1
|
Xia L, Teng Q, Chen Q, Zhang F. Preparation and Characterization of Anti-GPC3 Nanobody Against Hepatocellular Carcinoma. Int J Nanomedicine 2020; 15:2197-2205. [PMID: 32280214 PMCID: PMC7125335 DOI: 10.2147/ijn.s235058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Glypican-3 (GPC3) is a newly identified target molecule for the early diagnosis of hepatocellular carcinoma (HCC), while targeted inhibition of GPC3 signaling may help to control the proliferation and metastasis of HCC cells. The purpose of this study was to prepare the anti-GPC3 nanobody and to investigate the affinity of the anti-GPC3 nanobodies in vitro and the anticancer effects on hepatocellular carcinoma in vivo. Methods To screen for unknown anti-GPC3 antibodies, we constructed an antibody phage display library. After three rounds of panning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA). Further, the nanobody fusion protein was expressed in E. coli BL21 cells and purified by affinity chromatography. Competitive ELISA and flow cytometry were conducted to confirm the affinity of the anti-GPC3 nanobodies in vitro. The antitumor effects of VHHGPC3 were assessed in vivo. Results The results showed that the nanobody VHHGPC3 had specific high-affinity binding to His-GPC3 antigen. Moreover, VHHGPC3 exhibited specific binding to commercial human GPC3 and recognized the surface GPC3 protein of the hepatoma cell line HepG2. Importantly, in vivo study showed that GPC3 nanobody suppresses the growth of HepG2 and improves the survival rate of tumor mice. Discussion In summary, our new anti-GPC3 nanobody suggests a strong application potential for targeted therapy of liver cancer.
Collapse
Affiliation(s)
- Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Qiao Teng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Qi Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| |
Collapse
|
2
|
Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, Argenziano M, Cavalli R, Toffoli G, Macor P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. JOURNAL OF ONCOLOGY 2020; 2020:4638192. [PMID: 32184825 PMCID: PMC7060440 DOI: 10.1155/2020/4638192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Prisca Mauro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Paolo Macor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
3
|
Lu Z, Kamat K, Johnson BP, Yin CC, Scholler N, Abbott KL. Generation of a Fully Human scFv that binds Tumor-Specific Glycoforms. Sci Rep 2019; 9:5101. [PMID: 30911061 PMCID: PMC6433917 DOI: 10.1038/s41598-019-41567-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-specific glycosylation changes are an attractive target for the development of diagnostic and therapeutic applications. Periostin is a glycoprotein with high expression in many tumors of epithelial origin including ovarian cancer. Strategies to target the peptide portion of periostin as a diagnostic or therapeutic biomarker for cancer are limited due to increased expression of periostin in non-cancerous inflammatory conditions. Here, we have screened for antibody fragments that recognize the tumor-specific glycosylation present on glycoforms of periostin containing bisecting N-glycans in ovarian cancer using a yeast-display library of antibody fragments, while subtracting those that bind to the periostin protein with glycoforms found in non-malignant cell types. We generated a biotinylated form of a fully human scFv antibody (scFvC9) that targets the bisecting N-glycans expressed by cancer cells. Validation studies in vitro and in vivo using scFvC9 indicate this antibody can be useful for the development of diagnostic, imaging, and therapeutic applications for cancers that express the antigen.
Collapse
Affiliation(s)
- Zhongpeng Lu
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, 72205, USA
| | - Kalika Kamat
- SRI International Biosciences Division, Center for Cancer and Metabolism, Menlo Park, CA, 94025-3493, USA
| | - Blake P Johnson
- Ouachita Baptist University, Department of Biology, Arkadelphia, AR, 71998, USA
| | - Catherin C Yin
- SRI International Biosciences Division, Center for Cancer and Metabolism, Menlo Park, CA, 94025-3493, USA
| | - Nathalie Scholler
- SRI International Biosciences Division, Center for Cancer and Metabolism, Menlo Park, CA, 94025-3493, USA
| | - Karen L Abbott
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, 72205, USA.
| |
Collapse
|
4
|
Efficient construct of a large and functional scFv yeast display library derived from the ascites B cells of ovarian cancer patients by three-fragment transformation-associated recombination. Appl Microbiol Biotechnol 2016; 100:4051-61. [PMID: 26782745 DOI: 10.1007/s00253-016-7303-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Over the past decade, yeast display technology has emerged as a powerful tool for the isolation of high-affinity immunoglobulin fragments with potential utility as clinical diagnostic and therapeutic reagents. Despite significant refinement of the various methodologies underpinning library construction and selections, certain aspects remain challenging and process limiting. We have sought to significantly improve the robustness of the single-chain Fv (scFv) library construction step by overcoming the technical inefficiencies frequently encountered during the PCR-mediated assembly of scFvs from the discrete heavy and light V-domain repertoires. Using a novel primer set designed to provide maximum amplification coverage of the known germ-line V-domain repertoire, we have exploited the potential of the in vivo homologous gap-repair apparatus of Saccharomyces cerevisiae to assemble intact scFvs directly from co-transformed PBMC-derived VH, VL, and linearized vector component fragments. We have successfully applied this three-fragment assembly strategy to construct a large (>10(9)) scFv yeast display library from the ascites immune repertoire of ovarian cancer patients and validated the approach by applying FACS-based sorting to readily isolate scFvs that recognize various tumor marker antigens (TMAs). It is expected that this simplified construction method may find general utility, both for de novo scFv library construction and for subsequent combinatorial affinity maturation manipulations that require more than two fragments.
Collapse
|
5
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Koduvayur SP, Gussin HA, Parthasarathy R, Hao Z, Kay BK, Pepperberg DR. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides. PLoS One 2014; 9:e87964. [PMID: 24586298 PMCID: PMC3929611 DOI: 10.1371/journal.pone.0087964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/01/2014] [Indexed: 12/23/2022] Open
Abstract
The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.
Collapse
Affiliation(s)
- Sujatha P. Koduvayur
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Hélène A. Gussin
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rajni Parthasarathy
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zengping Hao
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian K. Kay
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - David R. Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|