1
|
Al-Adimi G, Bhakta V, Eltringham-Smith LJ, Shirobokov V, Sheffield WP. Extension of the circulatory half-life of recombinant ecallantide via albumin fusion without loss of anti-kallikrein activity. J Biotechnol 2024; 391:11-19. [PMID: 38844246 DOI: 10.1016/j.jbiotec.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Ecallantide comprises Kunitz Domain 1 of Tissue Factor Pathway Inhibitor, mutated at seven amino acid positions to inhibit plasma kallikrein (PK). It is used to treat acute hereditary angioedema (HAE). We appended hexahistidine tags to the N- or C-terminus of recombinant Ecallantide (rEcall) and expressed and purified the resulting proteins, with or without fusion to human serum albumin (HSA), using Pichia pastoris. The inhibitory constant (Ki) of rEcall-H6 or H6-rEcall for PK was not increased by albumin fusion. When 125I-labelled rEcall proteins were injected intravenously into mice, the area under the clearance curve (AUC) was significantly increased, 3.4- and 3.6-fold, for fusion proteins H6-rEcall-HSA and HSA-rEcall-H6 versus their unfused counterparts but remained 2- to 3-fold less than that of HSA-H6. The terminal half-life of H6-rEcall-HSA and HSA-H6 did not differ, although that of HSA-rEcall-H6 was significantly shorter than either other protein. Receptor Associated Protein (RAP), a Low-density lipoprotein Receptor-related Protein (LRP1) antagonist, competed H6-rEcall-HSA clearance more effectively than intravenous immunoglobulin (IVIg), a neonatal Fc receptor (FcRn) antagonist. HSA fusion decreases rEcall clearance in vivo, but LRP1-mediated clearance remains more important than FcRn-mediated recycling for rEcall fusion proteins. The properties of H6-rEcall-HSA warrant investigation in a murine model of HAE.
Collapse
Affiliation(s)
- Ghofran Al-Adimi
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Varsha Bhakta
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Valerie Shirobokov
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - William P Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Liu CH, Jheng PR, Rethi L, Godugu C, Lee CY, Chen YT, Nguyen HT, Chuang EY. P-Selectin mediates targeting of a self-assembling phototherapeutic nanovehicle enclosing dipyridamole for managing thromboses. J Nanobiotechnology 2023; 21:260. [PMID: 37553670 PMCID: PMC10408148 DOI: 10.1186/s12951-023-02018-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
Thrombotic vascular disorders, specifically thromboembolisms, have a significant detrimental effect on public health. Despite the numerous thrombolytic and antithrombotic drugs available, their efficacy in penetrating thrombus formations is limited, and they carry a high risk of promoting bleeding. Consequently, the current medication dosage protocols are inadequate for preventing thrombus formation, and higher doses are necessary to achieve sufficient prevention. By integrating phototherapy with antithrombotic therapy, this study addresses difficulties related to thrombus-targeted drug delivery. We developed self-assembling nanoparticles (NPs) through the optimization of a co-assembly engineering process. These NPs, called DIP-FU-PPy NPs, consist of polypyrrole (PPy), dipyridamole (DIP), and P-selectin-targeted fucoidan (FU) and are designed to be delivered directly to thrombi. DIP-FU-PPy NPs are proposed to offer various potentials, encompassing drug-loading capability, targeted accumulation in thrombus sites, near-infrared (NIR) photothermal-enhanced thrombus management with therapeutic efficacy, and prevention of rethrombosis. As predicted, DIP-FU-PPy NPs prevented thrombus recurrence and emitted visible fluorescence signals during thrombus clot penetration with no adverse effects. Our co-delivery nano-platform is a simple and versatile solution for NIR-phototherapeutic multimodal thrombus control.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chandraiah Godugu
- National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Hyderabad, India
| | - Ching Yi Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Main Branch and School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33305, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, 700000, Viet Nam
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
3
|
Mahdizadeh H, Salimian J, Noormohammadi Z, Amani J, Halabian R, Panahi Y. Structure Prediction and Expression of Modified rCTLA4-Ig as a Blocker for B7 Molecules. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:329-348. [PMID: 33680034 PMCID: PMC7757981 DOI: 10.22037/ijpr.2020.112959.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CTLA4-Ig (Abatacept) has been produced to suppress immune response by inhibition of T cells functions in autoimmune disease. A new drug, which is called belatacept, has recently been recently developed that is more efficient. The development has been occurred by two substitutions (A29Y, L104E) in the extracellular domain of CTLA4. In the present study, the bioinformatics analysis was used in order to make a new structure that has a better function in comparison with belatacept. Firstly, eight different structures were designed. Thereafter, the secondary and 3D structures, mRNA structure, docking of chimeric proteins with CD80/CD86, antigenicity and affinity of designed chimeric molecules were predicted. Based on the criteria, a new candidate molecule was selected and its gene synthesized. The gene was cloned and expressed in E. coli BL21 (DE3) successfully. The purified rCTLA4-Ig was analyzed by SDS-PAGE, western blotting, and ELISA. Circular dichroism analysis (CD analysis) was used for characterization of the rCTLA4-Ig. Affinity of rCTLA4-Ig was also evaluated by the flow cytometry method. Finally, its biological activity was determined by T cell inhibition test. The results showed rCTLA4-Ig and the belatacept protein have some similarities in structure and function. In addition, rCTLA4-Ig was able to bind CD80/CD86 and inhibit T cell function. Although flow cytomery results showed that the standard protein (CTLA4-Ig), represented better affinity than rCTLA4-Ig, the recombinant protein was able to inhibit T cell proliferation as well as CTLA4-Ig.
Collapse
Affiliation(s)
- Hossein Mahdizadeh
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Eltringham-Smith LJ, Bhakta V, Sheffield WP. Selection and in vitro and in vivo characterization of a Kunitz protease inhibitor domain of protease nexin 2 variant that inhibits factor XIa without inhibiting plasmin. J Biotechnol 2021; 330:61-69. [PMID: 33689867 DOI: 10.1016/j.jbiotec.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
The 57-amino acid Kunitz Protease Inhibitor (KPI) domain of Protease Nexin 2 inhibits Factor XIa (FXIa) and other proteases. We previously fused KPI to human serum albumin (KPIHSA). KPIHSA inhibits coagulation Factor XIa (FXIa) 6-fold more rapidly than plasmin. We screened a bacterial expression library of KPI variants randomized at M17, and selected M17D as having the highest anti-FXIa: antiplasmin activity ratio. Expressed as HSA fusion proteins in Pichia pastoris, KPIHSA and KPI(M17D)HSA inhibited FXIa indistinguishably (Ki 9 nM) but KPI(M17D)HSA lacked detectable antiplasmin activity. Purified variant and wild-type KPIHSA were expressed and injected into mice with ferric chloride-treated carotid arteries, with or without systemic administration of tissue plasminogen activator (Tenecteplase, TNKase). The time to arterial occlusion (TTO) or reperfusion (TTR) was assessed by Doppler ultrasound. TTR did not differ between mice treated with TNKase alone or with TNKase supplemented with 38 mg/kg KPI(M17D)HSA but was significantly prolonged to >60 min in all mice treated with TNKase and 38 mg/kg KPIHSA. TTO was significantly but equally prolonged by either 38 mg/kg KPIHSA or KPI(M17D)HSA versus vehicle controls. The antiplasmin activity of KPI is relevant in vivo but its elimination did not enhance counter-thrombosis by KPI.
Collapse
Affiliation(s)
| | - Varsha Bhakta
- Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada
| | - William P Sheffield
- Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Williams S, Morton P, Baines D. Synthetic Ligand Affinity Chromatography Purification of Human Serum Albumin and Related Fusion Proteins. Methods Mol Biol 2021; 2178:133-148. [PMID: 33128748 DOI: 10.1007/978-1-0716-0775-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic ligand affinity adsorbents offer an efficient means for purification of biopharmaceuticals. Single-isomer textile dye C.I. Reactive Blue and newer ligands developed by rational design and screening of chemical combinatorial libraries based on a triazine scaffold are routinely used for the capture and purification of these proteins from engineered recombinant expression systems. Here, we describe methods for the purification of recombinant human serum albumin and related fusion proteins using synthetic ligand affinity adsorbents.
Collapse
Affiliation(s)
| | | | - Dev Baines
- Astrea Bioseparations Ltd, Cambridge, UK.
| |
Collapse
|
7
|
Williams S, Morton P, Baines D. Synthetic ligand affinity chromatography purification of human serum albumin and related fusion proteins. Methods Mol Biol 2014; 1129:181-195. [PMID: 24648077 DOI: 10.1007/978-1-62703-977-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Synthetic ligand affinity adsorbents offer an efficient means for purification of biopharmaceuticals. Single isomer textile dye C.I. Reactive Blue and newer ligands developed by rational design and screening of chemical combinatorial libraries based on a triazine scaffold are routinely used for the capture and purification of these proteins from engineered recombinant expression systems. Here we describe methods for the purification of recombinant human serum albumin and related fusion proteins using synthetic ligand affinity adsorbents.
Collapse
|