1
|
Alsayejh B, Kietsiriroje N, Almutairi M, Simmons K, Pechlivani N, Ponnambalam S, Ajjan RA. Plasmin Inhibitor in Health and Diabetes: Role of the Protein as a Therapeutic Target. TH OPEN 2022; 6:e396-e407. [PMID: 36452200 PMCID: PMC9674435 DOI: 10.1055/a-1957-6817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The vascular obstructive thrombus is composed of a mesh of fibrin fibers with blood cells trapped in these networks. Enhanced fibrin clot formation and/or suppression of fibrinolysis are associated with an increased risk of vascular occlusive events. Inhibitors of coagulation factors and activators of plasminogen have been clinically used to limit fibrin network formation and enhance lysis. While these agents are effective at reducing vascular occlusion, they carry a significant risk of bleeding complications. Fibrin clot lysis, essential for normal hemostasis, is controlled by several factors including the incorporation of antifibrinolytic proteins into the clot. Plasmin inhibitor (PI), a key antifibrinolytic protein, is cross-linked into fibrin networks with higher concentrations of PI documented in fibrin clots and plasma from high vascular risk individuals. This review is focused on exploring PI as a target for the prevention and treatment of vascular occlusive disease. We first discuss the relationship between the PI structure and antifibrinolytic activity, followed by describing the function of the protein in normal physiology and its role in pathological vascular thrombosis. Subsequently, we describe in detail the potential use of PI as a therapeutic target, including the array of methods employed for the modulation of protein activity. Effective and safe inhibition of PI may prove to be an alternative and specific way to reduce vascular thrombotic events while keeping bleeding risk to a minimum. Key Points Plasmin inhibitor (PI) is a key protein that inhibits fibrinolysis and stabilizes the fibrin network.This review is focused on discussing mechanistic pathways for PI action, role of the molecule in disease states, and potential use as a therapeutic target.
Collapse
Affiliation(s)
- Basmah Alsayejh
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
- Ministry of Education, Riyadh, Kingdom of Saudi Arabia
| | - Noppadol Kietsiriroje
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
- Endocrinology and Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Mansour Almutairi
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
- General Directorate of Medical Services, Ministry of Interior, Kingdom of Saudi Arabia
| | - Katie Simmons
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
| | - Nikoletta Pechlivani
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Ramzi A. Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
| |
Collapse
|
2
|
Kanno Y, Shu E. α2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis. Life (Basel) 2022; 12:life12030396. [PMID: 35330147 PMCID: PMC8953682 DOI: 10.3390/life12030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin that is characterized by immune system abnormalities, vascular damage, and extensive fibrosis of the skin and visceral organs. α2-antiplasmin is known to be the main plasmin inhibitor and has various functions such as cell differentiation and cytokine production, as well as the regulation of the maintenance of the immune system, endothelial homeostasis, and extracellular matrix metabolism. The expression of α2-antiplasmin is elevated in dermal fibroblasts from systemic sclerosis patients, and the blockade of α2-antiplasmin suppresses fibrosis progression and vascular dysfunction in systemic sclerosis model mice. α2-antiplasmin may have promise as a potential therapeutic target for systemic sclerosis. This review considers the role of α2-antiplasmin in the progression of systemic sclerosis.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
- Correspondence: ; Tel.:+81-0774-65-8629
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
| |
Collapse
|
3
|
Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics. Int J Mol Sci 2021; 22:ijms222212537. [PMID: 34830419 PMCID: PMC8625824 DOI: 10.3390/ijms222212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombus formation remains a major cause of morbidity and mortality worldwide. Current antiplatelet and anticoagulant therapies have been effective at reducing vascular events, but at the expense of increased bleeding risk. Targeting proteins that interact with fibrinogen and which are involved in hypofibrinolysis represents a more specific approach for the development of effective and safe therapeutic agents. The antifibrinolytic proteins alpha-2 antiplasmin (α2AP), thrombin activatable fibrinolysis inhibitor (TAFI), complement C3 and plasminogen activator inhibitor-2 (PAI-2), can be incorporated into the fibrin clot by FXIIIa and affect fibrinolysis by different mechanisms. Therefore, these antifibrinolytic proteins are attractive targets for the development of novel therapeutics, both for the modulation of thrombosis risk, but also for potentially improving clot instability in bleeding disorders. This review summarises the main properties of fibrinogen-bound antifibrinolytic proteins, their effect on clot lysis and association with thrombotic or bleeding conditions. The role of these proteins in therapeutic strategies targeting the fibrinolytic system for thrombotic diseases or bleeding disorders is also discussed.
Collapse
|
4
|
Eltringham-Smith LJ, Bhakta V, Sheffield WP. Selection and in vitro and in vivo characterization of a Kunitz protease inhibitor domain of protease nexin 2 variant that inhibits factor XIa without inhibiting plasmin. J Biotechnol 2021; 330:61-69. [PMID: 33689867 DOI: 10.1016/j.jbiotec.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
The 57-amino acid Kunitz Protease Inhibitor (KPI) domain of Protease Nexin 2 inhibits Factor XIa (FXIa) and other proteases. We previously fused KPI to human serum albumin (KPIHSA). KPIHSA inhibits coagulation Factor XIa (FXIa) 6-fold more rapidly than plasmin. We screened a bacterial expression library of KPI variants randomized at M17, and selected M17D as having the highest anti-FXIa: antiplasmin activity ratio. Expressed as HSA fusion proteins in Pichia pastoris, KPIHSA and KPI(M17D)HSA inhibited FXIa indistinguishably (Ki 9 nM) but KPI(M17D)HSA lacked detectable antiplasmin activity. Purified variant and wild-type KPIHSA were expressed and injected into mice with ferric chloride-treated carotid arteries, with or without systemic administration of tissue plasminogen activator (Tenecteplase, TNKase). The time to arterial occlusion (TTO) or reperfusion (TTR) was assessed by Doppler ultrasound. TTR did not differ between mice treated with TNKase alone or with TNKase supplemented with 38 mg/kg KPI(M17D)HSA but was significantly prolonged to >60 min in all mice treated with TNKase and 38 mg/kg KPIHSA. TTO was significantly but equally prolonged by either 38 mg/kg KPIHSA or KPI(M17D)HSA versus vehicle controls. The antiplasmin activity of KPI is relevant in vivo but its elimination did not enhance counter-thrombosis by KPI.
Collapse
Affiliation(s)
| | - Varsha Bhakta
- Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada
| | - William P Sheffield
- Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Singh S, Saleem S, Reed GL. Alpha2-Antiplasmin: The Devil You Don't Know in Cerebrovascular and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:608899. [PMID: 33426005 PMCID: PMC7785519 DOI: 10.3389/fcvm.2020.608899] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/02/2020] [Indexed: 01/23/2023] Open
Abstract
Alpha2-antiplasmin (α2AP), the fast-reacting, serine protease inhibitor (serpin) of plasmin, was originally thought to play a key role in protection against uncontrolled, plasmin-mediated proteolysis of coagulation factors and other molecules. However, studies of humans and mice with genetic deficiency of α2AP have expanded our understanding of this serpin, particularly in disease states. Epidemiology studies have shown an association between high α2AP levels and increased risk or poor outcome in cardiovascular diseases. Mechanistic studies in disease models indicate that α2AP stops the body's own fibrinolytic system from dissolving pathologic thrombi that cause venous thrombosis, pulmonary embolism, arterial thrombosis, and ischemic stroke. In addition, α2AP fosters the development of microvascular thrombosis and enhances matrix metalloproteinase-9 expression. Through these mechanisms and others, α2AP contributes to brain injury, hemorrhage and swelling in experimental ischemic stroke. Recent studies also show that α2AP is required for the development of stasis thrombosis by inhibiting the early activation of effective fibrinolysis. In this review, we will discuss the key role played by α2AP in controlling thrombosis and fibrinolysis and, we will consider its potential value as a therapeutic target in cardiovascular diseases and ischemic stroke.
Collapse
Affiliation(s)
- Satish Singh
- Department of Medicine, University of Arizona-College of Medicine, Phoenix, AZ, United States
| | - Sofiyan Saleem
- Department of Medicine, University of Arizona-College of Medicine, Phoenix, AZ, United States
| | - Guy L Reed
- Department of Medicine, University of Arizona-College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
6
|
Xu Z, Pan S, Li G, He YF, Wang RM. Albumin Conjugating Amino Acid Schiff-Base Metal Complexes for Scavenging Superoxide Anion Radical. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0242-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
A plasmin-activatable thrombin inhibitor reduces experimental thrombosis and assists experimental thrombolysis in murine models. J Thromb Thrombolysis 2014; 39:443-51. [DOI: 10.1007/s11239-014-1157-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Preparation and antioxidant activity of albumin binding Salen Schiff-base metal complexes. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5787-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Bifunctional antioxidant enzyme mimics of albumin-binding salphen Schiff-base metal complexes. PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-11-12-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New kinds of bifunctional antioxidant enzyme mimics were prepared, and their superoxide anion radical (O2•–) and hydroxyl radical (•OH) scavenging activity was investigated. These conjugates were prepared by binding insoluble salphen [N,N-(phenylene)salicylidene] Schiff-base metal complexes (HO-salphen-M, M = Co, Mn, Cu) with bovine serum albumin (BSA). They were characterized by UV–vis spectra, circular dichroism (CD), and native polyacrylamide gel electrophoresis (PAGE). It showed that the binding mode was an axial coordination between HO-salphen-Co and amino acid residue of BSA. The structure of BSA was maintained when the binding amount of HO-salphen-Co was less than 10. After combining HO-salphen-Co into BSA, the low solubility of HO-salphen-Co was overcome, and the O2•– and •OH scavenging activity of BSA was improved two orders of magnitude. In similar inhibitory value, the scavenging rate of salphen-Co20@BSA was far higher than -others. The scavenging activity of different proportion salphen-Co@BSA was salphen-Co20@BSA > salphen-Co10@BSA > salphen-Co5@BSA > salphen-Co2@BSA. But salphen-Cu@BSA and salphen-Mn@BSA did not show •OH scavenging activity.
Collapse
|
10
|
Sheffield WP, Eltringham-Smith LJ. Incorporation of albumin fusion proteins into fibrin clots in vitro and in vivo: comparison of different fusion motifs recognized by factor XIIIa. BMC Biotechnol 2011; 11:127. [PMID: 22185689 PMCID: PMC3258216 DOI: 10.1186/1472-6750-11-127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/20/2011] [Indexed: 01/05/2023] Open
Abstract
Background The transglutaminase activated factor XIII (FXIIIa) acts to strengthen pathological fibrin clots and to slow their dissolution, in part by crosslinking active α2-antiplasmin (α2AP) to fibrin. We previously reported that a yeast-derived recombinant fusion protein comprising α2AP residues 13-42 linked to human serum albumin (HSA) weakened in vitro clots but failed to become specifically incorporated into in vivo clots. In this study, our aims were to improve both the stability and clot localization of the HSA fusion protein by replacing α2AP residues 13-42 with shorter sequences recognized more effectively by FXIIIa. Results Expression plasmids were prepared encoding recombinant HSA with the following N-terminal 23 residue extensions: H6NQEQVSPLTLLAG4Y (designated XL1); H6DQMMLPWAVTLG4Y (XL2); H6WQHKIDLPYNGAG4Y (XL3); and their 17 residue non-His-tagged equivalents (XL4, XL5, and XL6). The HSA moiety of XL4- to XL6-HSA proteins was C-terminally His-tagged. All chimerae were efficiently secreted from transformed Pichia pastoris yeast except XL3-HSA, and following nickel chelate affinity purification were found to be intact by amino acid sequencing, as was an N-terminally His-tagged version of α2AP(13-42)-HSA. Of the proteins tested, XL5-HSA was cross-linked to biotin pentylamine (BPA) most rapidly by FXIIIa, and was the most effective competitor of α2AP crosslinking not only to BPA but also to plasma fibrin clots. In the mouse ferric chloride vena cava thrombosis model, radiolabeled XL5-HSA was retained in the clot to a greater extent than recombinant HSA. In the rabbit jugular vein stasis thrombosis model, XL5-HSA was also retained in the clot, in a urea-insensitive manner indicative of crosslinking to fibrin, to a greater extent than recombinant HSA. Conclusions Fusion protein XL5-HSA (DQMMLPWAVTLG4Y-HSAH6) was found to be more active as a substrate for FXIIIa-mediated transamidation than seven other candidate fusion proteins in vitro. The improved stability and reactivity of this chimeric protein was further evidenced by its incorporation into in vivo clots formed in thrombosis models in both mice and rabbits.
Collapse
Affiliation(s)
- William P Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|