact of RNA Interference in Tick Research. Pathogens 2022; 11:pathogens11080827. [PMID: 35894050 PMCID: PMC9394339 DOI: 10.3390/pathogens11080827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past two decades, RNA interference (RNAi) in ticks, in combination with omics technologies, have greatly advanced the discovery of tick gene and molecular function. While mechanisms of RNAi were initially elucidated in plants, fungi, and nematodes, the classic 2002 study by Aljamali et al. was the first to demonstrate RNAi gene silencing in ticks. Subsequently, applications of RNAi have led to the discovery of genes that impact tick function and tick-host-pathogen interactions. RNAi will continue to lead to the discovery of an array of tick genes and molecules suitable for the development of vaccines and/or pharmacologic approaches for tick control and the prevention of pathogen transmission.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- The Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
- Correspondence: or
| | - Katherine M. Kocan
- The Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
2
|
Fernando DD, Korhonen PK, Gasser RB, Fischer K. An RNA Interference Tool to Silence Genes in Sarcoptes scabiei Eggs. Int J Mol Sci 2022; 23:ijms23020873. [PMID: 35055058 PMCID: PMC8777771 DOI: 10.3390/ijms23020873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
In a quest for new interventions against scabies-a highly significant skin disease of mammals, caused by a parasitic mite Sarcoptes scabiei-we are focusing on finding new intervention targets. RNA interference (RNAi) could be an efficient functional genomics approach to identify such targets. The RNAi pathway is present in S. scabiei and operational in the female adult mite, but other developmental stages have not been assessed. Identifying potential intervention targets in the egg stage is particularly important because current treatments do not kill this latter stage. Here, we established an RNAi tool to silence single-copy genes in S. scabiei eggs. Using sodium hypochlorite pre-treatment, we succeeded in rendering the eggshell permeable to dsRNA without affecting larval hatching. We optimised the treatment of eggs with gene-specific dsRNAs to three single-copy target genes (designated Ss-Cof, Ss-Ddp, and Ss-Nan) which significantly and repeatedly suppressed transcription by ~66.6%, 74.3%, and 84.1%, respectively. Although no phenotypic alterations were detected in dsRNA-treated eggs for Ss-Cof and Ss-Nan, the silencing of Ss-Ddp resulted in a 38% reduction of larval hatching. This RNAi method is expected to provide a useful tool for larger-scale functional genomic investigations for the identification of essential genes as potential drug targets.
Collapse
Affiliation(s)
- Deepani D. Fernando
- Infectious Diseases Program, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3052, Australia; (P.K.K.); (R.B.G.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3052, Australia; (P.K.K.); (R.B.G.)
| | - Katja Fischer
- Infectious Diseases Program, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Correspondence:
| |
Collapse
|
3
|
da Silva Lima A, Soares Rocha AP, Serejo RS, de Almeida Lima GD, de Sousa Lima Neto J, Machado Ferreira MC, Viteri Jumbo LO, Costa-Junior LM, de Oliveira EE, da Rocha CQ. Acaricide activity of extract and an isolated compound of Lithraea brasiliensis on Rhipicephalus microplus and selectivity actions against a non-target organism. Vet Parasitol 2021; 300:109597. [PMID: 34678673 DOI: 10.1016/j.vetpar.2021.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
Rhipicephalus microplus, known as the cattle tick, is a cause of great economic losses for dairy cattle farming because of its high frequency of occurrence and the difficulty in controlling it. This research characterized the chemical profile and evaluated the in vitro toxicity of crude Lithraea brasiliensis extract and its isolated compound against acaricide-resistant and acaricide-susceptible R. microplus strains. Acaricidal activity was evaluated using a larval immersion test and the selectivity against non-target organisms was assessed on Artemia salina assay. The chemical investigation by high-performance liquid chromatography coupled with mass spectrometry (i.e., HPLC-MS) analysis showed the presence of hydrolysable tannins as well as urushiol derivatives. Column chromatography (CC) was carried out on the extract to obtain fractions and an isolated compound. The extract exhibited significant activity against acaricide-resistant (LC50 0.64 mg/mL) and acaricide-susceptible (LC50 0.76 mg/mL) strains of R. microplus larvae. The isolated compound from the extract (urushiol II), exhibited LC50 of 1.11 mg/mL for acaricide-resistant larvae. For acute toxicity in A. salina, the extract showed LC50>100 μg/mL. Thus, our findings represent the first effort to demonstrate the potential of L. brasiliensis extract and urushiol II as potential natural acaricides to replace or to be integrated into the conventional control of R. microplus larvae.
Collapse
Affiliation(s)
- Aldilene da Silva Lima
- Department of Chemistry, Federal University of Maranhão, Maranhão, Av. dos Portugueses, 1966, Bacanga, MA, Brazil
| | - Ana Paula Soares Rocha
- Department of Entomology, Federal University of Viçosa, Viçosa, Av. Peter Henry, Rolfs, s/n, Campus Universitário, MG, Brazil
| | - Rafaela Silva Serejo
- Department of Chemistry, Federal University of Maranhão, Maranhão, Av. dos Portugueses, 1966, Bacanga, MA, Brazil
| | | | - José de Sousa Lima Neto
- Department of Pharmacy, Federal University of Piaui, Campus Petrônio Portela, Ininga, Teresina, PI, Brazil
| | | | - Luis O Viteri Jumbo
- Department of Biotecnology, Federal University of Tocantins, Rua Baldejos, s/n, Jardim Sevilha, Gurupi, TO, Brazil
| | - Lívio Martins Costa-Junior
- Department of Pathology, Federal University of Maranhão, Maranhão, Av. dos Portugueses, 1966, Bacanga, MA, Brazil
| | - Eugênio Eduardo de Oliveira
- Department of Pathology, Federal University of Maranhão, Maranhão, Av. dos Portugueses, 1966, Bacanga, MA, Brazil
| | - Cláudia Quintino da Rocha
- Department of Chemistry, Federal University of Maranhão, Maranhão, Av. dos Portugueses, 1966, Bacanga, MA, Brazil.
| |
Collapse
|
4
|
Knockdown of acetylcholinesterase (AChE) gene in rice yellow stem borer, Scirpophaga incertulas (Walker) through RNA interference. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.aggene.2019.100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Lawrence EJ, Arpag G, Norris SR, Zanic M. Human CLASP2 specifically regulates microtubule catastrophe and rescue. Mol Biol Cell 2018. [PMID: 29540526 PMCID: PMC5935067 DOI: 10.1091/mbc.e18-01-0016] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytoplasmic linker-associated proteins (CLASPs) are microtubule-associated proteins essential for microtubule regulation in many cellular processes. However, the molecular mechanisms underlying CLASP activity are not understood. Here, we use purified protein components and total internal reflection fluorescence microscopy to investigate the effects of human CLASP2 on microtubule dynamics in vitro. We demonstrate that CLASP2 suppresses microtubule catastrophe and promotes rescue without affecting the rates of microtubule growth or shrinkage. Strikingly, when CLASP2 is combined with EB1, a known binding partner, the effects on microtubule dynamics are strongly enhanced. We show that synergy between CLASP2 and EB1 is dependent on a direct interaction, since a truncated EB1 protein that lacks the CLASP2-binding domain does not enhance CLASP2 activity. Further, we find that EB1 targets CLASP2 to microtubules and increases the dwell time of CLASP2 at microtubule tips. Although the temporally averaged microtubule growth rates are unaffected by CLASP2, we find that microtubules grown with CLASP2 display greater variability in growth rates. Our results provide insight into the regulation of microtubule dynamics by CLASP proteins and highlight the importance of the functional interplay between regulatory proteins at dynamic microtubule ends.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Göker Arpag
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Stephen R Norris
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240.,Department of Biochemistry, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
6
|
Zhang Y, Cui J, Zhou Y, Cao J, Gong H, Zhang H, Zhou J. Liposome mediated double-stranded RNA delivery to silence ribosomal protein P0 in the tick Rhipicephalus haemaphysaloides. Ticks Tick Borne Dis 2018; 9:638-644. [PMID: 29444753 PMCID: PMC5866483 DOI: 10.1016/j.ttbdis.2018.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/24/2017] [Accepted: 01/24/2018] [Indexed: 12/29/2022]
Abstract
Control of ticks has been achieved primarily by the application of acaricides, which has drawbacks such as environmental contamination leading to the selection of pesticide-resistant ticks. The potential of dsRNA to suppress genes critical for tick survival due to its sequence specificity suggests that dsRNAs could be developed as tailor-made pesticides. In this study, the dsRNA of P0 gene from the tick, Rhipicephalus haemaphysaloides, was evaluated as a potential anti-tick agent. Effects of using different dsRNA delivery methods were tested by quantitative RT-PCR and tick bioassays to determine survival, feeding and reproduction. The results showed that P0 dsRNAs could be effectively delivered into ticks and silenced by incubating with liposomes. Incubation time was found to be the most important factor in dsRNA delivery and gene silencing compared with liposome types and dsRNA concentration. The effects of P0 dsRNA treatment on ticks were found to be significant on blood feeding, molting or reproduction. These data show that anti-tick agents based on dsRNAs could have potential use in tick control.
Collapse
Affiliation(s)
- Yuting Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cui
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
7
|
Grabowski JM, Hill CA. A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era. Front Cell Infect Microbiol 2017; 7:519. [PMID: 29312896 PMCID: PMC5744076 DOI: 10.3389/fcimb.2017.00519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.
Collapse
Affiliation(s)
- Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, United States.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. Vaccine 2017; 35:5682-5692. [PMID: 28911904 DOI: 10.1016/j.vaccine.2017.08.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/12/2023]
Abstract
Hyalomma anatolicum and Rhipicephalus microplus seriously affect dairy animals and immunization of host is considered as a sustainable option for the management of the tick species. Identification and validation of protective molecules are the major challenges in developing a cross-protective vaccine. The subolesin (SUB), calreticulin (CRT) and cathepsin L-like cysteine proteinase (CathL) genes of H. anatolicum were cloned, sequenced and analysed for sequence homology. Both Ha-SUB and Ha-CRT genes showed very high level of homogeneity within the species (97.6-99.4% and 98.2-99.7%) and among the tick species (77.3-99.3% and 85.1-99.7%) while for Ha-CathL the homogeneity was lower among ticks (57.5-89.5%). Besides tick species, both Ha-SUB and Ha- CRT genes showed high level of homogeneity with dipterans (47.2-53.4% and 72.0-74.4%) and nematodes (64.0% by CRT). The level of expression of the conserved genes in different stages of the tick species was studied. The differences in fold change of expression (FCE) of the targeted genes in life stages of tick were not statistically significant except Ha-SUB in eggs and in frustrated females, Ha-CRT in fed male and Ha-CathL in unfed and frustrated females where highest FCE was recorded. The functional properties of the genes were studied by RNAi technology and a significant level of gene suppression (p<0.05) resulted in very low percentage of engorgement of treated ticks viz., 3.7%, 11.1% and 30.0% in Ha-SUB, Ha-CRT and Ha-CathL respectively, in comparison to control was recorded. The recombinant proteins rHa-SUB, rHa-CRT and rHa-CathL encoded by the genes were expressed in prokaryotic expression system. They were evaluated for cross-protective efficacy and found to be respectively, 65.4%, 41.3% and 30.2% protective against H. anatolicum and 54.0%, 37.6% and 22.2%, against R. microplus infestations.
Collapse
|
9
|
Darrington M, Dalmay T, Morrison NI, Chapman T. Implementing the sterile insect technique with RNA interference - a review. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2017; 164:155-175. [PMID: 29200471 PMCID: PMC5697603 DOI: 10.1111/eea.12575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)-related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double-stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.
Collapse
Affiliation(s)
- Michael Darrington
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Tamas Dalmay
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | | | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| |
Collapse
|
10
|
Characteristics of the heme catabolic pathway in mild unconjugated hyperbilirubinemia and their associations with inflammation and disease prevention. Sci Rep 2017; 7:755. [PMID: 28389660 PMCID: PMC5429724 DOI: 10.1038/s41598-017-00933-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/17/2017] [Indexed: 01/03/2023] Open
Abstract
Heme catabolism exerts physiological functions that impact health through depressing inflammation. Upon reactive pathway progression, as in Gilbert’s Syndrome (GS; UGT1A1*28 polymorphism), aggravated health effects have been determined. Based on lower inflammation and improved metabolic health reported for GS, inter-group differences in heme catabolism were explored. Therefore, a case-control study including 120 fasted, healthy, age- and gender matched subjects with/without GS, was conducted. Genetic expressions of HMOX-1 and BLVRA were measured. Additionally participants were genotyped for those polymorphisms that are known (UGT1A1*28) or likely (HMOX-1 microsatellites) to impact bilirubinemia. Intracellular interleukins (IL-6, IL-1β, TNFα), circulatory C-reactive protein (CRP), serum amyloid A (SAA) and haptoglobin (Hpt) were analysed as inflammatory markers. To assess intracellular heme oxygenase 1 (HO-1) isolated PBMCs were used. In GS vs. C, inflammation markers were significantly decreased. This was supported by an altered heme catabolism, indirectly reflecting in elevated unconjugated bilirubin (UCB; main phenotypic feature of GS) and iron, decreased hemopexin (Hpx) and Hpt and in up-regulated biliverdin reductase (BLVRA) gene expressions. Moreover, HMOX (GT)n short alleles were non-significantly more prominent in female GS individuals. Herewith, we propose a concept to elucidate why GS individuals encounter lower inflammation, and are thus less prone to oxidative-stress mediated diseases.
Collapse
|
11
|
El-Batal AI, El-Sayyad GS, El-Ghamery A, Gobara M. Response Surface Methodology Optimization of Melanin Production by Streptomyces cyaneus and Synthesis of Copper Oxide Nanoparticles Using Gamma Radiation. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1101-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Ciezarek AG, Dunning LT, Jones CS, Noble LR, Humble E, Stefanni SS, Savolainen V. Substitutions in the Glycogenin-1 Gene Are Associated with the Evolution of Endothermy in Sharks and Tunas. Genome Biol Evol 2016; 8:3011-3021. [PMID: 27614233 PMCID: PMC5630876 DOI: 10.1093/gbe/evw211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite 400–450 million years of independent evolution, a strong phenotypic convergence has occurred between two groups of fish: tunas and lamnid sharks. This convergence is characterized by centralization of red muscle, a distinctive swimming style (stiffened body powered through tail movements) and elevated body temperature (endothermy). Furthermore, both groups demonstrate elevated white muscle metabolic capacities. All these traits are unusual in fish and more likely evolved to support their fast-swimming, pelagic, predatory behavior. Here, we tested the hypothesis that their convergent evolution was driven by selection on a set of metabolic genes. We sequenced white muscle transcriptomes of six tuna, one mackerel, and three shark species, and supplemented this data set with previously published RNA-seq data. Using 26 species in total (including 7,032 tuna genes plus 1,719 shark genes), we constructed phylogenetic trees and carried out maximum-likelihood analyses of gene selection. We inferred several genes relating to metabolism to be under selection. We also found that the same one gene, glycogenin-1, evolved under positive selection independently in tunas and lamnid sharks, providing evidence of convergent selective pressures at gene level possibly underlying shared physiology.
Collapse
Affiliation(s)
- Adam G Ciezarek
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, UK
| | - Luke T Dunning
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, UK Present address: Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Catherine S Jones
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, Scotland, UK
| | - Leslie R Noble
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, Scotland, UK
| | - Emily Humble
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, UK Present address: Department of Animal Behaviour, University of Bielefeld, Postfach 100131, Bielefeld, Germany
| | | | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, UK
| |
Collapse
|
13
|
Kola VSR, Renuka P, Padmakumari AP, Mangrauthia SK, Balachandran SM, Ravindra Babu V, Madhav MS. Silencing of CYP6 and APN Genes Affects the Growth and Development of Rice Yellow Stem Borer, Scirpophaga incertulas. Front Physiol 2016; 7:20. [PMID: 26903874 PMCID: PMC4751738 DOI: 10.3389/fphys.2016.00020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/14/2016] [Indexed: 11/13/2022] Open
Abstract
RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6) and Aminopeptidase N (APN) of rice yellow stem borer (YSB) on growth and development of insect. The bioassays involved injection of chemically synthesized 5' FAM labeled 21-nt dsRNA into rice cut stems and allowing the larvae to feed on these stems which resulted in increased mortality and observed growth and development changes in larval length and weight compared with its untreated control at 12-15 days after treatment. These results were further supported by observing the reduction in transcripts expression of these genes in treated larvae. Fluorescence detection in treated larvae also proved that dsRNA was readily taken by larvae when fed on dsRNA treated stems. These results from the present study clearly show that YSB larvae fed on dsRNA designed from Cytochrome P450 and Aminopeptidase N has detrimental effect on larval growth and development. These genes can be deployed to develop YSB resistance in rice using RNAi approach.
Collapse
Affiliation(s)
- Vijaya Sudhakara Rao Kola
- Department of Biotechnology, Indian Council of Agricultural Research-Indian Institute of Rice Research Hyderabad, India
| | - P Renuka
- Department of Biotechnology, Indian Council of Agricultural Research-Indian Institute of Rice Research Hyderabad, India
| | - Ayyagari Phani Padmakumari
- Department of Entomology, Indian Council of Agricultural Research-Indian Institute of Rice Research Hyderabad, India
| | - Satendra K Mangrauthia
- Department of Biotechnology, Indian Council of Agricultural Research-Indian Institute of Rice Research Hyderabad, India
| | - Sena M Balachandran
- Department of Biotechnology, Indian Council of Agricultural Research-Indian Institute of Rice Research Hyderabad, India
| | - V Ravindra Babu
- Department of Plant Breeding, Indian Council of Agricultural Research-Indian Institute of Rice Research Hyderabad, India
| | - Maganti S Madhav
- Department of Biotechnology, Indian Council of Agricultural Research-Indian Institute of Rice Research Hyderabad, India
| |
Collapse
|
14
|
Lu P, Zhou Y, Yu Y, Cao J, Zhang H, Gong H, Li G, Zhou J. RNA interference and the vaccine effect of a subolesin homolog from the tick Rhipicephalus haemaphysaloides. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:113-26. [PMID: 26608275 DOI: 10.1007/s10493-015-9987-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/31/2015] [Indexed: 05/25/2023]
Abstract
Subolesin is a well-characterized protective antigen in many ticks and, thus, it is potentially useful in the development of a broad-spectrum vaccine or an autocidal gene silencing strategy to control tick infestations. A subolesin homolog was cloned from the tick Rhipicephalus haemaphysaloides, which is widespread in China, by rapid amplification of complementary DNA (cDNA) ends. Its full-length cDNA was 1386 base pairs (bp), containing a 483 bp open reading frame with a predicted molecular mass of 18.7 kilodaltons and an isoelectric point of 9.26. The subolesin protein had a typical nuclear localization signal in its amino-terminus. The full-length cDNA of R. haemaphysaloides showed 52 and 80% identities to those from Ixodes scapularis and R. microplus, respectively, whereas amino acid sequence alignments showed 80 and 97% identities, respectively. Native subolesin was recognized in the unfed tick midgut by an antibody against recombinant subolesin. Transcriptional analysis showed that subolesin was expressed in the tick's four developmental stages and in all of the tissues examined, except for the synganglion. The pathogen Babesia microti induced the subolesin transcript by fourfold. Subolesin gene silencing by RNA interference significantly decreased the larval engorgement rate, the attachment rate and body weight of engorged nymphs, and the body weight and attachment and engorgement rates of adults, as well as the egg weight per female tick. Vaccinating mice and rabbits with recombinant subolesin induced a significant protective effect, resulting in a reduction of blood feeding and oviposition. These results encourage further studies of using subolesin to control tick infestations in China.
Collapse
Affiliation(s)
- Pengyun Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yingfang Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Guoqing Li
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Ruiz N, de Abreu LA, Parizi LF, Kim TK, Mulenga A, Braz GRC, Vaz IDS, Logullo C. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation. PLoS One 2015; 10:e0130008. [PMID: 26091260 PMCID: PMC4474930 DOI: 10.1371/journal.pone.0130008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/15/2015] [Indexed: 11/18/2022] Open
Abstract
RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT)/Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis.
Collapse
Affiliation(s)
- Newton Ruiz
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda—Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM/UFRJ), Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica–Instituto de Química, Universidade Federal do Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Carlos Logullo
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- * E-mail:
| |
Collapse
|
16
|
Marr EJ, Sargison ND, Nisbet AJ, Burgess STG. RNA interference for the identification of ectoparasite vaccine candidates. Parasite Immunol 2015; 36:616-26. [PMID: 25065384 DOI: 10.1111/pim.12132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Ectoparasites present a major challenge for disease management globally. With drug resistance increasingly observed in many disease-causing species, the need for novel control measures is pressing. Ever-expanding genomic resources from 'next generation' sequencing are now available for a number of arthropod ectoparasites, necessitating an effective means of screening these data for novel candidates for vaccine antigens or targets for chemotherapeutics. Such in vitro screening methods must be developed if we are to make discoveries in a timely and cost-effective manner. This review will discuss the potential that RNA interference (RNAi) has demonstrated thus far in the context of arthropod ectoparasites and the potential roles for this technology in the development of novel methods for parasite control.
Collapse
Affiliation(s)
- E J Marr
- Division of Vaccines and Diagnostics, Pentlands Science Park, Moredun Research Institute, Bush Loan, Penicuik, Edinburgh, UK; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, UK
| | | | | | | |
Collapse
|
17
|
Nandety RS, Kuo YW, Nouri S, Falk BW. Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered 2014; 6:8-19. [PMID: 25424593 PMCID: PMC4601220 DOI: 10.4161/21655979.2014.979701] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.
Collapse
Affiliation(s)
| | - Yen-Wen Kuo
- Department of Plant Pathology; University of California; Davis, CA USA
| | - Shahideh Nouri
- Department of Plant Pathology; University of California; Davis, CA USA
| | - Bryce W Falk
- Department of Plant Pathology; University of California; Davis, CA USA
| |
Collapse
|
18
|
Barreto FS, Schoville SD, Burton RS. Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepodTigriopus californicus. Mol Ecol Resour 2014; 15:868-79. [DOI: 10.1111/1755-0998.12359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| | - Sean D. Schoville
- Department of Entomology; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| |
Collapse
|
19
|
Abstract
INTRODUCTION As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. RESULTS Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. CONCLUSIONS Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary proteins, we consider that ticks should be referred to as venomous ectoparasites.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real 13005, Spain
| | - James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, 37005, Czech Republic
| |
Collapse
|
20
|
Kumar V, Yadav S, Jahan F, Saxena RK. ORGANIC SYNTHESIS OF MAIZE STARCH-BASED POLYMER USINGRhizopus oryzaeLIPASE, SCALE UP, AND ITS CHARACTERIZATION. Prep Biochem Biotechnol 2013; 44:321-31. [DOI: 10.1080/10826068.2013.803481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Scott JG, Michel K, Bartholomay L, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE. Towards the elements of successful insect RNAi. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1212-21. [PMID: 24041495 PMCID: PMC3870143 DOI: 10.1016/j.jinsphys.2013.08.014] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 05/09/2023]
Abstract
RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.
Collapse
Affiliation(s)
- Jeffrey G. Scott
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Kristin Michel
- Department of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Blair D. Siegfried
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, B-9000 Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Author for correspondence: , Tel. 1-607-255-8539
| |
Collapse
|
22
|
Ibelli AMG, Hermance MM, Kim TK, Gonzalez CL, Mulenga A. Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:41-53. [PMID: 23053911 PMCID: PMC4058331 DOI: 10.1007/s10493-012-9613-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
The cystatins are inhibitors of papain- and legumain-like cysteine proteinases, classified in MEROPS subfamilies I25A-I25C. This study shows that 84 % (42/50) of tick cystatins are putatively extracellular in subfamily I25B and the rest are putatively intracellular in subfamily I25A. On the neighbor joining phylogeny guide tree, subfamily I25A members cluster together, while subfamily I25B cystatins segregate among prostriata or metastriata ticks. Two Ixodes scapularis cystatins, AAY66864 and ISCW011771 that show 50-71 % amino acid identity to metastriata tick cystatins may be linked to pathways that are common to all ticks, while ISCW000447 100 % conserved in I. ricinus is important among prostriata ticks. Likewise metastriata tick cystatins, Dermacentor variabilis-ACF35512, Rhipicephalus microplus-ACX53850, A. americanum-AEO36092, R. sanguineus-ACX53922, D. variabilis-ACF35514, R. sanguineus-ACX54033 and A. maculatum-AEO35155 that show 73-86 % amino acid identity may be essential to metastriata tick physiology. RT-PCR expression analyses revealed that I. scapularis cystatins were constitutively expressed in the salivary glands, midguts and other tissues of unfed ticks and ticks that were fed for 24-120 h, except for ISCW017861 that are restricted to the 24 h feeding time point. On the basis of mRNA expression patterns, I. scapularis cystatins, ISCW017861, ISCW011771, ISCW002215 and ISCW0024528 that are highly expressed at 24 h are likely involved in regulating early stage tick feeding events such as tick attachment onto host skin and creation of the feeding lesion. Similarly, ISCW018602, ISCW018603 and ISCW000447 that show 2-3 fold transcript increase by 120 h of feeding are likely associated with blood meal up take, while those that maintain steady state expression levels (ISCW018600, ISCW018601 and ISCW018604) during feeding may not be associated with tick feeding regulation. We discuss our findings in the context of advancing our knowledge of tick molecular biology.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA; Graduate Program in Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Meghan M. Hermance
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Tae Kwon Kim
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Cassandra Lee Gonzalez
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
23
|
Embers ME, Narasimhan S. Vaccination against Lyme disease: past, present, and future. Front Cell Infect Microbiol 2013; 3:6. [PMID: 23407755 PMCID: PMC3569838 DOI: 10.3389/fcimb.2013.00006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/20/2013] [Indexed: 12/01/2022] Open
Abstract
Lyme borreliosis is a zoonotic disease caused by Borrelia burgdorferi sensu lato bacteria transmitted to humans and domestic animals by the bite of an Ixodes spp. tick (deer tick). Despite improvements in diagnostic tests and public awareness of Lyme disease, the reported cases have increased over the past decade to approximately 30,000 per year. Limitations and failed public acceptance of a human vaccine, comprised of the outer surface A (OspA) lipoprotein of B. burgdorferi, led to its demise, yet current research has opened doors to new strategies for protection against Lyme disease. In this review we discuss the enzootic cycle of B. burgdorferi, and the unique opportunities it poses to block infection or transmission at different levels. We present the correlates of protection for this infectious disease, the pros and cons of past vaccination strategies, and new paradigms for future vaccine design that would include elements of both the vector and the pathogen.
Collapse
Affiliation(s)
- Monica E Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA.
| | | |
Collapse
|
24
|
Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G. Delivery of dsRNA for RNAi in insects: an overview and future directions. INSECT SCIENCE 2013; 20:4-14. [PMID: 23955821 DOI: 10.1111/j.1744-7917.2012.01534.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA interference (RNAi) refers to the process of exogenous double-stranded RNA (dsRNA) silencing the complementary endogenous messenger RNA. RNAi has been widely used in entomological research for functional genomics in a variety of insects and its potential for RNAi-based pest control has been increasingly emphasized mainly because of its high specificity. This review focuses on the approaches of introducing dsRNA into insect cells or insect bodies to induce effective RNAi. The three most common delivery methods, namely, microinjection, ingestion, and soaking, are illustrated in details and their advantages and limitations are summarized for purpose of feasible RNAi research. In this review, we also briefly introduce the two possible dsRNA uptake machineries, other dsRNA delivery methods and the history of RNAi in entomology. Factors that influence the specificity and efficiency of RNAi such as transfection reagents, selection of dsRNA region, length, and stability of dsRNA in RNAi research are discussed for further studies.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Genes (Basel) 2012; 3:702-41. [PMID: 24705082 PMCID: PMC3899984 DOI: 10.3390/genes3040702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/06/2023] Open
Abstract
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.
Collapse
Affiliation(s)
| | - Ard M Nijhof
- Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Wilma Fick
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|
26
|
Ciapetti G, Granchi D, Devescovi V, Leonardi E, Greggi T, Di Silvestre M, Baldini N. Ex vivo observation of human intervertebral disc tissue and cells isolated from degenerated intervertebral discs. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2012; 21 Suppl 1:S10-9. [PMID: 22395304 DOI: 10.1007/s00586-012-2234-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/19/2012] [Indexed: 01/07/2023]
Abstract
PURPOSE Disc degeneration, and associated low back pain, are a primary cause of disability. Disc degeneration is characterized by dysfunctional cells and loss of proteoglycans: since intervertebral tissue has a limited capacity to regenerate, this process is at present considered irreversible. Recently, cell therapy has been suggested to provide more successful treatment of IVD degeneration. To understand the potential of cells to restore IVD structure/function, tissue samples from degenerated IVD versus healthy discs have been compared. METHODS Discal tissue from 27 patients (40.17 ± 11 years) undergoing surgery for degenerative disc disease (DDD), DDD + herniation and congenital scoliosis, as controls, was investigated. Cells and matrix in the nucleus pulposus (NP) and annulus fibrosus (AF) were characterized by histology. AF- and NP-derived cells were isolated, expanded and characterized for senescence and gene expression. Three-dimensional NP pellets were cultured and stained for glycosaminoglycan formation. RESULTS Phenotypical markers of degeneration, such as cell clusters, chondrons, and collagen disorganization were seen in the degenerate samples. In severe degeneration, granulation tissue and peripheral vascularization were observed. No correlation was found between the Pfirrmann clinical score and the extent of degeneration. CONCLUSION The tissue disorganization in degenerate discs and the paucity of cells out of cluster/chondron association, make the IVD-derived cells an unreliable option for disc regeneration.
Collapse
Affiliation(s)
- Gabriela Ciapetti
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression levels using libraries of synthetic promoters now exist.
Collapse
Affiliation(s)
- Tore Dehli
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Matematiktorvet 301/242, 2800, Lyngby, Denmark,
| | | | | |
Collapse
|
28
|
Abstract
Parasitic diseases cause important losses in public and veterinary health worldwide. Novel drugs, more reliable diagnostic techniques and vaccine candidates are urgently needed. Due to the complexity of parasites and the intricate relationship with their hosts, development of successful tools to fight parasites has been very limited to date. The growing information on individual parasite genomes is now allowing the use of a broader range of potential strategies to gain deeper insights into the host-parasite relationship and has increased the possibilities to develop molecular-based tools in the field of parasitology. Nevertheless, functional studies of respective genes are still scarce. The RNA interference phenomenon resulting in the regulation of protein expression through the specific degradation of defined mRNAs, and more specifically the possibility of artificially induce it, has shown to be a powerful tool for the investigation of proteins function in many organisms. Recent advances in the design and delivery of targeting molecules allow efficient and highly specific gene silencing in different types of parasites, pointing out this technology as a powerful tool for the identification of novel vaccine candidates or drug targets at the high-throughput level in the near future, and could enable researchers to functionally annotate parasite genomes. The aim of this review is to provide a comprehensive overview on the current advances and pitfalls in gene silencing mechanisms, techniques, applications and prospects in animal parasites.
Collapse
|
29
|
Lew-Tabor AE, Kurscheid S, Barrero R, Gondro C, Moolhuijzen PM, Rodriguez Valle M, Morgan JAT, Covacin C, Bellgard MI. Gene expression evidence for off-target effects caused by RNA interference-mediated gene silencing of Ubiquitin-63E in the cattle tick Rhipicephalus microplus. Int J Parasitol 2011; 41:1001-14. [PMID: 21712043 DOI: 10.1016/j.ijpara.2011.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 01/10/2023]
Affiliation(s)
- A E Lew-Tabor
- CRC for Beef Genetic Technologies, Armidale, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Ticks are obligate hematophagous ectoparasites of wild and domestic animals and humans, and are considered to be second worldwide to mosquitoes as vectors of human diseases(1) and the most important vectors affecting cattle industry worldwide(2). Ticks are classified in the subclass Acari, order Parasitiformes, suborder Ixodida and are distributed worldwide from Arctic to tropical regions(3). Despite efforts to control tick infestations, these ectoparasites remain a serious problem for human and animal health(4,5). RNA interference (RNAi)(6) is a nucleic acid-based reverse genetic approach that involves disruption of gene expression in order to determine gene function or its effect on a metabolic pathway. Small interfering RNAs (siRNAs) are the effector molecules of the RNAi pathway that is initiated by double-stranded RNA (dsRNA) and results in a potent sequence-specific degradation of cytoplasmic mRNAs containing the same sequence as the dsRNA trigger(7-9). Post-transcriptional gene silencing mechanisms initiated by dsRNA have been discovered in all eukaryotes studied thus far, and RNAi has been rapidly developed in a variety of organisms as a tool for functional genomics studies and other applications(10). RNAi has become the most widely used gene-silencing technique in ticks and other organisms where alternative approaches for genetic manipulation are not available or are unreliable(5,11). The genetic characterization of ticks has been limited until the recent application of RNAi(12,13). In the short time that RNAi has been available, it has proved to be a valuable tool for studying tick gene function, the characterization of the tick-pathogen interface and the screening and characterization of tick protective antigens(14). Herein, a method for RNAi through injection of dsRNA into unfed ticks is described. It is likely that the knowledge gained from this experimental approach will contribute markedly to the understanding of basic biological systems and the development of vaccines to control tick infestations and prevent transmission of tick-borne pathogens(15-19).
Collapse
Affiliation(s)
- Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, OK, USA
| | | | | |
Collapse
|