1
|
Carmona L, Alquézar B, Peña L. Biochemical Characterization of New Sweet Orange Mutants Rich in Lycopene and β-Carotene Antioxidants. Antioxidants (Basel) 2024; 13:994. [PMID: 39199239 PMCID: PMC11351333 DOI: 10.3390/antiox13080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Carotenoid-rich foods such as citrus fruits have a wide range of functions in human health. They primarily exert antioxidant effects, but individual carotenoids may also act through other health-promoting mechanisms such as β-carotene as pro-vitamin A. Here, we show that red-fleshed sweet oranges grown in tropical climates are 4-9 times richer in carotenoids than their orange-fleshed counterparts, regardless of their maturation stage. The most significant difference observed between both varieties was the presence of lycopene at moderate concentrations (around 8 µg/g FW) in the mature pulp of the red varieties, which was absent in the blond ones. This is because the red-fleshed sweet oranges grown in tropical climates with high temperatures increase lycopene and β-carotene concentrations in their pulp during fruit maturation. Due to lycopene accumulation, red orange juice offers a promising addition to popular blond-orange, with the new varieties Carrancas and Pinhal being perfectly suitable for blending to enhance juice colour. Sao Paulo, one of the world's leading citrus orange juice producers, as well as other tropical citrus regions could benefit from cultivating using such lycopene-rich cultivars and industrially.
Collapse
Affiliation(s)
- Lourdes Carmona
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain; (L.C.); (B.A.)
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara 14807-040, SP, Brazil
| | - Berta Alquézar
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain; (L.C.); (B.A.)
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara 14807-040, SP, Brazil
| | - Leandro Peña
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain; (L.C.); (B.A.)
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara 14807-040, SP, Brazil
| |
Collapse
|
2
|
Lebedev V. Fruit Characteristics of Transgenic pear (Pyrus communis L.) Trees During Long-Term Field Trials. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01076-4. [PMID: 37354264 DOI: 10.1007/s11130-023-01076-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
The quality of transgenic fruits was studied only for apple, plum and citrus. We first evaluated the transgenic fruit characteristics of pear, which is one of the most consumed fruit crops. The size, shape and biochemical composition of fruits from field-grown pear trees with marker genes were analyzed for 5 years. Soluble solids, vitamin C, and phenolic compounds varied significantly between transgenic lines, but these deviations were inconsistent. Arbutin content and sugar:acidity ratio were the most stable parameters. One transgenic line showed a stable increase in fruit weight (by 12.2-21.2%). The extremely dry and hot season increased the total phenolics (2.6-3.6 times) and tannin (3.2-3.6 times) levels, but not flavonoids. The harvest year had a stronger effect on analyzed fruit parameters than the genotype. Our study found no unintended effects of genetic transformation on pear fruit quality and confirms the importance of long-term field tests for perennial transgenic plants.
Collapse
Affiliation(s)
- Vadim Lebedev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
3
|
Microbial Turnover and Dispersal Events Occur in Synchrony with Plant Phenology in the Perennial Evergreen Tree Crop Citrus sinensis. mBio 2022; 13:e0034322. [PMID: 35642946 PMCID: PMC9239260 DOI: 10.1128/mbio.00343-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging research indicates that plant-associated microbes can alter plant developmental timing. However, it is unclear if host phenology affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants face challenges in separating effects of tissue age from phenological driven effects on the microbiome. In contrast, evergreen perennial trees, like Citrus sinensis, retain leaves for years, allowing for uniform sampling of similarly aged leaves from the same developmental cohort. This aids in separating phenological effects on the microbiome from impacts due to annual leaf maturation/senescence. Here, we used this system to test the hypothesis that host phenology acts as a driver of microbiome composition. Citrus sinensis leaves and roots were sampled during seven phenological stages. Using amplicon-based sequencing, followed by diversity, phylogenetic, differential abundance, and network analyses, we examined changes in bacterial and fungal communities. Host phenological stage is the main determinant of microbiome composition, particularly within the foliar bacteriome. Microbial enrichment/depletion patterns suggest that microbial turnover and dispersal were driving these shifts. Moreover, a subset of community shifts were phylogenetically conserved across bacterial clades, suggesting that inherited traits contribute to microbe-microbe and/or plant-microbe interactions during specific phenophases. Plant phenology influences microbial community composition. These findings enhance understanding of microbiome assembly and identify microbes that potentially influence plant development and reproduction. IMPORTANCE Research at the forefront of plant microbiome studies indicates that plant-associated microbes can alter the timing of plant development (phenology). However, it is unclear if host phenological stage affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants can face difficulty in separating effects of tissue age from phenological driven effects on the microbiome. Evergreen perennial plants, like sweet orange, maintain mature leaves for multiple years, allowing for uniform sampling of similarly aged tissue across host reproductive stages. Using this system, multiyear sampling, and high-throughput sequencing, we identified plant phenology as a major driver of microbiome composition, particularly within the leaf-associated bacterial communities. Distinct changes in microbial patterns suggest that microbial turnover and dispersal are mechanisms driving these community shifts. Additionally, closely related bacteria have similar abundance patterns across plant stages, indicating that inherited microbial traits may influence how bacteria respond to host developmental changes. Overall, this study illustrates that plant phenology does indeed govern microbiome seasonal shifts and identifies microbial candidates that may affect plant reproduction and development.
Collapse
|
4
|
Ma W, Pang Z, Huang X, Xu J, Pandey SS, Li J, Achor DS, Vasconcelos FNC, Hendrich C, Huang Y, Wang W, Lee D, Stanton D, Wang N. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat Commun 2022; 13:529. [PMID: 35082290 PMCID: PMC8791970 DOI: 10.1038/s41467-022-28189-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Huanglongbing (HLB) is a devastating disease of citrus, caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas). Here, we present evidence that HLB is an immune-mediated disease. We show that CLas infection of Citrus sinensis stimulates systemic and chronic immune responses in phloem tissue, including callose deposition, production of reactive oxygen species (ROS) such as H2O2, and induction of immunity-related genes. The infection also upregulates genes encoding ROS-producing NADPH oxidases, and downregulates antioxidant enzyme genes, supporting that CLas causes oxidative stress. CLas-triggered ROS production localizes in phloem-enriched bark tissue and is followed by systemic cell death of companion and sieve element cells. Inhibition of ROS levels in CLas-positive stems by NADPH oxidase inhibitor diphenyleneiodonium (DPI) indicates that NADPH oxidases contribute to CLas-triggered ROS production. To investigate potential treatments, we show that addition of the growth hormone gibberellin (known to have immunoregulatory activities) upregulates genes encoding H2O2-scavenging enzymes and downregulates NADPH oxidases. Furthermore, foliar spray of HLB-affected citrus with gibberellin or antioxidants (uric acid, rutin) reduces H2O2 concentrations and cell death in phloem tissues and reduces HLB symptoms. Thus, our results indicate that HLB is an immune-mediated disease that can be mitigated with antioxidants and gibberellin.
Collapse
Affiliation(s)
- Wenxiu Ma
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Xiaoen Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Diann S Achor
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Fernanda N C Vasconcelos
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Yixiao Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Donghwan Lee
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Daniel Stanton
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
5
|
Lebedev V. Stability of Transgene Inheritance in Progeny of Field-Grown Pear Trees over a 7-Year Period. PLANTS (BASEL, SWITZERLAND) 2022; 11:151. [PMID: 35050039 PMCID: PMC8781120 DOI: 10.3390/plants11020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
Breeding woody plants is a very time-consuming process, and genetic engineering tools have been used to shorten the juvenile phase. In addition, transgenic trees for commercial cultivation can also be used in classical breeding, but the segregation of transgenes in the progeny of perennial plants, as well as the possible appearance of unintended changes, have been poorly investigated. We studied the inheritance of the uidA gene in the progeny of field-grown transgenic pear trees for 7 years and the physical and physiological parameters of transgenic seeds. A total of 13 transgenic lines were analyzed, and the uidA gene segregated 1:1 in the progeny of 9 lines and 3:1 in the progeny of 4 lines, which is consistent with Mendelian inheritance for one and two transgene loci, respectively. Rare and random deviations from the Mendelian ratio were observed only for lines with one locus. Transgenic seeds' mass, size, and shape varied slightly, despite significant fluctuations in weather conditions during cultivation. Expression of the uidA gene in the progeny was stable. Our study showed that the transgene inheritance in the progeny of pear trees under field conditions occurs according to Mendelian ratio, does not depend on the environment, and the seed vigor of transgenic seeds does not change.
Collapse
Affiliation(s)
- Vadim Lebedev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
6
|
Conti G, Xoconostle-Cázares B, Marcelino-Pérez G, Hopp HE, Reyes CA. Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies. FRONTIERS IN PLANT SCIENCE 2021; 12:768197. [PMID: 34917104 PMCID: PMC8670418 DOI: 10.3389/fpls.2021.768197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 05/04/2023]
Abstract
Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.
Collapse
Affiliation(s)
- Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriel Marcelino-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Buenos Aires, Argentina
| |
Collapse
|
7
|
Vasconcelos FNC, Li J, Pang Z, Vincent C, Wang N. The Total Population Size of ' Candidatus Liberibacter asiaticus' Inside the Phloem of Citrus Trees and the Corresponding Metabolic Burden Related to Huanglongbing Disease Development. PHYTOPATHOLOGY 2021; 111:1122-1128. [PMID: 33090080 DOI: 10.1094/phyto-09-20-0388-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is the predominant causal agent of citrus huanglongbing, the most devastating citrus disease worldwide. CLas colonizes phloem tissue and causes phloem dysfunction. The pathogen population size in local tissues and in the whole plant is critical for the development of disease symptoms by determining the load of pathogenicity factors and metabolic burden to the host. However, the total population size of CLas in a whole plant and the ratio of CLas to citrus cells in local tissues have not been addressed previously. The total CLas population size for 2.5-year-old 'Valencia' sweet orange on 'Kuharske' citrange rootstock trees was quantified using quantitative PCR to be approximately 1.74 × 109 cells/tree, whereas 7- and 20-year-old sweet orange trees were estimated to be 4.3 × 1010 cells/tree, and 6.0 × 1010 cells/tree, respectively. The majority of CLas cells were distributed in leaf tissues (55.58%), followed by those in branch (36.78%), feeder root (4.75%), trunk (2.39%), and structural root (0.51%) tissues. The ratios of citrus cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples were within approximately 39 to 79, 44 to 124, 153 to 1,355, 191 to 1,054, and 561 to 3,760, respectively, representing the metabolic burden of CLas in different organs. It was estimated that the ratios of phloem cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples are approximately 0.39 to 0.79, 0.44 to 1.24, 1.53 to 13.55, 1.91 to 10.54, and 5.61 to 37.60, respectively. Approximately 0.01% of the total citrus phloem volume was estimated to be occupied by CLas, explaining the difficulty to observe CLas in most tissues under transmission electron microscopy. The CLas titer inside the leaf was estimated to be approximately 1.64 × 106 cells/leaf or 9.2 × 104 cells cm-2 in leaves, approximately 104 times less than that of typical apoplastic bacterial pathogens. This study provides quantitative estimates of phloem colonization by bacterial pathogens and furthers the understanding of the biology and virulence mechanisms of CLas.
Collapse
Affiliation(s)
- Fernanda N C Vasconcelos
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| | - Jinuyn Li
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| | - Zhiqian Pang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| | - Christopher Vincent
- Citrus Research and Education Center (CREC), Department of Horticultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
8
|
Abstract
Single chain variable fragments (scFvs) are generated by joining together the variable heavy and light chain of a monoclonal antibody (mAb) via a peptide linker. They offer some advantages over the parental mAb such as low molecular weight, heterologous production, multimeric form, and multivalency. The scFvs were produced against more than 50 antigens till date using 10 different plant species as the expression system. There were considerable improvements in the expression and purification strategies of scFv in the last 24 years. With the growing demand of scFv in therapeutic and diagnostic fields, its biosynthesis needs to be increased. The easiness in development, maintenance, and multiplication of transgenic plants make them an attractive expression platform for scFv production. The review intends to provide comprehensive information about the use of plant expression system to produce scFv. The developments, advantages, pitfalls, and possible prospects of improvement for the exploitation of plants in the industrial level are discussed.
Collapse
Affiliation(s)
- Padikara Kutty Satheeshkumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
9
|
Lebedev V. The Rooting of Stem Cuttings and the Stability of uidA Gene Expression in Generative and Vegetative Progeny of Transgenic Pear Rootstock in the Field. PLANTS (BASEL, SWITZERLAND) 2019; 8:E291. [PMID: 31430873 PMCID: PMC6724118 DOI: 10.3390/plants8080291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 05/07/2023]
Abstract
Adventitious rooting plays an important role in the commercial vegetative propagation of trees. Adventitious root formation is a complex biological process, but knowledge of the possible unintended effects induced by both the integration/expression of transgenes and in vitro conditions on the rooting is limited. The long-term stability of transgene expression is important both for original transformants of woody plants and its progeny. In this study, we used field-grown pear rootstock GP217 trees transformed with the reporter ß-glucuronidase (uidA) genes with and without intron and re-transformed with the herbicide resistance bar gene as model systems. We assessed the unintended effects on rooting of pear semi-hardwood cuttings and evaluated the stability of transgene expression in progeny produced by generative (seedlings) and vegetative (grafting, cutting) means up to four years. Our investigation revealed that: (1) The single and repeated transformations of clonal pear rootstocks did not result in unintended effects on adventitious root formation in cuttings; (2) stability of the transgene expression was confirmed on both generative and vegetative progeny, and no silenced transgenic plants were detected; (3) yearly variation in the gene expressions was observed and expression levels were decreased in extremely hot and dry summer; (4) the intron enhanced the expression of uidA gene in pear plants approximately two-fold compared to gene without intron. The current study provides useful information on transgene expression in progeny of fruit trees under natural environmental conditions.
Collapse
Affiliation(s)
- Vadim Lebedev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Science avenue 6, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
10
|
Kahlon JG, Jacobsen HJ, Chatterton S, Hassan F, Bowness R, Hall LM. Lack of efficacy of transgenic pea (Pisum sativum L.) stably expressing antifungal genes against Fusarium spp. in three years of confined field trials. GM CROPS & FOOD 2018; 9:90-108. [PMID: 29590003 PMCID: PMC6277066 DOI: 10.1080/21645698.2018.1445471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
Fusarium root rot is a major pea disease in Canada and only partial tolerance exists in germplasm. Transgenic technologies may hold promise but the economic benefits of genetically modified (GM) pea will need to surpass the regulatory costs, time and labor involved in bringing a GM crop to market. European pea (Pisum sativum L.) cultivars expressing four antifungal genes, 1-3 β glucanase (G), endochitinase (C) (belonging to PR proteins family), polygalacturonase inhibiting proteins (PGIPs) (P) and stilbene synthase (V) have been transformed for disease tolerance and showed disease tolerance under laboratory conditions. Transgenic lines with four antifungal genes inserted either individually or stacked through crossing were tested for their efficacy against Fusarium root rot (Fusarium avenaceum) in confined trials over three years (2013 to 2015) in comparison with two parental German lines and three Canadian lines. Superior emergence, higher fresh weight or lower disease ratings above and below ground, of transgenic lines in presence of disease inoculum were not observed consistently in the three years of field experiments when compared to the parental and Canadian lines in the presence of disease inoculum. No indication of an advantage of stacked genes over single genes was observed. Most transgenic lines had lower relative gene expression in the roots than in the leaves in greenhouse trials suggesting a possible explanation for poor tolerance to Fusarium root rot. Field trials are necessary to verify the agronomic performance and ecological relevance of the promising effects detected under laboratory conditions.
Collapse
Affiliation(s)
- Jagroop Gill Kahlon
- Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Hans-Jörg Jacobsen
- Institute for Plant Genetics, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, Germany
| | - Syama Chatterton
- Agriculture and Agri-food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Fathi Hassan
- Institute for Plant Genetics, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, Germany
| | - Robyne Bowness
- Alberta Agriculture and Rural Development, Lacombe, AB, Canada
| | - Linda M. Hall
- Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Dutt M, Zambon FT, Erpen L, Soriano L, Grosser J. Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation. PLoS One 2018; 13:e0190413. [PMID: 29293649 PMCID: PMC5749800 DOI: 10.1371/journal.pone.0190413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/14/2017] [Indexed: 01/18/2023] Open
Abstract
The embryo-specific Dc3 gene promoter driving the VvMybA1 anthocyanin regulatory gene was used to develop a visual selection system for the genetic transformation of citrus. Agrobacterium-mediated transformation of cell suspension cultures resulted in the production of purple transgenic somatic embryos that could be easily separated from the green non-transgenic embryos. The somatic embryos produced phenotypically normal plants devoid of any visual purple coloration. These results were also confirmed using protoplast transformation. There was minimal gene expression in unstressed one-year-old transgenic lines. Cold and drought stress did not have any effect on gene expression, while exogenous ABA and NaCl application resulted in a minor change in gene expression in several transgenic lines. When gas exchange was measured in intact leaves, the transgenic lines were similar to controls under the same environment. Our results provide conclusive evidence for the utilization of a plant-derived, embryo-specific visual reporter system for the genetic transformation of citrus. Such a system could aid in the development of an all-plant, consumer-friendly GM citrus tree.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| | - Flavia T. Zambon
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Lígia Erpen
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, Brazil
| | - Leonardo Soriano
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, Brazil
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| |
Collapse
|
12
|
Rodríguez A, Peris JE, Redondo A, Shimada T, Costell E, Carbonell I, Rojas C, Peña L. Impact of d-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception. Food Chem 2016; 217:139-150. [PMID: 27664619 DOI: 10.1016/j.foodchem.2016.08.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 11/28/2022]
Abstract
Citrus fruits are characterized by a complex mixture of volatiles making up their characteristic aromas, being the d-limonene the most abundant one. However, its role on citrus fruit and juice odor is controversial. Transgenic oranges engineered for alterations in the presence or concentration of few related chemical groups enable asking precise questions about their contribution to overall odor, either positive or negative, as perceived by the human nose. Here, either down- or up-regulation of a d-limonene synthase allowed us to infer that a decrease of as much as 51 times in d-limonene and an increase of as much as 3.2 times in linalool in juice were neutral for odor perception while an increase of only 3 times in ethyl esters stimulated the preference of 66% of the judges. The ability to address these questions presents exciting opportunities to understand the basic principles of selection of food.
Collapse
Affiliation(s)
- Ana Rodríguez
- Departamento de Biotecnología y Mejora Vegetal de Especies Cultivadas, Instituto de Biología Molecular y Celular de Plantas - Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Av. Ingeniero Fausto Elio s/n. 46022 Valencia, Spain; Fundo de Defesa da Citricultura, 14807-040 Vila Melhado, Araraquara, São Paulo, Brazil
| | - Josep E Peris
- Departamento de Biotecnología y Mejora Vegetal de Especies Cultivadas, Instituto de Biología Molecular y Celular de Plantas - Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Av. Ingeniero Fausto Elio s/n. 46022 Valencia, Spain; Fundo de Defesa da Citricultura, 14807-040 Vila Melhado, Araraquara, São Paulo, Brazil
| | - Ana Redondo
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), carretera Moncada-Náquera Km. 4.5, 46113 Moncada, Valencia, Spain
| | - Takehiko Shimada
- National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Sizuoka, Shizuoka 424-0292, Japan
| | - Elvira Costell
- Departamento de análisis sensorial, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Inmaculada Carbonell
- Departamento de análisis sensorial, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Cristina Rojas
- Centro de Tecnología Poscosecha, Instituto Valenciano de Investigaciones Agrarias (IVIA), carretera Moncada-Náquera Km. 4.5, 46113 Moncada, Valencia, Spain
| | - Leandro Peña
- Departamento de Biotecnología y Mejora Vegetal de Especies Cultivadas, Instituto de Biología Molecular y Celular de Plantas - Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Av. Ingeniero Fausto Elio s/n. 46022 Valencia, Spain; Fundo de Defesa da Citricultura, 14807-040 Vila Melhado, Araraquara, São Paulo, Brazil.
| |
Collapse
|
13
|
Li X, Ding C, Wang X, Liu B. Comparison of the physiological characteristics of transgenic insect-resistant cotton and conventional lines. Sci Rep 2015; 5:8739. [PMID: 25737015 PMCID: PMC4348622 DOI: 10.1038/srep08739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/29/2015] [Indexed: 11/29/2022] Open
Abstract
The introduction of transgenic insect-resistant cotton into agricultural ecosystems has raised concerns regarding its ecological effects. Many studies have been conducted to compare the differences in characteristics between transgenic cotton and conventional counterparts. However, few studies have focused on the different responses of transgenic cotton to stress conditions, especially to the challenges of pathogens. The aim of this work is to determine the extent of variation in physiological characteristics between transgenic insect-resistant cotton and the conventional counterpart infected by cotton soil-borne pathogens. The results showed that the difference in genetic backgrounds is the main factor responsible for the effects on biochemical characteristics of transgenic cotton when incubating with cotton Fusarium oxysporum. However, genetic modification had a significantly greater influence on the stomatal structure of transgenic cotton than the effects of cotton genotypes. Our results highlight that the differences in genetic background and/or genetic modifications may introduce variations in physiological characteristics and should be considered to explore the potential unexpected ecological effects of transgenic cotton.
Collapse
Affiliation(s)
- Xiaogang Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| |
Collapse
|
14
|
Rubio J, Montes C, Castro Á, Álvarez C, Olmedo B, Muñoz M, Tapia E, Reyes F, Ortega M, Sánchez E, Miccono M, Dalla Costa L, Martinelli L, Malnoy M, Prieto H. Genetically engineered Thompson Seedless grapevine plants designed for fungal tolerance: selection and characterization of the best performing individuals in a field trial. Transgenic Res 2014; 24:43-60. [PMID: 25011563 DOI: 10.1007/s11248-014-9811-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/12/2014] [Indexed: 11/29/2022]
Abstract
The fungi Botrytis cinerea and Erysiphe necator are responsible for gray mold and powdery mildew diseases, respectively, which are among the most devastating diseases of grapes. Two endochitinase (ech42 and ech33) genes and one N-acetyl-β-D-hexosaminidase (nag70) gene from biocontrol agents related to Trichoderma spp. were used to develop a set of 103 genetically modified (GM) 'Thompson Seedless' lines (568 plants) that were established in open field in 2004 and evaluated for fungal tolerance starting in 2006. Statistical analyses were carried out considering transgene, explant origin, and plant response to both fungi in the field and in detached leaf assays. The results allowed for the selection of the 19 consistently most tolerant lines through two consecutive years (2007-2008 and 2008-2009 seasons). Plants from these lines were grafted onto the rootstock Harmony and established in the field in 2009 for further characterization. Transgene status was shown in most of these lines by Southern blot, real-time PCR, ELISA, and immunostrips; the most tolerant candidates expressed the ech42-nag70 double gene construct and the ech33 gene from a local Hypocrea virens isolate. B. cinerea growth assays in Petri dishes supplemented with berry juices extracted from the most tolerant individuals of the selected population was inhibited. These results demonstrate that improved fungal tolerance can be attributed to transgene expression and support the iterative molecular and physiological phenotyping in order to define selected individuals from a population of GM grapevines.
Collapse
Affiliation(s)
- Julia Rubio
- Plant Sciences Master Program, Agricultural Sciences Department, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Donmez D, Simsek O, Izgu T, Aka Kacar Y, Yalcin Mendi Y. Genetic transformation in citrus. ScientificWorldJournal 2013; 2013:491207. [PMID: 23983635 PMCID: PMC3745968 DOI: 10.1155/2013/491207] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/09/2013] [Indexed: 11/17/2022] Open
Abstract
Citrus is one of the world's important fruit crops. Recently, citrus molecular genetics and biotechnology work have been accelerated in the world. Genetic transformation, a biotechnological tool, allows the release of improved cultivars with desirable characteristics in a shorter period of time and therefore may be useful in citrus breeding programs. Citrus transformation has now been achieved in a number of laboratories by various methods. Agrobacterium tumefaciens is used mainly in citrus transformation studies. Particle bombardment, electroporation, A. rhizogenes, and a new method called RNA interference are used in citrus transformation studies in addition to A. tumefaciens. In this review, we illustrate how different gene transformation methods can be employed in different citrus species.
Collapse
Affiliation(s)
- Dicle Donmez
- Biotechnology Department, Institute of Applied and Natural Sciences, Çukurova University, 01330 Adana, Turkey
| | - Ozhan Simsek
- Horticulture Department, Agriculture Faculty, Çukurova University, 01330 Adana, Turkey
| | - Tolga Izgu
- Horticulture Department, Agriculture Faculty, Ege University, 35100 İzmir, Turkey
| | - Yildiz Aka Kacar
- Biotechnology Department, Institute of Applied and Natural Sciences, Çukurova University, 01330 Adana, Turkey
- Horticulture Department, Agriculture Faculty, Çukurova University, 01330 Adana, Turkey
| | - Yesim Yalcin Mendi
- Biotechnology Department, Institute of Applied and Natural Sciences, Çukurova University, 01330 Adana, Turkey
- Horticulture Department, Agriculture Faculty, Çukurova University, 01330 Adana, Turkey
| |
Collapse
|
16
|
Fladung M, Hoenicka H, Raj Ahuja M. Genomic stability and long-term transgene expression in poplar. Transgenic Res 2013; 22:1167-78. [DOI: 10.1007/s11248-013-9719-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|