1
|
Bommareddy PK, Wakimoto H, Martuza RL, Kaufman HL, Rabkin SD, Saha D. Oncolytic herpes simplex virus expressing IL-2 controls glioblastoma growth and improves survival. J Immunother Cancer 2024; 12:e008880. [PMID: 38599661 PMCID: PMC11015300 DOI: 10.1136/jitc-2024-008880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM), a highly immunosuppressive and often fatal primary brain tumor, lacks effective treatment options. GBMs contain a subpopulation of GBM stem-like cells (GSCs) that play a central role in tumor initiation, progression, and treatment resistance. Oncolytic viruses, especially oncolytic herpes simplex virus (oHSV), replicate selectively in cancer cells and trigger antitumor immunity-a phenomenon termed the "in situ vaccine" effect. Although talimogene laherparepvec (T-VEC), an oHSV armed with granulocyte macrophage-colony stimulating factor (GM-CSF), is Food and Drug Administration (FDA)-approved for melanoma, its use in patients with GBM has not been reported. Interleukin 2 (IL-2) is another established immunotherapy that stimulates T cell growth and orchestrates antitumor responses. IL-2 is FDA-approved for melanoma and renal cell carcinoma but has not been widely evaluated in GBM, and IL-2 treatment is limited by its short half-life, minimal tumor accumulation, and significant systemic toxicity. We hypothesize that local intratumoral expression of IL-2 by an oHSV would avoid the systemic IL-2-related therapeutic drawbacks while simultaneously producing beneficial antitumor immunity. METHODS We developed G47Δ-mIL2 (an oHSV expressing IL-2) using the flip-flop HSV BAC system to deliver IL-2 locally within the tumor microenvironment (TME). We then tested its efficacy in orthotopic mouse GBM models (005 GSC, CT-2A, and GL261) and evaluated immune profiles in the treated tumors and spleens by flow cytometry and immunohistochemistry. RESULTS G47Δ-mIL2 significantly prolonged median survival without any observable systemic IL-2-related toxicity in the 005 and CT-2A models but not in the GL261 model due to the non-permissive nature of GL261 cells to HSV infection. The therapeutic activity of G47Δ-mIL2 in the 005 GBM model was associated with increased intratumoral infiltration of CD8+ T cells, critically dependent on the release of IL-2 within the TME, and CD4+ T cells as their depletion completely abrogated therapeutic efficacy. The use of anti-PD-1 immune checkpoint blockade did not improve the therapeutic outcome of G47Δ-mIL2. CONCLUSIONS Our findings illustrate that G47Δ-mIL2 is efficacious, stimulates antitumor immunity against orthotopic GBM, and may also target GSC. OHSV expressing IL-2 may represent an agent that merits further exploration in patients with GBM.
Collapse
Affiliation(s)
- Praveen K Bommareddy
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
- Cancer Institute of New Jersey (CINJ), New Brunswick, New Jersey, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
| | - Robert L Martuza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
| | - Howard L Kaufman
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, Texas, USA
| |
Collapse
|
2
|
Shimizu K, Kahramanian A, Jabbar MADA, Turna Demir F, Gokyer D, Uthamacumaran A, Rajan A, Saad MA, Gorham J, Wakimoto H, Martuza RL, Rabkin SD, Hasan T, Wakimoto H. Photodynamic augmentation of oncolytic virus therapy for central nervous system malignancies. Cancer Lett 2023; 572:216363. [PMID: 37619813 PMCID: PMC10529118 DOI: 10.1016/j.canlet.2023.216363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Oncolytic viruses (OVs) have emerged as a clinical therapeutic modality potentially effective for cancers that evade conventional therapies, including central nervous system malignancies. Rationally designed combinatorial strategies can augment the efficacy of OVs by boosting tumor-selective cytotoxicity and modulating the tumor microenvironment (TME). Photodynamic therapy (PDT) of cancer not only mediates direct neoplastic cell death but also primes the TME to sensitize the tumor to secondary therapies, allowing for the combination of two potentially synergistic therapies with broader targets. Here, we created G47Δ-KR, clinical oncolytic herpes simplex virus G47Δ that expresses photosensitizer protein KillerRed (KR). Optical properties and cytotoxic effects of G47Δ-KR infection followed by amber LED illumination (peak wavelength: 585-595 nm) were examined in human glioblastoma (GBM) and malignant meningioma (MM) models in vitro. G47Δ-KR infection of tumor cells mediated KR expression that was activated by LED and produced reactive oxygen species, leading to cell death that was more robust than G47Δ-KR without light. In vivo, we tested photodynamic-oncolytic virus (PD-OV) therapy employing intratumoral injection of G47Δ-KR followed by laser light tumor irradiation (wavelength: 585 nm) in GBM and MM xenografts. PD-OV therapy was feasible in these models and resulted in potent anti-tumor effects that were superior to G47Δ-KR alone (without laser light) or laser light alone. RNA sequencing analysis of post-treatment tumor samples revealed PD-OV therapy-induced increases in TME infiltration of variable immune cell types. This study thus demonstrated the proof-of-concept that G47Δ-KR enables PD-OV therapy for neuro-oncological malignancies and warrants further research to advance potential clinical translation.
Collapse
Affiliation(s)
- Kazuhide Shimizu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Andranik Kahramanian
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia
| | | | - Fatma Turna Demir
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Dilan Gokyer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Abicumaran Uthamacumaran
- McGill University, McGill Genome Center, Montreal, Canada; Douglas Mental Health University Institute, Department of Psychiatry, Montreal, Canada
| | - Anant Rajan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mohammad Ahsan Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert L Martuza
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Zhang B, Mao H, Zhu H, Guo J, Zhou P, Ma Z. Response to HIV-1 gp160-carrying recombinant virus HSV-1 and HIV-1 VLP combined vaccine in BALB/c mice. Front Microbiol 2023; 14:1136664. [PMID: 37007461 PMCID: PMC10063819 DOI: 10.3389/fmicb.2023.1136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Human immunodeficiency virus (HIV) induced AIDS causes a large number of infections and deaths worldwide every year, still no vaccines are available to prevent infection. Recombinant herpes simplex virus type 1 (HSV-1) vector-based vaccines coding the target proteins of other pathogens have been widely used for disease control. Here, a recombinant virus with HIV-1 gp160 gene integration into the internal reverse (IR) region-deleted HSV-1 vector (HSV-BAC), was obtained by bacterial artificial chromosome (BAC) technology, and its immunogenicity investigated in BALB/c mice. The result showed similar replication ability of the HSV-BAC-based recombinant virus and wild type. Furthermore, humoral and cellular immune response showed superiority of intraperitoneal (IP) administration, compared to intranasally (IN), subcutaneous (SC) and intramuscularly (IM), that evidenced by production of significant antibody and T cell responses. More importantly, in a prime-boost combination study murine model, the recombinant viruses prime followed by HIV-1 VLP boost induced stronger and broader immune responses than single virus or protein vaccination in a similar vaccination regimen. Antibody production was sufficient with huge potential for viral clearance, along with efficient T-cell activation, which were evaluated by the enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FC). Overall, these findings expose the value of combining different vaccine vectors and modalities to improve immunogenicity and breadth against different HIV-1 antigens.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongyan Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongjuan Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Jingxia Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
- *Correspondence: Zhenghai Ma,
| |
Collapse
|
4
|
Hong B, Sahu U, Mullarkey MP, Hong E, Pei G, Yan Y, Otani Y, Banasavadi-Siddegowda Y, Fan H, Zhao Z, Yu J, Caligiuri MA, Kaur B. PKR induces TGF-β and limits oncolytic immune therapy. J Immunother Cancer 2023; 11:jitc-2022-006164. [PMID: 36796878 PMCID: PMC9936322 DOI: 10.1136/jitc-2022-006164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Mammalian cells have developed multiple intracellular mechanisms to defend against viral infections. These include RNA-activated protein kinase (PKR), cyclic GMP-AMP synthase and stimulation of interferon genes (cGAS-STING) and toll-like receptor-myeloid differentiation primary response 88 (TLR-MyD88). Among these, we identified that PKR presents the most formidable barrier to oncolytic herpes simplex virus (oHSV) replication in vitro. METHODS To elucidate the impact of PKR on host responses to oncolytic therapy, we generated a novel oncolytic virus (oHSV-shPKR) which disables tumor intrinsic PKR signaling in infected tumor cells. RESULTS As anticipated, oHSV-shPKR resulted in suppression of innate antiviral immunity and improves virus spread and tumor cell lysis both in vitro and in vivo. Single cell RNA sequencing combined with cell-cell communication analysis uncovered a strong correlation between PKR activation and transforming growth factor beta (TGF-ß) immune suppressive signaling in both human and preclinical models. Using a murine PKR targeting oHSV, we found that in immune-competent mice this virus could rewire the tumor immune microenvironment to increase the activation of antigen presentation and enhance tumor antigen-specific CD8 T cell expansion and activity. Further, a single intratumoral injection of oHSV-shPKR significantly improved the survival of mice bearing orthotopic glioblastoma. To our knowledge, this is the first report to identify dual and opposing roles of PKR wherein PKR activates antivirus innate immunity and induces TGF-ß signaling to inhibit antitumor adaptive immune responses. CONCLUSIONS Thus, PKR represents the Achilles heel of oHSV therapy, restricting both viral replication and antitumor immunity, and an oncolytic virus that can target this pathway significantly improves response to virotherapy.
Collapse
Affiliation(s)
- Bangxing Hong
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Upasana Sahu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Matthew P Mullarkey
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Evan Hong
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yuanqing Yan
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yoshihiro Otani
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yeshavanth Banasavadi-Siddegowda
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Michael A Caligiuri
- Department of Immuno-Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Shen B, Li Y, Cheng A, Wang M, Wu Y, Yang Q, Jia R, Tian B, Ou X, Mao S, Sun D, Zhang S, Zhu D, Chen S, Liu M, Zhao XX, Huang J, Gao Q, Liu Y, Yu Y, Zhang L, Pan L. The LORF5 Gene Is Non-essential for Replication but Important for Duck Plague Virus Cell-to-Cell Spread Efficiently in Host Cells. Front Microbiol 2021; 12:744408. [PMID: 34925260 PMCID: PMC8674210 DOI: 10.3389/fmicb.2021.744408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Duck plague virus (DPV) can cause high morbidity and mortality in many waterfowl species within the order Anseriformes. The DPV genome contains 78 open reading frames (ORFs), among which the LORF2, LORF3, LORF4, LORF5, and SORF3 genes are unique genes of avian herpesvirus. In this study, to investigate the role of this unique LORF5 gene in DPV proliferation, we generated a recombinant virus that lacks the LORF5 gene by a two-step red recombination system, which cloned the DPV Chinese virulent strain (DPV CHv) genome into a bacterial artificial chromosome (DPV CHv-BAC); the proliferation law of LORF5-deleted mutant virus on DEF cells and the effect of LORF5 gene on the life cycle stages of DPV compared with the parent strain were tested. Our data revealed that the LORF5 gene contributes to the cell-to-cell transmission of DPV but is not relevant to virus invasion, replication, assembly, and release formation. Taken together, this study sheds light on the role of the avian herpesvirus-specific gene LORF5 in the DPV proliferation life cycle. These findings lay the foundation for in-depth functional studies of the LORF5 gene in DPV or other avian herpesviruses.
Collapse
Affiliation(s)
- Bingjie Shen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunjiao Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses 2021; 13:v13091740. [PMID: 34578321 PMCID: PMC8473045 DOI: 10.3390/v13091740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Shanawaz M. Ghouse
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Robert L. Martuza
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
7
|
Alekseev O, Donegan WE, Donovan KR, Limonnik V, Azizkhan-Clifford J. HSV-1 Hijacks the Host DNA Damage Response in Corneal Epithelial Cells through ICP4-Mediated Activation of ATM. Invest Ophthalmol Vis Sci 2021; 61:39. [PMID: 32543665 PMCID: PMC7415316 DOI: 10.1167/iovs.61.6.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Herpes simplex virus type I (HSV-1) infection of corneal epithelial cells activates ataxia telangiectasia mutated (ATM), an apical kinase in the host DNA damage response pathway, whose activity is necessary for the progression of lytic HSV-1 infection. The purpose of this study is to investigate the mechanism of ATM activation by HSV-1 in the corneal epithelium, as well as its functional significance. Methods Mechanistic studies were performed in cultured human corneal epithelial cell lines (hTCEpi, HCE), as well as in esophageal (EPC2) and oral (OKF6) cell lines. Transfection-based experiments were performed in HEK293 cells. HSV-1 infection was carried out using the wild-type KOS strain, various mutant strains (tsB7, d120, 7134, i13, n208), and bacterial artificial chromosomes (fHSVΔpac, pM24). Inhibitors of ATM (KU-55933), protein synthesis (cycloheximide), and viral DNA replication (phosphonoacetic acid) were used. Outcomes of infection were assayed using Western blotting, qRT-PCR, immunofluorescence, and comet assay. Results This study demonstrates that HSV-1-mediated ATM activation in corneal epithelial cells relies on the viral immediate early gene product ICP4 and requires the presence of the viral genome in the host nucleus. We show that ATM activation is independent of viral genome replication, the ICP0 protein, and the presence of DNA lesions. Interestingly, ATM activity appears to be necessary at the onset of infection, but dispensable at the later stages. Conclusions This study expands our understanding of HSV-1 virus-host interactions in the corneal epithelium and identifies potential areas of future investigation and therapeutic intervention in herpes keratitis.
Collapse
|
8
|
Generation and validation of recombinant herpes simplex type 1 viruses (HSV-1) using CRISPR/Cas9 genetic disruption. Methods Enzymol 2019; 635:167-184. [PMID: 32122544 DOI: 10.1016/bs.mie.2019.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a large DNA virus that has been popular for oncolytic virus development in pre-clinical research and clinical trials. An oncolytic HSV-1 encoding granulocyte-macrophage colony stimulating factor (GM-CSF), designated talimogene laherparepvec (T-VEC) was approved for the treatment of patients with advanced melanoma in 2015. There are numerous advantages of HSV-1 for oncolytic development, including the ease of recombinant engineering, presence of non-essential genes allowing attenuation of pathogenicity and space for foreign transgene expression. In addition, most recombinants retain sensitivity to acyclovir providing an additional safety feature. In this chapter, we will focus on the key methods for the development of oncolytic HSV-1 vectors and some of the commonly utilized laboratory protocols used to characterize and assess the structure and oncolytic activity of recombinant HSV-1 viruses.
Collapse
|
9
|
Kahramanian A, Kuroda T, Wakimoto H. Construction of Oncolytic Herpes Simplex Virus with Therapeutic Genes of Interest. Methods Mol Biol 2019; 1937:177-188. [PMID: 30706396 DOI: 10.1007/978-1-4939-9065-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herpes simplex virus (HSV) is one of the most extensively studied oncolytic virus platforms. The recent FDA approval of talimogene laherparepvec (T-VEC) has been accelerating translational research of oncolytic HSV (oHSV) as a promising therapeutic for refractory cancers such as glioblastoma, the deadliest primary malignancy in the brain. The large genome size of HSV readily allows arming of oHSV by incorporating therapeutic transgenes within the virus, as exemplified by T-VEC carrying GM-CSF, thereby enhancing the anticancer activity of oHSV. Here we describe a bacterial artificial chromosome-based method for construction of an oHSV expressing a transgene, which we routinely use in the laboratory to create a number of different recombinant oHSV bearing either therapeutic or reporter genes.
Collapse
Affiliation(s)
- Andranik Kahramanian
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Toshihiko Kuroda
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Peters C, Paget M, Tshilenge KT, Saha D, Antoszczyk S, Baars A, Frost T, Martuza RL, Wakimoto H, Rabkin SD. Restriction of Replication of Oncolytic Herpes Simplex Virus with a Deletion of γ34.5 in Glioblastoma Stem-Like Cells. J Virol 2018; 92:e00246-18. [PMID: 29793956 PMCID: PMC6052301 DOI: 10.1128/jvi.00246-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses, including herpes simplex viruses (HSVs), are a new class of cancer therapeutic engineered to infect and kill cancer cells while sparing normal tissue. To ensure that oncolytic HSV (oHSV) is safe in the brain, all oHSVs in clinical trial for glioma lack the γ34.5 genes responsible for neurovirulence. However, loss of γ34.5 attenuates growth in cancer cells. Glioblastoma (GBM) is a lethal brain tumor that is heterogeneous and contains a subpopulation of cancer stem cells, termed GBM stem-like cells (GSCs), that likely promote tumor progression and recurrence. GSCs and matched serum-cultured GBM cells (ScGCs), representative of bulk or differentiated tumor cells, were isolated from the same patient tumor specimens. ScGCs are permissive to replication and cell killing by oHSV with deletion of the γ34.5 genes (γ34.5- oHSV), while patient-matched GSCs were not, implying an underlying biological difference between stem and bulk cancer cells. GSCs specifically restrict the synthesis of HSV-1 true late (TL) proteins, without affecting viral DNA replication or transcription of TL genes. A global shutoff of cellular protein synthesis also occurs late after γ34.5- oHSV infection of GSCs but does not affect the synthesis of early and leaky late viral proteins. Levels of phosphorylated eIF2α and eIF4E do not correlate with cell permissivity. Expression of Us11 in GSCs rescues replication of γ34.5- oHSV. The difference in degrees of permissivity between GSCs and ScGCs to γ34.5- oHSV illustrates a selective translational regulatory pathway in GSCs that may be operative in other stem-like cells and has implications for creating oHSVs.IMPORTANCE Herpes simplex virus (HSV) can be genetically engineered to endow cancer-selective replication and oncolytic activity. γ34.5, a key neurovirulence gene, has been deleted in all oncolytic HSVs in clinical trial for glioma. Glioblastoma stem-like cells (GSCs) are a subpopulation of tumor cells thought to drive tumor heterogeneity and therapeutic resistance. GSCs are nonpermissive for γ34.5- HSV, while non-stem-like cancer cells from the same patient tumors are permissive. GSCs restrict true late protein synthesis, despite normal viral DNA replication and transcription of all kinetic classes. This is specific for true late translation as early and leaky late transcripts are translated late in infection, notwithstanding shutoff of cellular protein synthesis. Expression of Us11 in GSCs rescues the replication of γ34.5- HSV. We have identified a cell type-specific innate response to HSV-1 that limits oncolytic activity in glioblastoma.
Collapse
Affiliation(s)
- Cole Peters
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Max Paget
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kizito-Tshitoko Tshilenge
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Slawomir Antoszczyk
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anouk Baars
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Frost
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Martuza
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Cheng L, Jiang H, Fan J, Wang J, Hu P, Ruan Y, Liu R. A novel oncolytic herpes simplex virus armed with the carboxyl-terminus of murine MyD116 has enhanced anti-tumour efficacy against human breast cancer cells. Oncol Lett 2018; 15:7046-7052. [PMID: 29849789 PMCID: PMC5962873 DOI: 10.3892/ol.2018.8247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Oncolytic herpes simplex virus-1 (oHSV-1) vectors are promising therapeutic agents for cancer. The deletion of the γ34.5 gene eliminates the neurovirulence but attenuates virus replication at the same time. The carboxyl-terminus of protein phosphatase 1 regulatory subunit 15A (also known as MyD116/GADD34) is homologous to that of γ34.5; hence, it may substitute for γ34.5 to enhance the replication and cytotoxicity of the virus. To investigate whether the C-terminus of MyD116 can enhance the anti-tumour efficacy of G47Δ on human breast cancer cells, a GD116 mutant was constructed by inserting a γ34.5-MyD116 chimaera into the G47Δ genome using a bacterial artificial chromosome and two recombinase systems (Cre/loxP and FLPE/FRT). A GD-empty mutant containing only the cytomegalovirus sequence was also created as a control using the same method. Next, the replication and cytotoxicity of these two virus vectors were evaluated in breast cancer cells. Compared with the GD-empty vector, GD116 possessed an enhanced replication capability and oncolytic activity in MCF-7 and MDA-MB-231 cells. On the fifth day after infection with GD116 at MOIs of 0.01 and 0.1, 49.2 and 82.8% of MCF-7 cells, respectively, were killed, with 35.0 and 50.2% of MDA-MB-231 cells, respectively, killed by GD116 at MOIs of 0.1 and 0.3. Additionally, the insertion of the γ34.5-MyD116 chimaera promoted virus replication in MDA-MB-468 at 48 h after infection, although no increased cytotoxic effect was observed. The findings of the present study indicate that the C terminus of the MyD116 gene can be substituted for the corresponding domain of the γ34.5 gene of oHSV-1 to promote the replication of the virus in infected cells. Furthermore, the novel virus mutant GD116 armed with a γ34.5-MyD116 chimaera has enhanced anti-tumour efficacy against human breast cancer cells in vitro.
Collapse
Affiliation(s)
- Lin Cheng
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hua Jiang
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jingjing Fan
- Department of Breast and Neck Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830011, P.R. China
| | - Jiani Wang
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Pan Hu
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ying Ruan
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Renbin Liu
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
12
|
Jahan N, Lee JM, Shah K, Wakimoto H. Therapeutic targeting of chemoresistant and recurrent glioblastoma stem cells with a proapoptotic variant of oncolytic herpes simplex virus. Int J Cancer 2017; 141:1671-1681. [PMID: 28567859 PMCID: PMC5796532 DOI: 10.1002/ijc.30811] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 02/21/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023]
Abstract
Temozolomide (TMZ) chemotherapy, in combination with maximal safe resection and radiotherapy, is the current standard of care for patients with glioblastoma (GBM). Despite this multimodal approach, GBM inevitably relapses primarily due to resistance to chemo-radiotherapy, and effective treatment is not available for recurrent disease. In this study we identified TMZ resistant patient-derived primary and previously treated recurrent GBM stem cells (GSC), and investigated the therapeutic activity of a pro-apoptotic variant of oHSV (oHSV-TRAIL) in vitro and in vivo. We show that oHSV-TRAIL modulates cell survival and MAP Kinase proliferation signaling pathways as well as DNA damage response pathways in both primary and recurrent TMZ-resistant GSC. Utilizing real time in vivo imaging and correlative immunohistochemistry, we show that oHSV-TRAIL potently inhibits tumor growth and extends survival of mice bearing TMZ-insensitive recurrent intracerebral GSC tumors via robust and selective induction of apoptosis-mediated death in tumor cells, resulting in cures in 40% of the treated mice. In comparison, the anti-tumor effects in a primary chemoresistant GSC GBM model exhibiting a highly invasive phenotype were significant but less prominent. This work thus demonstrates the ability of oHSV-TRAIL to overcome the therapeutic resistance and recurrence of GBM, and provides a basis for its testing in a GBM clinical trial.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jae M. Lee
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Hiroaki Wakimoto
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
13
|
Abdoli S, Roohvand F, Teimoori-Toolabi L, Shokrgozar MA, Bahrololoumi M, Azadmanesh K. Construction of Various γ34.5 Deleted Fluorescent-Expressing Oncolytic herpes Simplex type 1 (oHSV) for Generation and Isolation of HSV-Based Vectors. IRANIAN BIOMEDICAL JOURNAL 2017; 21:206-17. [PMID: 28525954 PMCID: PMC5459936 DOI: 10.18869/acadpub.ibj.21.4.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Methods Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. Results We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (P<0.001). Moreover, HSV-GFP showed higher infection potency (98%) in comparison with HSV-GR (82%). Conclusion Our oHSVs provide a simple and an efficient platform for construction and rapid isolation of 2nd and 3rd generation oHSVs by replacing the inserted dyes with transgenes and also for rapid identification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.
Collapse
Affiliation(s)
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research center, Pasteur institute of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
14
|
Peters C, Rabkin SD. Designing Herpes Viruses as Oncolytics. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30012-2. [PMID: 26462293 PMCID: PMC4599707 DOI: 10.1038/mto.2015.10] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because herpes simplex virus (HSV) is a natural human pathogen that can cause serious disease, it is incumbent that it be genetically-engineered or significantly attenuated for safety. Here we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are non-essential for growth in tissue culture cells but are important for growth in post-mitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be 'armed' with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate anti-tumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.
Collapse
Affiliation(s)
- Cole Peters
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Samuel D Rabkin
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| |
Collapse
|
15
|
Kanai R, Rabkin SD. Combinatorial strategies for oncolytic herpes simplex virus therapy of brain tumors. CNS Oncol 2015; 2:129-42. [PMID: 23687568 DOI: 10.2217/cns.12.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses, such as the oncolytic herpes simplex virus (oHSV), are an exciting new therapeutic strategy for cancer as they are replication competent in tumor cells but not normal cells. In order to engender herpes simplex virus with oncolytic activity and make it safe for clinical application, mutations are engineered into the virus. Glioblastoma multiforme (GBM) is the most common and deadly primary brain tumor in adults. Despite many advances in therapy, overall survival has not been substantially improved over the last several decades. A number of different oHSVs have been tested as monotherapy in early-phase clinical trials for GBM and have demonstrated safety and anecdotal evidence of efficacy. However, strategies to improve efficacy are likely to be necessary to successfully treat GBM. Cancer treatment usually involves multimodal approaches, so the standard of care for GBM includes surgery, radiotherapy and chemotherapy. In preclinical GBM models, combinations of oHSV with other types of therapy have exhibited markedly improved activity over individual treatments alone. In this review, we will discuss the various combination strategies that have been employed with oHSV, including chemotherapy, small-molecule inhibitors, antiangiogenic agents, radiotherapy and expression of therapeutic transgenes. Effective combinations, especially synergistic ones, are clinically important not just for improved efficacy but also to permit lower and less-toxic doses and potentially overcome resistance.
Collapse
|
16
|
Farrar CT, Buhrman JS, Liu G, Kleijn A, Lamfers MLM, McMahon MT, Gilad AA, Fulci G. Establishing the Lysine-rich Protein CEST Reporter Gene as a CEST MR Imaging Detector for Oncolytic Virotherapy. Radiology 2015; 275:746-54. [PMID: 25686366 DOI: 10.1148/radiol.14140251] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To (a) evaluate whether the lysine-rich protein (LRP) magnetic resonance (MR) imaging reporter gene can be engineered into G47Δ, a herpes simplex-derived oncolytic virus that is currently being tested in clinical trials, without disrupting its therapeutic effectiveness and (b) establish the ability of chemical exchange saturation transfer (CEST) MR imaging to demonstrate G47Δ-LRP. MATERIALS AND METHODS The institutional subcommittee for research animal care approved all in vivo procedures. Oncolytic herpes simplex virus G47Δ, which carried the LRP gene, was constructed and tested for its capacity to replicate in cancer cells and express LRP in vitro. The LRP gene was detected through CEST imaging of lysates derived from cells infected with G47Δ-LRP or the control G47Δ-empty virus. G47Δ-LRP was then tested for its therapeutic effectiveness and detection with CEST MR imaging in vivo. Images of rat gliomas were acquired before and 8-10 hours after injection of G47Δ-LRP (n = 7) or G47Δ-empty virus (n = 6). Group comparisons were analyzed with a paired t test. RESULTS No significant differences were observed in viral replication or therapeutic effectiveness between G47Δ-LRP and G47Δ-empty virus. An increase in CEST image contrast was observed in cell lysates (mean ± standard deviation, 0.52% ± 0.06; P = .01) and in tumors (1.1% ± 0.3, P = .02) after infection with G47Δ-LRP but not G47Δ-empty viruses. No histopathologic differences were observed between tumors infected with G47Δ-LRP and G47Δ-empty virus. CONCLUSION This study has demonstrated the ability of CEST MR imaging to show G47Δ-LRP at acute stages of viral infection. The introduction of the LRP transgene had no effect on the viral replication or therapeutic effectiveness. This can aid in development of the LRP gene as a reporter for the real-time detection of viral spread. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Christian T Farrar
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (C.T.F.), and Brain Tumor Research Center, Department of Neurosurgery (J.S.B., A.K., G.F.), Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St, Simches CRPZN-3800, Boston, MA 02114; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (G.L., M.T.M., A.A.G.), The Russell H. Morgan Department of Radiology and Radiological Science (G.L., M.T.M., A.A.G.), The Johns Hopkins University, Baltimore, Md; Department of Neurosurgery, Josephine Nefkens Institute, Erasmus MC, Rotterdam, the Netherlands (A.K., M.L.M.L.); and Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Md (A.A.G.)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Antoszczyk S, Spyra M, Mautner VF, Kurtz A, Stemmer-Rachamimov AO, Martuza RL, Rabkin SD. Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro Oncol 2014; 16:1057-66. [PMID: 24470552 PMCID: PMC4096170 DOI: 10.1093/neuonc/not317] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Malignant peripheral nerve sheath tumors (MPNSTs) are an aggressive and often lethal sarcoma that frequently develops in patients with neurofibromatosis type 1 (NF1). We developed new preclinical MPNST models and tested the efficacy of oncolytic herpes simplex viruses (oHSVs), a promising cancer therapeutic that selectively replicates in and kills cancer cells. METHODS Mouse NF1(-) MPNST cell lines and human NF1(-) MPNST stemlike cells (MSLCs) were implanted into the sciatic nerves of immunocompetent and athymic mice, respectively. Tumor growth was followed by external measurement and sciatic nerve deficit using a hind-limb scoring system. Oncolytic HSV G47Δ as well as "armed" G47Δ expressing platelet factor 4 (PF4) or interleukin (IL)-12 were injected intratumorally into established sciatic nerve tumors. RESULTS Mouse MPNST cell lines formed tumors with varying growth kinetics. A single intratumoral injection of G47Δ in sciatic nerve tumors derived from human S462 MSLCs in athymic mice or mouse M2 (37-3-18-4) cells in immunocompetent mice significantly inhibited tumor growth and prolonged survival. Local IL-12 expression significantly improved the efficacy of G47Δ in syngeneic mice, while PF4 expression prolonged survival. Injection of G47Δ directly into the sciatic nerve of athymic mice resulted in only mild symptoms that did not differ from phosphate buffered saline control. CONCLUSIONS Two new orthotopic MPNST models are described, including in syngeneic mice, expanding the options for preclinical testing. Oncolytic HSV G47Δ exhibited robust efficacy in both immunodeficient and immunocompetent MPNST models while maintaining safety. Interleukin-12 expression improved efficacy. These studies support the clinical translation of G47Δ for patients with MPNST.
Collapse
Affiliation(s)
- Slawomir Antoszczyk
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Melanie Spyra
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Victor Felix Mautner
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Andreas Kurtz
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Anat O Stemmer-Rachamimov
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Robert L Martuza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| |
Collapse
|
18
|
Kuruppu D, Brownell AL, Shah K, Mahmood U, Tanabe KK. Molecular imaging with bioluminescence and PET reveals viral oncolysis kinetics and tumor viability. Cancer Res 2014; 74:4111-21. [PMID: 24876106 DOI: 10.1158/0008-5472.can-13-3472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viral oncolysis, the destruction of cancer cells by replicating virus, is an experimental cancer therapy that continues to be explored. The treatment paradigm for this therapy involves successive waves of lytic replication in cancer cells. At present, monitoring viral titer at sites of replication requires biopsy. However, repeat serial biopsies are not practically feasible for temporal monitoring of viral replication and tumor response in patients. Molecular imaging provides a noninvasive method to identify intracellular viral gene expression in real time. We imaged viral oncolysis and tumor response to oncolysis sequentially with bioluminescence and positron emission tomography (PET), revealing the kinetics of both processes in tumor xenografts. We demonstrate that virus replication cycles can be identified as successive waves of reporter expression that occur ∼2 days after the initial viral tumor infection peak. These waves correspond to virions that are released following a replication cycle. The viral and cellular kinetics were imaged with Fluc and Rluc bioluminescence reporters plus two 18F-labeled PET reporters FHBG [9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine] and FLT (18F-3'-deoxy-3-'fluorothymidine), respectively. Correlative immunohistochemistry on tumor xenograft sections confirmed in vivo results. Our findings show how PET can be used to identify virus replication cycles and for real-time measurements of intratumoral replicating virus levels. This noninvasive imaging approach has potential utility for monitoring viral oncolysis therapy in patients.
Collapse
Affiliation(s)
| | | | - Khalid Shah
- Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Umar Mahmood
- Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
19
|
Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models. Neoplasia 2014; 15:591-9. [PMID: 23730207 DOI: 10.1593/neo.13158] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 01/10/2023] Open
Abstract
Oncolytic herpes simplex virus (oHSV) can potentially spread throughout the tumor, reach isolated infiltrating cells, kill them, and deliver anticancer agents. However, the host responds to oHSV by inducing intratumoral infiltration of macrophages that can engulf the virus, limiting the potential of this therapeutic strategy. Hypervascularity is a pathognomonic feature of glioblastoma (GBM) and is a promising therapeutic target. Antiangiogenic treatments have multiple benefits, including the capacity to increase oHSV efficacy by suppressing macrophage extravasation and infiltration into the tumor. Angiostatin is an antiangiogenic polypeptide, and interleukin-12 (IL-12) is an immunostimulatory cytokine with strong antiangiogenic effects. Clinical use of each has been limited by delivery issues and systemic toxicity. We tested a combination treatment strategy using oHSVs expressing angiostatin (G47Δ-mAngio) and IL-12 (G47Δ-mIL12) in two orthotopic human GBM models. Intratumoral injection of G47Δ-mAngio and G47Δ-mIL12 in mice bearing intracranial U87 or tumors derived from glioblastoma stem cells significantly prolonged survival compared to each armed oHSV alone. This was associated with increased antiangiogenesis and virus spread and decreased macrophages. These data support the paradigm of using oHSV expressing different antiangiogenic agents and show for the first time that oHSVs expressing angiostatin and IL-12 can improve efficacy in human GBM models.
Collapse
|
20
|
Nagel CH, Pohlmann A, Sodeik B. Construction and characterization of bacterial artificial chromosomes (BACs) containing herpes simplex virus full-length genomes. Methods Mol Biol 2014; 1144:43-62. [PMID: 24671676 DOI: 10.1007/978-1-4939-0428-0_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial artificial chromosomes (BACs) are suitable vectors not only to maintain the large genomes of herpesviruses in Escherichia coli but also to enable the traceless introduction of any mutation using modern tools of bacterial genetics. To clone a herpes simplex virus genome, a BAC replication origin is first introduced into the viral genome by homologous recombination in eukaryotic host cells. As part of their nuclear replication cycle, genomes of herpesviruses circularize and these replication intermediates are then used to transform bacteria. After cloning, the integrity of the recombinant viral genomes is confirmed by restriction length polymorphism analysis and sequencing. The BACs may then be used to design virus mutants. Upon transfection into eukaryotic cells new herpesvirus strains harboring the desired mutations can be recovered and used for experiments in cultured cells as well as in animal infection models.
Collapse
Affiliation(s)
- Claus-Henning Nagel
- Heinrich Pette Institute-Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
21
|
Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci U S A 2013; 110:12006-11. [PMID: 23754388 DOI: 10.1073/pnas.1307935110] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (World Health Organization grade IV) is an aggressive adult brain tumor that is inevitably fatal despite surgery, radiation, and chemotherapy. Treatment failures are attributed to combinations of cellular heterogeneity, including a subpopulation of often-resistant cancer stem cells, aberrant vasculature, and noteworthy immune suppression. Current preclinical models and treatment strategies do not incorporate or address all these features satisfactorily. Herein, we describe a murine glioblastoma stem cell (GSC) model that recapitulates tumor heterogeneity, invasiveness, vascularity, and immunosuppressive microenvironment in syngeneic immunocompetent mice and should prove useful for a range of therapeutic studies. Using this model, we tested a genetically engineered oncolytic herpes simplex virus that is armed with an immunomodulatory cytokine, interleukin 12 (G47-mIL12). G47Δ-mIL12 infects and replicates similarly to its unarmed oncolytic herpes simplex virus counterpart in mouse 005 GSCs in vitro, whereas in vivo, it significantly enhances survival in syngeneic mice bearing intracerebral 005 tumors. Mechanistically, G47-mIL12 targets not only GSCs but also increases IFN-γ release, inhibits angiogenesis, and reduces the number of regulatory T cells in the tumor. The increased efficacy is dependent upon T cells, but not natural killer cells. Taken together, our findings demonstrate that G47Δ-mIL12 provides a multifaceted approach to targeting GSCs, tumor microenvironment, and the immune system, with resultant therapeutic benefit in a stringent glioblastoma model.
Collapse
|
22
|
Proceedings for OctoberCEST, the third international workshop on CEST imaging, 15-17 October 2012. CONTRAST MEDIA & MOLECULAR IMAGING 2013. [DOI: 10.1002/cmmi.1522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Barnard Z, Wakimoto H, Zaupa C, Patel AP, Klehm J, Martuza RL, Rabkin SD, Curry WT. Expression of FMS-like tyrosine kinase 3 ligand by oncolytic herpes simplex virus type I prolongs survival in mice bearing established syngeneic intracranial malignant glioma. Neurosurgery 2013; 71:741-8; discussion 748. [PMID: 22653387 DOI: 10.1227/neu.0b013e318260fd73] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Glioblastoma is a fatal brain tumor in needing urgent effective therapy. Treatments with both oncolytic viruses and immunotherapy have shown preclinical efficacy and clinical promise. We sought to exploit possible synergies between oncolytic herpes simplex virus type 1 (oHSV-1) infection of intracranial gliomas and delivery of immune-stimulating fms-like tyrosine kinase 3 ligand (Flt3L) by engineering a herpes vector to express the cytokine. OBJECTIVE To construct an oHSV-1 vector that expresses high levels of Flt3L and examine its antiglioma efficacy in an immunocompetent murine model. METHODS G47Δ and a bacterial artificial chromosome system were used to generate a novel oHSV-1, termed G47Δ-Flt3L, expressing Flt3L. Cytokine expression was confirmed, and G47Δ-Flt3L was injected intratumorally into established intracranial CT-2A gliomas in syngeneic C57/Bl6 mice. Animals were followed for survival and assessed by the Kaplan-Meier method. RESULTS G47Δ-Flt3L expressed high levels of Flt3L in culture. Expression of Flt3L affected neither viral replication nor had a cytotoxic effect on CT2A glioma cells. Direct inoculation into intracerebral CT2A glioma cells resulted in high levels of detectable Flt3L in mouse blood and was superior to parental G47Δ in prolonging survival in glioma-bearing animals. CONCLUSION Treatment with G47Δ-Flt3L improves survival of glioma-bearing mice.
Collapse
Affiliation(s)
- Zachary Barnard
- Simches Brain Tumor Research Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tamura K, Wakimoto H, Agarwal AS, Rabkin SD, Bhere D, Martuza RL, Kuroda T, Kasmieh R, Shah K. Multimechanistic tumor targeted oncolytic virus overcomes resistance in brain tumors. Mol Ther 2012; 21:68-77. [PMID: 22929661 DOI: 10.1038/mt.2012.175] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Only a subset of cancer patients inoculated with oncolytic herpes simplex virus (oHSV) type-1 has shown objective response in phase 1 and 2 clinical trials. This has raised speculations whether resistance of tumor cells to oHSV therapy may be a limiting factor. In this study, we have identified established and patient derived primary glioblastoma multiforme (GBM) stem cell lines (GSC) resistant to oHSV and also to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that has recently shown promise in preclinical and initial clinical studies. We created a recombinant oHSV bearing a secretable TRAIL (oHSV-TRAIL) and hypothesized that oHSV-TRAIL could be used as a cancer therapeutic to target a broad spectrum of resistant tumors in a mechanism-based manner. Using the identified resistant GBM lines, we show that oHSV-TRAIL downregulates extracellular signal-regulated protein kinase (ERK)-mitogen-activated protein kinase (MAPK) and upregulates c-Jun N-terminal kinase (JNK) and p38-MAPK signaling, which primes resistant GBM cells to apoptosis via activation of caspase-8, -9, and -3. We further show that oHSV-TRAIL inhibits tumor growth and invasiveness and increases survival of mice bearing resistant intracerebral tumors without affecting the normal tissues. This study sheds new light on the mechanism by which oHSV and TRAIL function in concert to overcome therapeutic-resistance, and provides an oncolytic virus based platform to target a broad spectrum of different cancer types.
Collapse
Affiliation(s)
- Kaoru Tamura
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sgubin D, Wakimoto H, Kanai R, Rabkin SD, Martuza RL. Oncolytic herpes simplex virus counteracts the hypoxia-induced modulation of glioblastoma stem-like cells. Stem Cells Transl Med 2012. [PMID: 23197811 DOI: 10.5966/sctm.2011-0035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM), a fatal malignant brain tumor, contains abundant hypoxic regions that provide a "niche" to promote both the maintenance and enrichment of glioblastoma stem-like cells (GSCs) and confer resistance to chemo- and radiotherapy. Since GSCs, with an ability to resist conventional therapies, may be responsible for tumor recurrence, targeting GSCs located in such a hypoxic environment may be critical to improving the therapeutic outcome for GBM patients. Oncolytic viral therapies have been tested in the clinic as a promising therapeutic approach for GBM. In this study, we analyzed and compared the therapeutic effects of oncolytic herpes simplex virus (oHSV) type 1 G47Δ (γ34.5(-)ICP6(-)LacZ(+)α47(-)) in patient-derived GSCs under normoxia (21% oxygen) and hypoxia (1% oxygen). GSCs cultured in hypoxia showed an increased ability to form neurospheres and expressed higher levels of the putative stem cell marker CD133 compared with GSCs cultured in normoxia. G47Δ exhibited a comparable ability to infect, replicate, and kill GSCs in normoxia and hypoxia in vitro. Importantly, G47Δ could counteract hypoxia-mediated enhancement of the stem-like properties of GSCs, inhibiting their self-renewal and stem cell marker expression. Using orthotopic human GSC xenografts in mice, we demonstrated that intratumoral injection of G47ΔUs11fluc, a newly developed G47Δ derivative that expresses firefly luciferase driven by a true late viral promoter, led to an equivalent frequency of viral infection and replication in hypoxic and nonhypoxic tumor areas. These findings suggest that oHSV G47Δ represents a promising therapeutic strategy to target and kill GSCs, not only in normoxic areas of GBM but also within the hypoxic niche.
Collapse
Affiliation(s)
- Donatella Sgubin
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
26
|
Back to BAC: the use of infectious clone technologies for viral mutagenesis. Viruses 2012; 4:211-35. [PMID: 22470833 PMCID: PMC3315213 DOI: 10.3390/v4020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses.
Collapse
|
27
|
Kanai R, Rabkin SD, Yip S, Sgubin D, Zaupa CM, Hirose Y, Louis DN, Wakimoto H, Martuza RL. Oncolytic virus-mediated manipulation of DNA damage responses: synergy with chemotherapy in killing glioblastoma stem cells. J Natl Cancer Inst 2011; 104:42-55. [PMID: 22173583 DOI: 10.1093/jnci/djr509] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although both the alkylating agent temozolomide (TMZ) and oncolytic viruses hold promise for treating glioblastoma, which remains uniformly lethal, the effectiveness of combining the two treatments and the mechanism of their interaction on cancer stem cells are unknown. METHODS We investigated the efficacy of combining TMZ and the oncolytic herpes simplex virus (oHSV) G47Δ in killing glioblastoma stem cells (GSCs), using Chou-Talalay combination index analysis, immunocytochemistry and fluorescence microscopy, and neutral comet assay. The role of treatment-induced DNA double-strand breaks, activation of DNA damage responses, and virus replication in the cytotoxic interaction between G47Δ and TMZ was examined with a panel of pharmacological inhibitors and short-hairpin RNA (shRNA)-mediated knockdown of DNA repair pathways. Comparisons of cell survival and virus replication were performed using a two-sided t test (unpaired). The survival of athymic mice (n = 6-8 mice per group) bearing GSC-derived glioblastoma tumors treated with the combination of G47Δ and TMZ was analyzed by the Kaplan-Meier method and evaluated with a two-sided log-rank test. RESULTS The combination of G47Δ and TMZ acted synergistically in killing GSCs but not neurons, with associated robust induction of DNA damage. Pharmacological and shRNA-mediated knockdown studies suggested that activated ataxia telangiectasia mutated (ATM) is a crucial mediator of synergy. Activated ATM relocalized to HSV DNA replication compartments where it likely enhanced oHSV replication and could not participate in repairing TMZ-induced DNA damage. Sensitivity to TMZ and synergy with G47Δ decreased with O(6)-methylguanine-DNA-methyltransferase (MGMT) expression and MSH6 knockdown. Combined G47Δ and TMZ treatment extended survival of mice bearing GSC-derived intracranial tumors, achieving long-term remission in four of eight mice (median survival = 228 days; G47Δ alone vs G47Δ + TMZ, hazard ratio of survival = 7.1, 95% confidence interval = 1.9 to 26.1, P = .003) at TMZ doses attainable in patients. CONCLUSIONS The combination of G47Δ and TMZ acts synergistically in killing GSCs through oHSV-mediated manipulation of DNA damage responses. This strategy is highly efficacious in representative preclinical models and warrants clinical translation.
Collapse
Affiliation(s)
- Ryuichi Kanai
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yamada S, Kuroda T, Fuchs BC, He X, Supko JG, Schmitt A, McGinn CM, Lanuti M, Tanabe KK. Oncolytic herpes simplex virus expressing yeast cytosine deaminase: relationship between viral replication, transgene expression, prodrug bioactivation. Cancer Gene Ther 2011; 19:160-70. [PMID: 22076044 PMCID: PMC3288710 DOI: 10.1038/cgt.2011.70] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Yeast cytosine deaminase (yCD) is a well-characterized prodrug/enzyme system that converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), and has been combined with oncolytic viruses. However, in vivo studies of the interactions between 5-FC bioactivation and viral replication have not been previously reported, nor have the kinetics of transgene expression and the pharmacokinetics of 5-FC and 5-FU. We constructed a replication-conditional HSV-1 expressing yCD and examined cytotoxicity when 5-FC was initiated at different times after viral infection, and observed that earlier 5-FC administration led to greater cytotoxicity than later 5-FC administration in vitro and in vivo. Twelve days of 5-FC administration was superior to 6 days in animal models, but dosing beyond 12 days did not further enhance efficacy. Consistent with the dosing schedule results, both viral genomic DNA copy number and viral titers were observed to peak on Day 3 after viral injection and gradually decrease thereafter. The virus is replication-conditional and was detected in tumors for as long as 2 weeks after viral injection. The maximum relative extent of yCD conversion of 5-FC to 5-FU in tumors was observed on Day 6 after viral injection and it decreased progressively thereafter. The observation that 5-FU generation within tumors did not lead to appreciable levels of systemic 5-FU (<10 ng/ml) is important and has not been previously reported. The approaches used in these studies of the relationship between the viral replication kinetics, transgene expression, prodrug administration and anti-tumor efficacy are useful in the design of clinical trials of armed, oncolytic viruses.
Collapse
Affiliation(s)
- S Yamada
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Herpesvirus BACs: past, present, and future. J Biomed Biotechnol 2010; 2011:124595. [PMID: 21048927 PMCID: PMC2965428 DOI: 10.1155/2011/124595] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/19/2010] [Indexed: 12/12/2022] Open
Abstract
The herpesviridae are a large family of DNA viruses with large and complicated genomes. Genetic manipulation and the generation of recombinant viruses have been extremely difficult. However, herpesvirus bacterial artificial chromosomes (BACs) that were developed approximately 10 years ago have become useful and powerful genetic tools for generating recombinant viruses to study the biology and pathogenesis of herpesviruses. For example, BAC-directed deletion mutants are commonly used to determine the function and essentiality of viral genes. In this paper, we discuss the creation of herpesvirus BACs, functional analyses of herpesvirus mutants, and future applications for studies of herpesviruses. We describe commonly used methods to create and mutate herpesvirus BACs (such as site-directed mutagenesis and transposon mutagenesis). We also evaluate the potential future uses of viral BACs, including vaccine development and gene therapy.
Collapse
|
30
|
Marconi P, Argnani R, Epstein AL, Manservigi R. HSV as a vector in vaccine development and gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:118-44. [PMID: 20047039 DOI: 10.1007/978-1-4419-1132-2_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.
Collapse
Affiliation(s)
- Peggy Marconi
- Department of Experimental and Diagnostic Medicine-Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44100, Italy.
| | | | | | | |
Collapse
|
31
|
Jiang S, Zhong X, Zhai C, Chen L, Ma L, Jin M, Chen H. Constructing recombinant herpesvirus BAC vectors with mating-assisted genetically integrated clone method. Biotechnol Lett 2010; 32:903-7. [DOI: 10.1007/s10529-010-0253-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
32
|
Castelo-Branco P, Passer BJ, Buhrman JS, Antoszczyk S, Marinelli M, Zaupa C, Rabkin SD, Martuza RL. Oncolytic herpes simplex virus armed with xenogeneic homologue of prostatic acid phosphatase enhances antitumor efficacy in prostate cancer. Gene Ther 2010; 17:805-10. [PMID: 20220784 DOI: 10.1038/gt.2010.20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer is one of the most prevalent cancers in men. Replication-competent oncolytic herpes simplex virus (oHSV) vectors are a powerful antitumor therapy that can exert at least two effects: direct cytocidal activity that selectively kills cancer cells and induction of antitumor immunity. In addition, oHSV vectors can also function as a platform to deliver transgenes of interest. In these studies, we have examined the expression of a xenogeneic homologue of the prostate cancer antigen, prostatic acid phosphatase (PAP), with the goal of enhancing virotherapy against PAP-expressing tumors. PAP has already been used for cancer vaccination in patients with prostate cancer. Here we show that treatment with oHSV bPDelta6 expressing xenogeneic human PAP (hPAP) significantly reduces tumor growth and increases survival of C57/BL6 mice bearing mouse TRAMP-C2 prostate tumors, whereas expression of syngeneic mouse PAP (mPAP) from the same oHSV vector did not enhance antitumor activity. Treatment of mice bearing metastatic TRAMP-C2 lung tumors with oHSV-expressing hPAP resulted in fewer tumor nodules. To our knowledge, this is the first report of oncolytic viruses being used to express xenoantigens. These data lend support to the concept of combining oncolytic and immunogenic therapies as a way to improve therapy of metastatic prostate cancer.
Collapse
Affiliation(s)
- P Castelo-Branco
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Grandi P, Peruzzi P, Reinhart B, Cohen JB, Chiocca EA, Glorioso JC. Design and application of oncolytic HSV vectors for glioblastoma therapy. Expert Rev Neurother 2009; 9:505-17. [PMID: 19344302 DOI: 10.1586/ern.09.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme is one of the most common human brain tumors. The tumor is generally highly infiltrative, making it extremely difficult to treat by surgical resection or radiotherapy. This feature contributes to recurrence and a very poor prognosis. Few anticancer drugs have been shown to alter rapid tumor growth and none are ultimately effective. Oncolytic vectors have been employed as a treatment alternative based on the ability to tailor virus replication to tumor cells. The human neurotropic herpes simplex virus (HSV) is especially attractive for development of oncolytic vectors (oHSV) because this virus is highly infectious, replicates rapidly and can be readily modified to achieve vector attenuation in normal brain tissue. Tumor specificity can be achieved by deleting viral genes that are only required for virus replication in normal cells and permit mutant virus replication selectively in tumor cells. The anti-tumor activity of oHSV can be enhanced by arming the vector with genes that either activate chemotherapeutic drugs within the tumor tissue or promote anti-tumor immunity. In this review, we describe current designs of oHSV and the experience thus far with their potential utility for glioblastoma therapy. In addition, we discuss the impediments to vector effectiveness and describe our view of future developments in vector improvement.
Collapse
Affiliation(s)
- Paola Grandi
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Pepers BA, Schut MH, Vossen RH, van Ommen GJB, den Dunnen JT, van Roon-Mom WM. Cost-effective HRMA pre-sequence typing of clone libraries; application to phage display selection. BMC Biotechnol 2009; 9:50. [PMID: 19463169 PMCID: PMC2694173 DOI: 10.1186/1472-6750-9-50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 05/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methodologies like phage display selection, in vitro mutagenesis and the determination of allelic expression differences include steps where large numbers of clones need to be compared and characterised. In the current study we show that high-resolution melt curve analysis (HRMA) is a simple, cost-saving tool to quickly study clonal variation without prior nucleotide sequence knowledge. RESULTS HRMA results nicely matched those obtained with ELISA and compared favourably to DNA fingerprinting of restriction digested clone insert-PCR. DNA sequence analysis confirmed that HRMA-clustered clones contained identical inserts. CONCLUSION Using HRMA, analysis of up to 384 samples can be done simultaneously and will take approximately 30 minutes. Clustering of clones can be largely automated using the system's software within 2 hours. Applied to the analysis of clones obtained after phage display antibody selection, HRMA facilitated a quick overview of the overall success as well as the identification of identical clones. Our approach can be used to characterize any clone set prior to sequencing, thereby reducing sequencing costs significantly.
Collapse
Affiliation(s)
- Barry A Pepers
- Center for Human and Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Wakimoto H, Kesari S, Farrell CJ, Curry WT, Zaupa C, Aghi M, Kuroda T, Stemmer-Rachamimov A, Shah K, Liu TC, Jeyaretna DS, Debasitis J, Pruszak J, Martuza RL, Rabkin SD. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res 2009; 69:3472-81. [PMID: 19351838 DOI: 10.1158/0008-5472.can-08-3886] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glioblastoma, the most malignant type of primary brain tumor, is one of the solid cancers where cancer stem cells have been isolated, and studies have suggested resistance of those cells to chemotherapy and radiotherapy. Here, we report the establishment of CSC-enriched cultures derived from human glioblastoma specimens. They grew as neurospheres in serum-free medium with epidermal growth factor and fibroblast growth factor 2, varied in the level of CD133 expression and very efficiently formed highly invasive and/or vascular tumors upon intracerebral implantation into immunodeficient mice. As a novel therapeutic strategy for glioblastoma-derived cancer stem-like cells (GBM-SC), we have tested oncolytic herpes simplex virus (oHSV) vectors. We show that although ICP6 (UL39)-deleted mutants kill GBM-SCs as efficiently as wild-type HSV, the deletion of gamma34.5 significantly attenuated the vectors due to poor replication. However, this was significantly reversed by the additional deletion of alpha47. Infection with oHSV G47Delta (ICP6(-), gamma34.5(-), alpha47(-)) not only killed GBM-SCs but also inhibited their self-renewal as evidenced by the inability of viable cells to form secondary tumor spheres. Importantly, despite the highly invasive nature of the intracerebral tumors generated by GBM-SCs, intratumoral injection of G47Delta significantly prolonged survival. These results for the first time show the efficacy of oHSV against human GBM-SCs, and correlate this cytotoxic property with specific oHSV mutations. This is important for designing new oHSV vectors and clinical trials. Moreover, the new glioma models described in this study provide powerful tools for testing experimental therapeutics and studying invasion and angiogenesis.
Collapse
Affiliation(s)
- Hiroaki Wakimoto
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|