1
|
Dos Santos JC, Musso F, Mayer WP, Baptista JDS. Descriptive and topographical analysis of the labyrinthine artery in human fetuses. Anat Sci Int 2020; 95:374-380. [PMID: 32062763 DOI: 10.1007/s12565-020-00531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/04/2020] [Indexed: 11/24/2022]
Abstract
Hearing or/and balance impairments may be caused by disorders of the labyrinthine artery (LA) and their branches. Most findings regarding the LA anatomy have been acquired through investigation of the cerebellopontine angle (CPA) in animal or adult human specimens. Eighty-eight CPAs and LAs of human fetuses were investigated using angio-techniques and microdissections. We found 15 intricate forms of distribution of LA. The LA usually originated from the extra-meatus loop in the anterior inferior cerebellar artery (AICA). The distribution of its terminal branches was 53.42% uni-arterial, 44.31% bi-arterial, and 2.27% tri-arterial systems. In the uni-arterial system, the LA described an anterior superior path to the cochlear nerve (CN) and originated its terminal branches in the gap between CN and the inferior part of the vestibular nerve. In the bi-arterial system, the anterior LA was located anterior and superior to the CN while the posterior LA appeared posterosuperior to the superior part of the vestibular nerve. In the tri-arterial system, the terminal branches originated directly from the AICA loop. Our results provide anatomical support to explain how compressions in the LA branches inside the internal acoustic meatus, as evoked by Schwannomas in the VII and VIII nerves, can lead to hearing and balance loss. The zone of the posterior vestibular nerve appeared to be a "safe area" for invasive procedures in these specimens.
Collapse
Affiliation(s)
| | - Fernando Musso
- Escola Superior de Ciencias da Santa Casa de Misericórdia de Vitoria, Vitoria, Brazil
| | - William Paganini Mayer
- Department of Medical Neuroscience at Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Josemberg Da Silva Baptista
- Laboratory of Applied Morphology (LEMA), Universidade Federal Do Espirito Santo, Marechal Campos Avenue, 1468, Maruipe, Vitoria, Espirito Santo, 29043-900, Brazil.
| |
Collapse
|
2
|
Xiao J, Zhang Z, Zhang W, Wu L, Zhang L, Wang Y, Li L, Li X, Ma K. Primary Cultivation and Identification of Vascular Smooth Muscle Cells from the Spiral Modiolar Artery of Guinea Pigs. Med Sci Monit 2018; 24:7023-7034. [PMID: 30280719 PMCID: PMC6699200 DOI: 10.12659/msm.912606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background This article reports a method to obtain vascular smooth muscle cells (SMCs) from the spiral modiolar artery (SMA) of guinea pigs and provides materials for related experimental studies. Material/Methods SMA was separated from the cochlea of guinea pigs, digested with trypsin (1.25 g/L) and allowed to adhere in a 35-mm culture dish. The morphology of the sample was investigated, and the sample was identified by immunofluorescence analysis, flow cytometry, Western blot, and RT-PCR. Cell viability was calculated using trypan blue and flow cytometry. Whole-cell patch clamp was used to record the membrane input resistance (Rinput), reciprocal membrane input conductance (Ginput), membrane input capacitance (Cinput), and resting membrane potential (RP) of the SMCs. Results Microscopy results showed that the cells had typical peak–valley growth pattern. The cell growth curve was similar to an S curve, and flow cytometry results showed that the cell apoptosis rate was less than 10%. Moreover, flow cytometry, immunofluorescent staining, Western blot and RT-PCR detected the specific and intensely positive expression of cell type-specific markers α-SM-actin, SM22α, calponin and desmin. Furthermore, following properties of the P3 and P6 cells were obtained: Rinput, 2611±356 and 2477±338 MΩ; Ginput, 0.454±0.071 and 0.273±0.037 ns; Cinput, 17.029±0.917 and 18.042±1.051 pF, and RP −20.602±1.503 and −22.192±1.905 mV. Conclusions Various highly purified SMCs were obtained from the SMA of guinea pigs. We provide an ideal experimental material for the study of the pathogenesis of diseases related to the circulation disturbances in the inner ear in vitro. The results can be used to evaluate the effects of drugs on vascular smooth muscle.
Collapse
Affiliation(s)
- Jingjie Xiao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Zhiping Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Otolaryngology, The First Affiliated Hospital, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Wei Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Gerontology, The First Affiliated Hospital, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Lei Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Cardiology, The First Affiliated Hospital, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Liang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Yang Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Li Li
- Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Pathophysiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Ketao Ma
- Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| |
Collapse
|
3
|
Krishnamoorthy G, Reimann K, Wangemann P. Ryanodine-induced vasoconstriction of the gerbil spiral modiolar artery depends on the Ca 2+ sensitivity but not on Ca 2+ sparks or BK channels. BMC PHYSIOLOGY 2016; 16:6. [PMID: 27806708 PMCID: PMC5093982 DOI: 10.1186/s12899-016-0026-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/13/2016] [Indexed: 01/26/2023]
Abstract
Background In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels. Methods SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed. Results Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O. Conclusions The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction.
Collapse
Affiliation(s)
- Gayathri Krishnamoorthy
- Anatomy & Physiology Department, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, Kansas, 66506-5802, USA
| | - Katrin Reimann
- Anatomy & Physiology Department, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, Kansas, 66506-5802, USA.,Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Centre, and Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Wangemann
- Anatomy & Physiology Department, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, Kansas, 66506-5802, USA.
| |
Collapse
|
4
|
Krishnamoorthy-Natarajan G, Koide M. BK Channels in the Vascular System. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:401-38. [PMID: 27238270 DOI: 10.1016/bs.irn.2016.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators.
Collapse
Affiliation(s)
| | - M Koide
- University of Vermont, Burlington, VT, United States
| |
Collapse
|
5
|
Mujica-Mota MA, Gasbarrino K, Rappaport JM, Shapiro RS, Daniel SJ. The effect of caffeine on hearing in a guinea pig model of acoustic trauma. Am J Otolaryngol 2014; 35:99-105. [PMID: 24406118 DOI: 10.1016/j.amjoto.2013.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Caffeine is a widely consumed substance affecting the metabolism of adenosine and cellular metabolism of calcium. Noise also affects these metabolic pathways while inducing hearing loss. The aim of this study was to determine the effect of daily intake of caffeine on hearing loss after an episode of acoustic trauma in guinea pigs. MATERIALS AND METHODS In this pilot study, forty guinea pigs were randomly divided into four groups: group I (control, n=10) received intraperitoneal saline, group II (n=10) received intraperitoneal caffeine (120 mg/kg/day) for 14 days, group III (n=10) was exposed to noise (tone of 6 kHz at 120 dB for one hour) and group IV (n=10) was exposed to noise as group III and received caffeine as group II. Auditory brainstem responses were measured at four different frequencies (8, 16, 20, and 25 kHz) prior to and at intervals of 1h, 3 days, 10 days, and 14 days after the initial treatment. On day 14, morphological analysis was performed to assess the effects of caffeine on acoustic trauma. RESULTS Aggravated hearing loss was observed in group IV after 10 days of follow-up. After 14 days, one of the four frequencies (8 kHz) tested showed statistically significant greater impairment in hearing (8.2 ± 3.6 dB, p=0.026). Auditory hair cells showed no difference while spiral ganglion cell counts were diminished in group IV (p<0.05). CONCLUSION These findings indicate that caffeine may have a detrimental effect on hearing recovery after a single event of acoustic trauma.
Collapse
MESH Headings
- Animals
- Caffeine/administration & dosage
- Cochlea/ultrastructure
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Female
- Guinea Pigs
- Hearing/drug effects
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Injections, Intraperitoneal
- Microscopy, Electron, Scanning
- Pilot Projects
- Purinergic P1 Receptor Antagonists/administration & dosage
Collapse
Affiliation(s)
- Mario A Mujica-Mota
- McGill Auditory Sciences Laboratory, Montreal Children's Hospital, Department of Otolaryngology-Head and Neck Surgery, McGill University, Montréal, Québec, Canada
| | - Karina Gasbarrino
- McGill Auditory Sciences Laboratory, Montreal Children's Hospital, Department of Otolaryngology-Head and Neck Surgery, McGill University, Montréal, Québec, Canada
| | - Jamie M Rappaport
- McGill Auditory Sciences Laboratory, Montreal Children's Hospital, Department of Otolaryngology-Head and Neck Surgery, McGill University, Montréal, Québec, Canada; Jewish General Hospital, Department of Otolaryngology-Head and Neck Surgery, Montréal, Québec, Canada
| | - Robert S Shapiro
- McGill Auditory Sciences Laboratory, Montreal Children's Hospital, Department of Otolaryngology-Head and Neck Surgery, McGill University, Montréal, Québec, Canada
| | - Sam J Daniel
- McGill Auditory Sciences Laboratory, Montreal Children's Hospital, Department of Otolaryngology-Head and Neck Surgery, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Francis M, Qian X, Charbel C, Ledoux J, Parker JC, Taylor MS. Automated region of interest analysis of dynamic Ca²+ signals in image sequences. Am J Physiol Cell Physiol 2012; 303:C236-43. [PMID: 22538238 DOI: 10.1152/ajpcell.00016.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) signals are commonly measured using fluorescent Ca(2+) indicators and microscopy techniques, but manual analysis of Ca(2+) measurements is time consuming and subject to bias. Automated region of interest (ROI) detection algorithms have been employed for identification of Ca(2+) signals in one-dimensional line scan images, but currently there is no process to integrate acquisition and analysis of ROIs within two-dimensional time lapse image sequences. Therefore we devised a novel algorithm for rapid ROI identification and measurement based on the analysis of best-fit ellipses assigned to signals within noise-filtered image sequences. This algorithm was implemented as a plugin for ImageJ software (National Institutes of Health, Bethesda, MD). We evaluated the ability of our algorithm to detect synthetic Gaussian signal pulses embedded in background noise. The algorithm placed ROIs very near to the center of a range of signal pulses, resulting in mean signal amplitude measurements of 99.06 ± 4.11% of true amplitude values. As a practical application, we evaluated both agonist-induced Ca(2+) responses in cultured endothelial cell monolayers, and subtle basal endothelial Ca(2+) dynamics in opened artery preparations. Our algorithm enabled comprehensive measurement of individual and localized cellular responses within cultured cell monolayers. It also accurately identified characteristic Ca(2+) transients, or Ca(2+) pulsars, within the endothelium of intact mouse mesenteric arteries and revealed the distribution of this basal Ca(2+) signal modality to be non-Gaussian with respect to amplitude, duration, and spatial spread. We propose that large-scale statistical evaluations made possible by our algorithm will lead to a more efficient and complete characterization of physiologic Ca(2+)-dependent signaling.
Collapse
Affiliation(s)
- Michael Francis
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA
| | | | | | | | | | | |
Collapse
|