1
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|
2
|
Ment D, Gindin G, Samish M, Glazer I. Comparative response of Metarhizium brunneum to the cuticles of susceptible and resistant hosts. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21756. [PMID: 33140492 DOI: 10.1002/arch.21756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Earlier studies demonstrated that Metarhizium brunneum, usually a broad-host pathogen of arthropods, is unable to complete its pathogenic life cycle when inoculated on the fungus-resistant tick, Hyalomma excavatum engorged females. While the fungus penetrates the cuticle of fungus-susceptible tick, Rhipicephalus annulatus females, it is unable to penetrate the cuticle of fungus-resistant tick, and even perishes on its surface. This is probably due to high concentration of antifungal fatty acids and probably also due to a hypersensitive-like response of the tick. To understand the metabolic pathways occurring in the fungal hyphae upon encountering the cuticles, we compared the response of the fungus to cuticle from susceptible and resistant tick cuticles by 2D-gels. The intracellular proteomes of M. brunneum Mb7 exposed to cuticle of the fungus-susceptible tick, R. annulatus, and to the fungus-resistant tick, H. excavatum engorged females were compared after exposure to either cuticles. By means of liquid chromatography-mass spectrometry/mass spectrometry we identified in both proteomes common proteins involved in biological processes as well as unique proteins identified only in the proteome of fungus exposed to fungus-resistant tick cuticle. These proteins were identified in high probability as heat shock proteins, four key enzymes of the glyoxylate cycle, and proteins associated with hypoxia, and exposure to antifungal drugs. These findings are discussed within the M. brunneum-tick pathosystem in relation to tick resistance and host resistance in general.
Collapse
Affiliation(s)
- Dana Ment
- Department of Plant Pathology and Weed Research, Volcani CenterInstitute of Plant Protection, Agricultural Research Organization, Rishon LeZoin, Israel
| | - Galina Gindin
- Department of Entomology and Nematology, Volcani Center, Institute of Plant Protection, Agricultural Research Organization, Rishon Le Zion, Israel
| | - Michael Samish
- Department of Entomology and Nematology, Volcani Center, Institute of Plant Protection, Agricultural Research Organization, Rishon Le Zion, Israel
- Kimron Veterinary Institute, Rishon LeZion, Israel
| | - Itamar Glazer
- Department of Entomology and Nematology, Volcani Center, Institute of Plant Protection, Agricultural Research Organization, Rishon Le Zion, Israel
| |
Collapse
|
3
|
Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:132635. [PMID: 26881084 PMCID: PMC4736001 DOI: 10.1155/2015/132635] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022]
Abstract
Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance.
Collapse
|
4
|
Rautio JJ, Satokari R, Vehmaan-Kreula P, Serkkola E, Söderlund H. TRAC in high-content gene expression analysis: applications in microbial population studies, process biotechnology and biomedical research. Expert Rev Mol Diagn 2014; 8:379-85. [DOI: 10.1586/14737159.8.4.379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M. Correlation of gene expression and protein production rate - a system wide study. BMC Genomics 2011; 12:616. [PMID: 22185473 PMCID: PMC3266662 DOI: 10.1186/1471-2164-12-616] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. RESULTS We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. CONCLUSIONS Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR).
Collapse
Affiliation(s)
- Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Tiina Pakula
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Bart Smit
- NIZO food research, Kernhemseweg 2, 6718ZB Ede, the Netherlands
| | - Jari Rautio
- Plexpress, Viikinkaari 6, 00790 Helsinki, Finland
| | | | - Paula Jouhten
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Erno Lindfors
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Marilyn Wiebe
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| |
Collapse
|
6
|
Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S. Heterologous laccase production and its role in industrial applications. Bioeng Bugs 2011; 1:252-62. [PMID: 21327057 DOI: 10.4161/bbug.1.4.11438] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry.
Collapse
Affiliation(s)
- Alessandra Piscitelli
- Dipartimento di Chimica Organica e Biochimica, Complesso Universitario Monte S. Angelo, Napoli, Italy.
| | | | | | | | | |
Collapse
|
7
|
Chamoun R, Jabaji S. Expression of genes of Rhizoctonia solani and the biocontrol Stachybotrys elegans during mycoparasitism of hyphae and sclerotia. Mycologia 2010; 103:483-93. [PMID: 21193602 DOI: 10.3852/10-235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Knowledge of mycoparasitism has been focused on how antagonists affect pathogens in relation to mechanisms, metabolites and gene expression. Just as microbial antagonists use a diverse arsenal of mechanisms to dominate interactions with hosts, hosts also have diverse responses to counteract antagonism. In this study differential gene expression of eight mycoparasitism-induced genes and eight host-response genes was monitored during in vivo interactions between the mycoparasite Stachybotrys elegans and hyphae and sclerotia of the host, Rhizoctonia solani over 5 d of interaction. Using real time reverse transcription polymerase chain reaction, comparative analyses demonstrated that hyphal and sclerotial structures triggered different expression patterns. These results indicated that multiple regulatory mechanisms might be involved. The high elevated expression of some genes belonging to the mycoparasite and the host suggest that these genes play an important role during the mycoparasitic process and host defense respectively.
Collapse
Affiliation(s)
- Rony Chamoun
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9
| | | |
Collapse
|
8
|
Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F. New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 2009; 20:372-80. [DOI: 10.1016/j.copbio.2009.05.009] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 11/29/2022]
|