1
|
Torres M, Mcconnaughie D, Akhtar S, Gaffney CE, Fievet B, Ingham C, Stockdale M, Dickson AJ. Engineering mammalian cell growth dynamics for biomanufacturing. Metab Eng 2024; 82:89-99. [PMID: 38325641 DOI: 10.1016/j.ymben.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Precise control over mammalian cell growth dynamics poses a major challenge in biopharmaceutical manufacturing. Here, we present a multi-level cell engineering strategy for the tunable regulation of growth phases in mammalian cells. Initially, we engineered mammalian death phase by employing CRISPR/Cas9 to knockout pro-apoptotic proteins Bax and Bak, resulting in a substantial attenuation of apoptosis by improving cell viability and extending culture lifespan. The second phase introduced a growth acceleration system, akin to a "gas pedal", based on an abscidic acid inducible system regulating cMYC gene expression, enabling rapid cell density increase and cell cycle control. The third phase focused on a stationary phase inducing system, comparable to a "brake pedal". A tetracycline inducible genetic circuit based on BLIMP1 gene led to cell growth cessation and arrested cell cycle upon activation. Finally, we developed a dual controllable system, combining the "gas and brake pedals", enabling for dynamic and precise orchestration of mammalian cell growth dynamics. This work exemplifies the application of synthetic biology tools and combinatorial cell engineering, offering a sophisticated framework for manipulating mammalian cell growth and providing a unique paradigm for reprogramming cell behaviour for enhancing biopharmaceutical manufacturing and further biomedical applications.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK.
| | - Dewi Mcconnaughie
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Samia Akhtar
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Claire E Gaffney
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Bruno Fievet
- Horizon Discovery (Revvity), 8100 Cambridge Research Park, Waterbeach, Cambridge, CB25 9TL, UK
| | - Catherine Ingham
- Horizon Discovery (Revvity), 8100 Cambridge Research Park, Waterbeach, Cambridge, CB25 9TL, UK
| | - Mark Stockdale
- Horizon Discovery (Revvity), 8100 Cambridge Research Park, Waterbeach, Cambridge, CB25 9TL, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Nguyen M, Zimmer A. A reflection on the improvement of Chinese Hamster ovary cell-based bioprocesses through advances in proteomic techniques. Biotechnol Adv 2023; 65:108141. [PMID: 37001570 DOI: 10.1016/j.biotechadv.2023.108141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chinese hamster ovary (CHO) cells are the preferred mammalian host for the large-scale production of recombinant proteins in the biopharmaceutical industry. Research endeavors have been directed to the optimization of CHO-based bioprocesses to increase protein quantity and quality, often in an empirical manner. To provide a rationale for those achievements, a myriad of CHO proteomic studies has arisen in recent decades. This review gives an overview of significant advances in LC-MS-based proteomics and sheds light on CHO proteomic studies, with a particular focus on CHO cells with superior bioprocessing phenotypes (growth, viability, titer, productivity and cQA), that have exploited novel proteomic or sub-omic techniques. These proteomic findings expand the current knowledge and understanding about the underlying protein clusters, protein regulatory networks and biological pathways governing such phenotypic changes. The proteomic studies, highlighted herein, will help in the targeted modulation of these cell factories to the desired needs.
Collapse
|
3
|
Engineering of Chinese hamster ovary cells for co-overexpressing MYC and XBP1s increased cell proliferation and recombinant EPO production. Sci Rep 2023; 13:1482. [PMID: 36707606 PMCID: PMC9883479 DOI: 10.1038/s41598-023-28622-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Improving the cellular capacity of Chinese hamster ovary (CHO) cells to produce large amounts of therapeutic proteins remains a major challenge for the biopharmaceutical industry. In previous studies, we observed strong correlations between the performance of CHO cells and expression of two transcription factors (TFs), MYC and XBP1s. Here, we have evaluated the effective of overexpression of these two TFs on CHO cell productivity. To address this goal, we generated an EPO-producing cell line (CHOEPO) using a targeted integration approach, and subsequently engineered it to co-overexpress MYC and XBP1s (a cell line referred to as CHOCXEPO). Cells overexpressing MYC and XBP1s increased simultaneously viable cell densities and EPO production, leading to an enhanced overall performance in cultures. These improvements resulted from the individual effect of each TF in the cell behaviour (i.e., MYC-growth and XBP1s-productivity). An evaluation of the CHOCXEPO cells under different environmental conditions (temperature and media glucose concentration) indicated that CHOCXEPO cells increased cell productivity in high glucose concentration. This study showed the potential of combining TF-based cell engineering and process optimisation for increasing CHO cell productivity.
Collapse
|
4
|
Li ZM, Fan ZL, Wang XY, Wang TY. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:880155. [PMID: 35860329 PMCID: PMC9289362 DOI: 10.3389/fbioe.2022.880155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant therapeutic proteins (RTPs) are important parts of biopharmaceuticals. Chinese hamster ovary cells (CHO) have become the main cell hosts for the production of most RTPs approved for marketing because of their high-density suspension growth characteristics, and similar human post-translational modification patterns et al. In recent years, many studies have been performed on CHO cell expression systems, and the yields and quality of recombinant protein expression have been greatly improved. However, the expression levels of some proteins are still low or even difficult-to express in CHO cells. It is urgent further to increase the yields and to express successfully the “difficult-to express” protein in CHO cells. The process of recombinant protein expression of is a complex, involving multiple steps such as transcription, translation, folding processing and secretion. In addition, the inherent characteristics of molecular will also affect the production of protein. Here, we reviewed the factors affecting the expression of recombinant protein and improvement strategies in CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tian-Yun Wang,
| |
Collapse
|
5
|
Torkashvand F, Mahboudi F, Vossoughi M, Fatemi E, Moosavi Basri SM, Heydari A, Vaziri B. Quantitative Proteomic Analysis of Cellular Responses to a Designed Amino Acid Feed in a Monoclonal Antibody
Producing Chinese Hamster Ovary Cell Line. IRANIAN BIOMEDICAL JOURNAL 2018. [PMID: 29678103 PMCID: PMC6305810 DOI: 10.29252/.22.6.385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Chinese hamster ovary (CHO) cell line is considered as the most common cell line in the biopharmaceutical industry because of its capability in performing efficient post-translational modifications and producing the recombinant proteins, which are similar to natural human proteins. The optimization of the upstream process via different feed strategies has a great impact on the target molecule expression and yield. Methods: To determine and understand the molecular events beneath the feed effects on the CHO cell, a label-free quantitative proteomic analysis was applied. The proteome changes followed by the addition of a designed amino acid feed to the monoclonal antibody producing CHO cell line culture medium were investigated. Results: The glutathione synthesis, the negative regulation of the programmed cell death, proteasomal catabolic process, and the endosomal transport pathway were up-regulated in the group fed with a designed amino acid feed compared to the control group. Conclusion: Our findings could be helpful to identify new targets for metabolic engineering.
Collapse
Affiliation(s)
- Fatemeh Torkashvand
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fereidoun Mahboudi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Biochemical and Bioenvironmental Research Center Sharif University of Technology, Tehran, Iran
| | - Elnaz Fatemi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Heydari
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Behrouz Vaziri
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Shridhar S, Klanert G, Auer N, Hernandez-Lopez I, Kańduła MM, Hackl M, Grillari J, Stralis-Pavese N, Kreil DP, Borth N. Transcriptomic changes in CHO cells after adaptation to suspension growth in protein-free medium analysed by a species-specific microarray. J Biotechnol 2017; 257:13-21. [DOI: 10.1016/j.jbiotec.2017.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 11/26/2022]
|
7
|
Chu C, Bottaro DP, Betenbaugh MJ, Shiloach J. Stable Ectopic Expression of ST6GALNAC5 Induces Autocrine MET Activation and Anchorage-Independence in MDCK Cells. PLoS One 2016; 11:e0148075. [PMID: 26848584 PMCID: PMC4743853 DOI: 10.1371/journal.pone.0148075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex cancer progression that can boost the metastatic potential of transformed cells by inducing migration, loss of cell adhesion, and promoting proliferation under anchorage-independent conditions. A DNA microarray analysis was performed comparing parental anchorage-dependent MDCK cells and anchorage-independent MDCK cells that were engineered to express human siat7e (ST6GALNAC5). The comparison identified several genes involved in the EMT process that were differentially expressed between the anchorage-dependent and the anchorage-independent MDCK cell lines. The hepatocyte growth factor gene (hgf) was found to be over-expressed in the engineered MDCK-siat7e cells at both transcription and protein expression levels. Phosphorylation analysis of the MET receptor tyrosine kinase confirmed the activation of an autocrine loop of the HGF/ MET signaling pathway in the MDCK-siat7e cells. When MET activities were suppressed by using the small-molecular inhibitor drug PF-02341066 (Crizotinib), the anchorage-independent MDCK-siat7e cells reverted to the cellular morphology of the parental anchorage-dependent MDCK cells. These observations indicate that the MET receptor plays a central role in the growth properties of the MDCK cells and its phosphorylation status is likely dependent on sialylation. Further investigation of the downstream signaling targets in the MET network showed that the degree of MDCK cell adhesion correlated with secretion levels of a matrix metalloproteinase, MMP1, suggesting a role of metalloproteinases in the EMT process. These results demonstrate that in addition to its application in biotechnology processes, MDCK-siat7e may serve as a model cell for metastasis studies to decipher the sequence of events leading up to the activation of EMT.
Collapse
Affiliation(s)
- Chia Chu
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Donald P. Bottaro
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Farrell A, McLoughlin N, Milne JJ, Marison IW, Bones J. Application of Multi-Omics Techniques for Bioprocess Design and Optimization in Chinese Hamster Ovary Cells. J Proteome Res 2014; 13:3144-59. [DOI: 10.1021/pr500219b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amy Farrell
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Niaobh McLoughlin
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - John J. Milne
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Ian W. Marison
- Laboratory
of Integrated Bioprocessing, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jonathan Bones
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| |
Collapse
|
9
|
Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ. The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology. Curr Opin Biotechnol 2013; 24:1102-7. [DOI: 10.1016/j.copbio.2013.02.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/17/2013] [Accepted: 02/09/2013] [Indexed: 11/29/2022]
|
10
|
Bellance N, Pabst L, Allen G, Rossignol R, Nagrath D. Oncosecretomics coupled to bioenergetics identifies α-amino adipic acid, isoleucine and GABA as potential biomarkers of cancer: Differential expression of c-Myc, Oct1 and KLF4 coordinates metabolic changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2060-71. [DOI: 10.1016/j.bbabio.2012.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/23/2012] [Accepted: 07/19/2012] [Indexed: 02/04/2023]
|
11
|
Doneanu CE, Xenopoulos A, Fadgen K, Murphy J, Skilton SJ, Prentice H, Stapels M, Chen W. Analysis of host-cell proteins in biotherapeutic proteins by comprehensive online two-dimensional liquid chromatography/mass spectrometry. MAbs 2012; 4:24-44. [PMID: 22327428 DOI: 10.4161/mabs.4.1.18748] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a "discovery" assay, the latter as a "monitoring" assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique ("Hi3" method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally, the MRM quantitation results were compared with TOF-based quantification based on the Hi3 peptides, and the TOF and MRM data sets correlated reasonably well. The results show that the assays provide detailed valuable information to understand the relative contributions of purification schemes to the nature and concentrations of HCP impurities in biopharmaceutical samples, and the assays can be used as generic methods for HCP analysis in the biopharmaceutical industry.
Collapse
|
12
|
Durand-Panteix S, Farhat M, Youlyouz-Marfak I, Rouaud P, Ouk-Martin C, David A, Faumont N, Feuillard J, Jayat-Vignoles C. B7-H1, which represses EBV-immortalized B cell killing by autologous T and NK cells, is oppositely regulated by c-Myc and EBV latency III program at both mRNA and secretory lysosome levels. THE JOURNAL OF IMMUNOLOGY 2012; 189:181-90. [PMID: 22661084 DOI: 10.4049/jimmunol.1102277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
EBV-immortalized B cells induce a complex immune response such that the virus persists as a clinically silent infection for the lifetime of the infected host. B7-H1, also called PD-L1, is a cosignaling molecule of the B7 family that can inhibit activated T cell effectors by interaction with its receptor PD-1. In this work, we have studied the dependence of B7-H1 on NF-κB and c-Myc, the two main transcription factors in EBV latency III proliferating B cells, on various lymphoblastoid and Burkitt lymphoma cell lines, some of them being inducible or not for the EBV latency III program and/or for c-Myc. We found that B7-H1 repressed killing of EBV-immortalized B cells by their autologous T and NK cells. At the mRNA level, NF-κB was a weak inducer whereas c-Myc was a strong repressor of B7-H1 expression, an effect mediated by STAT1 inhibition. At the protein level, B7-H1 molecules were stored in both degradative and unconventional secretory lysosomes. Surface membrane B7-H1 molecules were constitutively internalized and proteolyzed in lysosomes. The EBV latency III program increased the amounts of B7-H1-containing secretory lysosomes and their export to the surface membrane. By repressing actin polymerization, c-Myc blocked secretory lysosome migration and B7-H1 surface membrane export. In addition to B7-H1, various immunoregulatory molecules participating in the immunological synapse are stored in secretory lysosomes. By playing on actin polymerization, c-Myc could thus globally regulate the immunogenicity of transformed B cells, acting on export of secretory lysosomes to plasma membrane.
Collapse
Affiliation(s)
- Stéphanie Durand-Panteix
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche CNRS 7276, Faculté de Médecine, 87025 Limoges Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 2011; 93:917-30. [PMID: 22159888 DOI: 10.1007/s00253-011-3758-5] [Citation(s) in RCA: 509] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022]
|
14
|
Hammond S, Lee KH. RNA interference of cofilin in Chinese hamster ovary cells improves recombinant protein productivity. Biotechnol Bioeng 2011; 109:528-35. [PMID: 21915848 DOI: 10.1002/bit.23322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/04/2011] [Accepted: 08/31/2011] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) has been recently applied to improve the yield and quality of recombinant proteins produced in Chinese hamster ovary (CHO) cells, the most commonly used mammalian cell line for production of complex biopharmaceuticals. Proteomic profiling of CHO cells undergoing gene amplification identified cofilin, a key regulatory protein of actin cytoskeletal dynamics, as a cellular target for genetic engineering studies. Transient reduction of cofilin by small interfering RNA (siRNA) enhanced specific productivity in recombinant CHO cells by up to 80%. CHO cell lines expressing cofilin-specific short hairpin RNA (shRNA) vectors showed up to a 65% increase in specific productivity. These results suggest that modulation of cofilin, and its regulatory pathways, may be a new approach to enhance recombinant protein productivity in CHO cells.
Collapse
Affiliation(s)
- Stephanie Hammond
- Department of Chemical Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | | |
Collapse
|