1
|
Feng R, Lan J, Goh MC, Du M, Chen Z. Advances in the application of gas vesicles in medical imaging and disease treatment. J Biol Eng 2024; 18:41. [PMID: 39044273 PMCID: PMC11267810 DOI: 10.1186/s13036-024-00426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 07/25/2024] Open
Abstract
The gas vesicle (GV) is like a hollow nanoparticle consisting of an internal gas and a protein shell, which mainly consists of hydrophobic gas vesicle protein A (GvpA) and GvpC attached to the surface. GVs, first discovered in cyanobacteria, are mainly produced by photosynthetic bacteria (PSB) and halophilic archaea. After being modified and engineered, GVs can be utilized as contrast agents, delivery carriers, and immunological boosters for disease prevention, diagnosis, and treatment with good results due to their tiny size, strong stability and non-toxicity advantages. Many diagnostic and therapeutic approaches based on GV are currently under development. In this review, we discuss the source, function, physical and chemical properties of GV, focus on the current application progress of GV, and put forward the possible application prospect and development direction of GV in the future.
Collapse
Affiliation(s)
- Renjie Feng
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jie Lan
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meei Chyn Goh
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Quinton AR, McDowell HB, Hoiczyk E. Encapsulins: Nanotechnology's future in a shell. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:1-48. [PMID: 38783722 DOI: 10.1016/bs.aambs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Encapsulins, virus capsid-like bacterial nanocompartments have emerged as promising tools in medicine, imaging, and material sciences. Recent work has shown that these protein-bound icosahedral 'organelles' possess distinct properties that make them exceptionally usable for nanotechnology applications. A key factor contributing to their appeal is their ability to self-assemble, coupled with their capacity to encapsulate a wide range of cargos. Their genetic manipulability, stability, biocompatibility, and nano-size further enhance their utility, offering outstanding possibilities for practical biotechnology applications. In particular, their amenability to engineering has led to their extensive modification, including the packaging of non-native cargos and the utilization of the shell surface for displaying immunogenic or targeting proteins and peptides. This inherent versatility, combined with the ease of expressing encapsulins in heterologous hosts, promises to provide broad usability. Although mostly not yet commercialized, encapsulins have started to demonstrate their vast potential for biotechnology, from drug delivery to biofuel production and the synthesis of valuable inorganic materials. In this review, we will initially discuss the structure, function and diversity of encapsulins, which form the basis for these emerging applications, before reviewing ongoing practical uses and highlighting promising applications in medicine, engineering and environmental sciences.
Collapse
Affiliation(s)
- Amy Ruth Quinton
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Harry Benjamin McDowell
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Egbert Hoiczyk
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
3
|
Recent Advances in the Study of Gas Vesicle Proteins and Application of Gas Vesicles in Biomedical Research. Life (Basel) 2022; 12:life12091455. [PMID: 36143491 PMCID: PMC9501494 DOI: 10.3390/life12091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
The formation of gas vesicles has been investigated in bacteria and haloarchaea for more than 50 years. These air-filled nanostructures allow cells to stay at a certain height optimal for growth in their watery environment. Several gvp genes are involved and have been studied in Halobacterium salinarum, cyanobacteria, Bacillus megaterium, and Serratia sp. ATCC39006 in more detail. GvpA and GvpC form the gas vesicle shell, and additional Gvp are required as minor structural proteins, chaperones, an ATP-hydrolyzing enzyme, or as gene regulators. We analyzed the Gvp proteins of Hbt. salinarum with respect to their protein–protein interactions, and developed a model for the formation of these nanostructures. Gas vesicles are also used in biomedical research. Since they scatter waves and produce ultrasound contrast, they could serve as novel contrast agent for ultrasound or magnetic resonance imaging. Additionally, gas vesicles were engineered as acoustic biosensors to determine enzyme activities in cells. These applications are based on modifications of the surface protein GvpC that alter the mechanical properties of the gas vesicles. In addition, gas vesicles have been decorated with GvpC proteins fused to peptides of bacterial or viral pathogens and are used as tools for vaccine development.
Collapse
|
4
|
Kim JM, Kim YS, Kim YR, Choi MJ, DasSarma P, DasSarma S. Bioengineering of Halobacterium sp. NRC-1 gas vesicle nanoparticles with GvpC fusion protein produced in E. coli. Appl Microbiol Biotechnol 2022; 106:2043-2052. [PMID: 35230496 PMCID: PMC8885775 DOI: 10.1007/s00253-022-11841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Abstract Gas vesicle nanoparticles (GVNPs) are hollow, buoyant prokaryotic organelles used for cell flotation. GVNPs are encoded by a large gas vesicle protein (gvp) gene cluster in the haloarchaeon, Halobacterium sp. NRC-1, including one gene, gvpC, specifying a protein bound to the surface of the nanoparticles. Genetically engineered GVNPs in the Halobacterium sp. have been produced by fusion of foreign sequences to gvpC. To improve the versatility of the GVNP platform, we developed a method for displaying exogenously produced GvpC fusion proteins on the haloarchaeal nanoparticles. The streptococcal IgG-binding protein domain was fused at or near the C-terminus of GvpC, expressed and purified from E. coli, and shown to bind to wild-type GVNPs. The two fusion proteins, GvpC3GB and GvpC4GB, without or with a highly acidic GvpC C-terminal region, were found to be able to bind nanoparticles equally well. The GVNP-bound GvpC-IgG-binding fusion protein was also capable of binding to an enzyme-linked IgG-HRP complex which retained enzyme activity, demonstrating the hybrid system capability for display and delivery of protein complexes. This is the first report demonstrating functional binding of exogenously produced GvpC fusion proteins to wild-type haloarchaeal GVNPs which significantly expands the capability of the platform to produce bioengineered nanoparticles for biomedical applications. Key points • Haloarchaeal gas vesicle nanoparticles (GVNPs) constitute a versatile display system. • GvpC-streptococcal IgG-binding fusion proteins expressed in E. coli bind to GVNPs. • IgG-binding proteins displayed on floating GVNPs bind and display IgG-HRP complex. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jong-Myoung Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea.
| | - Youn-Sook Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea.,School of Medicine, Pusan National University, Yangsan, 50512, Korea
| | - Yeo-Reum Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea
| | - Mi-Jin Choi
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea
| | - Priya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA.
| |
Collapse
|
5
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
6
|
Hill AM, Salmond GPC. Microbial gas vesicles as nanotechnology tools: exploiting intracellular organelles for translational utility in biotechnology, medicine and the environment. MICROBIOLOGY (READING, ENGLAND) 2020; 166:501-509. [PMID: 32324529 PMCID: PMC7376271 DOI: 10.1099/mic.0.000912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
A range of bacteria and archaea produce gas vesicles as a means to facilitate flotation. These gas vesicles have been purified from a number of species and their applications in biotechnology and medicine are reviewed here. Halobacterium sp. NRC-1 gas vesicles have been engineered to display antigens from eukaryotic, bacterial and viral pathogens. The ability of these recombinant nanoparticles to generate an immune response has been quantified both in vitro and in vivo. These gas vesicles, along with those purified from Anabaena flos-aquae and Bacillus megaterium, have been developed as an acoustic reporter system. This system utilizes the ability of gas vesicles to retain gas within a stable, rigid structure to produce contrast upon exposure to ultrasound. The susceptibility of gas vesicles to collapse when exposed to excess pressure has also been proposed as a biocontrol mechanism to disperse cyanobacterial blooms, providing an environmental function for these structures.
Collapse
Affiliation(s)
- Amy M. Hill
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - George P. C. Salmond
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
7
|
Andar AU, Karan R, Pecher WT, DasSarma P, Hedrich WD, Stinchcomb AL, DasSarma S. Microneedle-Assisted Skin Permeation by Nontoxic Bioengineerable Gas Vesicle Nanoparticles. Mol Pharm 2017; 14:953-958. [PMID: 28068767 DOI: 10.1021/acs.molpharmaceut.6b00859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gas vesicle nanoparticles (GVNPs) are hollow, buoyant protein organelles produced by the extremophilic microbe Halobacterium sp. NRC-1 and are being developed as bioengineerable and biocompatible antigen and drug-delivery systems (DDS). Dynamic light scattering measurements of purified GVNP suspensions showed a mean diameter of 245 nm. In vitro diffusion studies using Yucatan miniature pig skin showed GVNP permeation to be enhanced after MN-treatment compared to untreated skin. GVNPs were found to be nontoxic to mammalian cells (human kidney and rat mycocardial myoblasts). These findings support the use of GVNPs as DDS for intradermal/transdermal permeation of protein- and peptide-based drugs.
Collapse
Affiliation(s)
- Abhay U Andar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Ram Karan
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| | - Wolf T Pecher
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States.,Yale Gordon College of Arts and Sciences, University of Baltimore , Baltimore, Maryland 21201, United States
| | - Priya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| | - William D Hedrich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| |
Collapse
|
8
|
Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev 2016; 27:346-70. [PMID: 24696438 DOI: 10.1128/cmr.00105-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Collapse
|
9
|
DasSarma P, Karan R, Kim JM, Pecher W, DasSarma S. Bioengineering novel floating nanoparticles for protein and drug delivery. ACTA ACUST UNITED AC 2016; 3:206-210. [PMID: 27158595 DOI: 10.1016/j.matpr.2016.01.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Gas vesicle nanoparticles (GVNPs) are hollow protein nanoparticles produced by Halobacterium sp. NRC-1 which are being engineered for protein delivery. To advance the bioengineering potential of GVNPs, a strain of NRC-1 deleted for the gvpC gene (ΔgvpC) was constructed and a synthetic gene coding for Gaussia princeps luciferase was fused to an abbreviated gvpC gene on an expression plasmid. When introduced into theΔgvpC strain, an active GvpC-luciferase fusion protein bound to GVNPs resulted. These results represent both a technical improvement in the GVNP display system and its expansion for the display of active enzymes.
Collapse
Affiliation(s)
- Priya DasSarma
- University of Maryland, School of Medicine, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Ram Karan
- University of Maryland, School of Medicine, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Jong-Myoung Kim
- University of Maryland, School of Medicine, 701 E. Pratt Street, Baltimore, MD 21202, USA ; PuKyong National University, YongSoro 45, Busan 608-737, Korea
| | - Wolf Pecher
- University of Maryland, School of Medicine, 701 E. Pratt Street, Baltimore, MD 21202, USA ; University of Baltimore, 1420 N. Charles St., Baltimore, MD 21201, USA
| | - Shiladitya DasSarma
- University of Maryland, School of Medicine, 701 E. Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
10
|
Dutta S, DasSarma P, DasSarma S, Jarori GK. Immunogenicity and protective potential of a Plasmodium spp. enolase peptide displayed on archaeal gas vesicle nanoparticles. Malar J 2015; 14:406. [PMID: 26463341 PMCID: PMC4605222 DOI: 10.1186/s12936-015-0914-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/25/2015] [Indexed: 11/15/2022] Open
Abstract
Background Plasmodium falciparum enolase has been shown to localize on the surface of merozoites and ookinetes. Immunization of mice with recombinant Plasmodium enolase (rPfeno) showed partial protection against malaria. Anti-rPfeno antibodies inhibited growth of the parasite in in vitro cultures and blocked ookinete invasion of mosquito midgut epithelium. It is hypothesized that parasite specific moonlighting functions (e.g. host cell invasion) may map on to unique structural elements of Pfeno. Since enolases are highly conserved between the host and the parasite, a parasite-specific epitope of enolase was displayed on novel protein nanoparticles produced by a halophilic Archaeon Halobacterium sp. NRC-1 and tested their ability to protect mice against live challenge. Methods By genetic engineering, a Plasmodium-enolase specific peptide sequence 104EWGWS108 with protective antigenic potential was inserted into the Halobacterium gas vesicle protein GvpC, a protein localized on the surface of immunogenic gas vesicle nanoparticles (GVNPs). Two groups of mice were immunized with the wild type (WT) and the insert containing recombinant (Rec) GVNPs respectively. A third group of mice was kept as un-immunized control. Antibody titres were measured against three antigens (i.e. WT-GVNPs, Rec-GVNPs and rPfeno) using ELISA. The protective potential was determined by measuring percentage parasitaemia and survival after challenge with the lethal strain Plasmodium yoelii 17XL. Results Rec-GVNP-immunized mice showed higher antibody titres against rPfeno and Rec-GVNPs, indicating that the immunized mice had produced antibodies against the parasite enolase-specific insert sequence. Challenging the un-immunized, WT-GVNP and Rec-GVNP-immunized mice with a lethal strain of mice malarial parasite showed significantly lower parasitaemia and longer survival in the Rec-GVNP-immunized group as compared to control groups. The extent of survival advantage in the Rec-GVNP-group showed positive correlation with anti-rPfeno antibody titres while the parasitaemia showed a negative correlation. These results indicate that the parasite enolase peptide insert displayed on Halobacterium GVNPs is a good candidate as a protective antigenic epitope. Conclusion The work reported here showed that the parasite-specific peptide sequence is a protective antigenic epitope. Although antibody response of B-cells to the guest sequence in Rec-GVNPs was mild, significant advantage in the control of parasitaemia and survival was observed. Future efforts are needed to display multiple antigens with protective properties to improve the performance of the GVNP-based approach.
Collapse
Affiliation(s)
- Sneha Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, 21202, USA.
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, 21202, USA.
| | - Gotam K Jarori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
| |
Collapse
|
11
|
DasSarma S, DasSarma P. Gas Vesicle Nanoparticles for Antigen Display. Vaccines (Basel) 2015; 3:686-702. [PMID: 26350601 PMCID: PMC4586473 DOI: 10.3390/vaccines3030686] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| |
Collapse
|
12
|
Haloarchaea and the formation of gas vesicles. Life (Basel) 2015; 5:385-402. [PMID: 25648404 PMCID: PMC4390858 DOI: 10.3390/life5010385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes.
Collapse
|
13
|
Haloarchaeal gas vesicle nanoparticles displaying Salmonella antigens as a novel approach to vaccine development. ACTA ACUST UNITED AC 2015; 9:16-23. [PMID: 26900411 DOI: 10.1016/j.provac.2015.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A safe, effective, and inexpensive vaccine against typhoid and other Salmonella diseases is urgently needed. In order to address this need, we are developing a novel vaccine platform employing buoyant, self-adjuvanting gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1, bioengineered to display highly conserved Salmonella enterica antigens. As the initial antigen for testing, we selected SopB, a secreted inosine phosphate effector protein injected by pathogenic S. enterica bacteria during infection into the host cells. Two highly conserved sopB gene segments near the 3'-region, named sopB4 and sopB5, were each fused to the gvpC gene, and resulting SopB-GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and SopB5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of SopB-GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ΔpmrG-HM-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-γ, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Th1 response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5-GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were also found to be stable at elevated temperatures for extended periods without refrigeration. The results show that bioengineered GVNPs are likely to represent a valuable platform for antigen delivery and development of improved vaccines against Salmonella and other diseases.
Collapse
|
14
|
Haloarchaeal gas vesicle nanoparticles displaying Salmonella SopB antigen reduce bacterial burden when administered with live attenuated bacteria. Vaccine 2014; 32:4543-4549. [PMID: 24950351 DOI: 10.1016/j.vaccine.2014.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/25/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
Abstract
Innovative vaccines against typhoid and other Salmonella diseases that are safe, effective, and inexpensive are urgently needed. In order to address this need, buoyant, self-adjuvating gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1 were bioengineered to display the highly conserved Salmonella enterica antigen SopB, a secreted inosine phosphate effector protein injected by pathogenic bacteria during infection into the host cell. Two highly conserved sopB gene segments near the 3'-coding region, named sopB4 and B5, were each fused to the gvpC gene, and resulting GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and B5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of recombinant GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ΔpmrG-HM-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-γ, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Th1 response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5-GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were found to be stable at elevated temperatures for extended periods without refrigeration in Halobacterium cells. The results all together show that bioengineered GVNPs are likely to represent a valuable platform for the development of improved vaccines against Salmonella diseases.
Collapse
|
15
|
DasSarma S, Karan R, DasSarma P, Barnes S, Ekulona F, Smith B. An improved genetic system for bioengineering buoyant gas vesicle nanoparticles from Haloarchaea. BMC Biotechnol 2013; 13:112. [PMID: 24359319 PMCID: PMC3878110 DOI: 10.1186/1472-6750-13-112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Gas vesicles are hollow, buoyant organelles bounded by a thin and extremely stable protein membrane. They are coded by a cluster of gvp genes in the halophilic archaeon, Halobacterium sp. NRC-1. Using an expression vector containing the entire gvp gene cluster, gas vesicle nanoparticles (GVNPs) have been successfully bioengineered for antigen display by constructing gene fusions between the gvpC gene and coding sequences from bacterial and viral pathogens. RESULTS To improve and streamline the genetic system for bioengineering of GVNPs, we first constructed a strain of Halobacterium sp. NRC-1 deleted solely for the gvpC gene. The deleted strain contained smaller, more spindle-shaped nanoparticles observable by transmission electron microscopy, confirming a shape-determining role for GvpC in gas vesicle biogenesis. Next, we constructed expression plasmids containing N-terminal coding portions or the complete gvpC gene. After introducing the expression plasmids into the Halobacterium sp. NRC-1 ΔgvpC strain, GvpC protein and variants were localized to the GVNPs by Western blotting analysis and their effects on increasing the size and shape of nanoparticles established by electron microscopy. Finally, a synthetic gene coding for Gaussia princeps luciferase was fused to the gvpC gene fragments on expression plasmids, resulting in an enzymatically active GvpC-luciferase fusion protein bound to the buoyant nanoparticles from Halobacterium. CONCLUSION GvpC protein and its N-terminal fragments expressed from plasmid constructs complemented a Halobacterium sp. NRC-1 ΔgvpC strain and bound to buoyant GVNPs. Fusion of the luciferase reporter gene from Gaussia princeps to the gvpC gene derivatives in expression plasmids produced GVNPs with enzymatically active luciferase bound. These results establish a significantly improved genetic system for displaying foreign proteins on Halobacterium gas vesicles and extend the bioengineering potential of these novel nanoparticles to catalytically active enzymes.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland School of Medicine, 701 E Pratt Street, Baltimore, MD 21202, USA
| | - Ram Karan
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland School of Medicine, 701 E Pratt Street, Baltimore, MD 21202, USA
| | - Priya DasSarma
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland School of Medicine, 701 E Pratt Street, Baltimore, MD 21202, USA
| | - Susan Barnes
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland School of Medicine, 701 E Pratt Street, Baltimore, MD 21202, USA
| | - Folasade Ekulona
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland School of Medicine, 701 E Pratt Street, Baltimore, MD 21202, USA
| | - Barbara Smith
- Johns Hopkins School of Medicine Microscope Facility, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
|
17
|
A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium. Proc Natl Acad Sci U S A 2011; 108:14932-7. [PMID: 21873216 DOI: 10.1073/pnas.1109169108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gas vesicles are hollow intracellular proteinaceous organelles produced by aquatic Eubacteria and Archaea, including cyanobacteria and halobacteria. Gas vesicles increase buoyancy and allow taxis toward air-liquid interfaces, enabling subsequent niche colonization. Here we report a unique example of gas vesicle-mediated flotation in an enterobacterium; Serratia sp. strain ATCC39006. This strain is a member of the Enterobacteriaceae previously studied for its production of prodigiosin and carbapenem antibiotics. Genes required for gas vesicle synthesis mapped to a 16.6-kb gene cluster encoding three distinct homologs of the main structural protein, GvpA. Heterologous expression of this locus in Escherichia coli induced copious vesicle production and efficient cell buoyancy. Gas vesicle morphogenesis in Serratia enabled formation of a pellicle-like layer of highly vacuolated cells, which was dependent on oxygen limitation and the expression of ntrB/C and cheY-like regulatory genes within the gas-vesicle gene cluster. Gas vesicle biogenesis was strictly controlled by intercellular chemical signaling, through an N-acyl homoserine lactone, indicating that in this system the quorum-sensing molecule acts as a morphogen initiating organelle development. Flagella-based motility and gas vesicle morphogenesis were also oppositely regulated by the small RNA-binding protein, RsmA, suggesting environmental adaptation through physiological control of the choice between motility and flotation as alternative taxis modes. We propose that gas vesicle biogenesis in this strain represents a distinct mechanism of mobility, regulated by oxygen availability, nutritional status, the RsmA global regulatory system, and the quorum-sensing morphogen.
Collapse
|