1
|
Simonsen U, Petersen AG. Perivascular adipose tissue: A new possible tissue augmenting coronary vasodilatation in response to acute hypoxia. Acta Physiol (Oxf) 2018; 224:e13171. [PMID: 30102843 DOI: 10.1111/apha.13171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - Asbjørn G. Petersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| |
Collapse
|
2
|
Smit B, Smulders YM, Eringa EC, Oudemans - van Straaten HM, Girbes ARJ, Wever KE, Hooijmans CR, Spoelstra - de Man AME. Effects of hyperoxia on vascular tone in animal models: systematic review and meta-analysis. Crit Care 2018; 22:189. [PMID: 30075723 PMCID: PMC6091089 DOI: 10.1186/s13054-018-2123-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Arterial hyperoxia may induce vasoconstriction and reduce cardiac output, which is particularly undesirable in patients who already have compromised perfusion of vital organs. Due to the inaccessibility of vital organs in humans, vasoconstrictive effects of hyperoxia have primarily been studied in animal models. However, the results of these studies vary substantially. Here, we investigate the variation in magnitude of the hyperoxia effect among studies and explore possible sources of heterogeneity, such as vascular region and animal species. METHOD Pubmed and Embase were searched for eligible studies up to November 2017. In vivo and ex vivo animal studies reporting on vascular tone changes induced by local or systemic normobaric hyperoxia were included. Experiments with co-interventions (e.g. disease or endothelium removal) or studies focusing on lung, brain or fetal vasculature or the ductus arteriosus were not included. We extracted data pertaining to species, vascular region, blood vessel characteristics and method of hyperoxia induction. Overall effect sizes were estimated with a standardized mean difference (SMD) random effects model. RESULTS We identified a total of 60 studies, which reported data on 67 in vivo and 18 ex vivo experiments. In the in vivo studies, hyperoxia caused vasoconstriction with an SMD of - 1.42 (95% CI - 1.65 to - 1.19). Ex vivo, the overall effect size was SMD - 0.56 (95% CI - 1.09 to - 0.03). Between-study heterogeneity (I2) was high for in vivo (72%, 95% CI 62 to 85%) and ex vivo studies (86%, 95% CI 78 to 98%). In vivo, in comparison to the overall effect size, hyperoxic vasoconstriction was less pronounced in the intestines and skin (P = 0.03) but enhanced in the cremaster muscle region (P < 0.001). Increased constriction was seen in vessels 15-25 μm in diameter. Hyperoxic constriction appeared to be directly proportional to oxygen concentration. For ex vivo studies, heterogeneity could not be explained with subgroup analysis. CONCLUSION The effect of hyperoxia on vascular tone is substantially higher in vivo than ex vivo. The magnitude of the constriction is most pronounced in vessels ~ 15-25 μm in diameter and is proportional to the level of hyperoxia. Relatively increased constriction was seen in muscle vasculature, while reduced constriction was seen in the skin and intestines.
Collapse
Affiliation(s)
- Bob Smit
- Department of Intensive Care, VU University Medical Center, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands
| | - Yvo M. Smulders
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Etto C. Eringa
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Armand R. J. Girbes
- Department of Intensive Care, VU University Medical Center, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands
| | - Kimberley E. Wever
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carlijn R. Hooijmans
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
3
|
Attaye I, Smulders YM, de Waard MC, Oudemans-van Straaten HM, Smit B, Van Wijhe MH, Musters RJ, Koolwijk P, Spoelstra-de Man AME. The effects of hyperoxia on microvascular endothelial cell proliferation and production of vaso-active substances. Intensive Care Med Exp 2017; 5:22. [PMID: 28409476 PMCID: PMC5391371 DOI: 10.1186/s40635-017-0135-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperoxia, an arterial oxygen pressure of more than 100 mmHg or 13% O2, frequently occurs in hospitalized patients due to administration of supplemental oxygen. Increasing evidence suggests that hyperoxia induces vasoconstriction in the systemic (micro)circulation, potentially affecting organ perfusion. This study addresses effects of hyperoxia on viability, proliferative capacity, and on pathways affecting vascular tone in cultured human microvascular endothelial cells (hMVEC). METHODS hMVEC of the systemic circulation were exposed to graded oxygen fractions of 20, 30, 50, and 95% O2 for 8, 24, and 72 h. These fractions correspond to 152, 228, 380, and 722 mmHg, respectively. Cell proliferation and viability was measured via a proliferation assay, peroxynitrite formation via anti-nitrotyrosine levels, endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) levels via q-PCR and western blot analysis. RESULTS Exposing hMVEC to 50 and 95% O2 for more than 24 h impaired cell viability and proliferation. Hyperoxia did not significantly affect nitrotyrosine levels, nor eNOS mRNA and protein levels, regardless of the exposure time or oxygen concentration used. Phosphorylation of eNOS at the serine 1177 (S1177) residue and ET-1 mRNA levels were also not significantly affected. CONCLUSIONS Exposure of isolated human microvascular endothelial cells to marked hyperoxia for more than 24 h decreases cell viability and proliferation. Our results do not support a role of eNOS mRNA and protein or ET-1 mRNA in the potential vasoconstrictive effects of hyperoxia on isolated hMVEC.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands.
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Yvo M Smulders
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Monique C de Waard
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bob Smit
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Michiel H Van Wijhe
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rene J Musters
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Koolwijk
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Hyperoxia does not directly affect vascular tone in isolated arteries from mice. PLoS One 2017; 12:e0182637. [PMID: 28796814 PMCID: PMC5552161 DOI: 10.1371/journal.pone.0182637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/22/2017] [Indexed: 01/10/2023] Open
Abstract
Hospitalized patients often receive oxygen supplementation, which can lead to a supraphysiological oxygen tension (hyperoxia). Hyperoxia can have hemodynamic effects, including an increase in systemic vascular resistance. This increase suggests hyperoxia-induced vasoconstriction, yet reported direct effects of hyperoxia on vessel tone have been inconsistent. Furthermore, hyperoxia-induced changes in vessel diameter have not been studied in mice, currently the most used mammal model of disease. In this study we set out to develop a pressure-myograph model using isolated vessels from mice for investigation of pathways involved in hyperoxic vasoconstriction. Isolated conduit and resistance arteries (femoral artery and gracilis arteriole, respectively) from C57BL/6 mice were exposed to normoxia (PO2 of 80 mmHg) and three levels of hyperoxia (PO2 of 215, 375 and 665 mmHg) in a no-flow pressure myograph setup. Under the different PO2 levels, dose-response agonist induced endothelium-dependent vasodilation (acetylcholine, arachidonic acid), endothelium-independent vasodilation (s-nitroprusside), as well as vasoconstriction (norepinephrine, prostaglandin F2α) were examined. The investigated arteries did not respond to oxygen by a change in vascular tone. In the dose-response studies, maximal responses and EC50 values to any of the aforementioned agonists were not affected by hyperoxia either. We conclude that arteries and arterioles from healthy mice are not intrinsically sensitive to hyperoxic conditions. The present ex-vivo model is therefore not suitable for further research into mechanisms of hyperoxic vasoconstriction.
Collapse
|
5
|
Tawa M, Shimosato T, Sakonjo H, Okamura T. Responsiveness of Coronary Arteries to Nitroglycerin under Hypoxia: The Importance of the Endothelium. Pharmacology 2017; 99:275-280. [DOI: 10.1159/000461587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/10/2017] [Indexed: 11/19/2022]
Abstract
<b><i>Background/Aims:</i></b> Nitroglycerin is widely used as a coronary vasodilator in the treatment of ischemic heart diseases. This study investigated the influence of hypoxia on nitroglycerin-induced relaxation in endothelium-intact and -denuded rabbit, monkey, and porcine coronary arteries. <b><i>Methods:</i></b> Helically cut strips of coronary arteries were suspended in organ chambers, and isometric tension was recorded. <b><i>Results:</i></b> Nitroglycerin concentration dependently relaxed endothelium-intact rabbit coronary arteries, which were not different under normoxic and hypoxic conditions. On the other hand, nitroglycerin-induced relaxation of endothelium-denuded arteries was significantly attenuated by hypoxia. Similarly, the relaxant response of endothelium-intact monkey coronary arteries to nitroglycerin was not affected by hypoxia, whereas that of endothelium-denuded arteries was impaired. As is the case with rabbit and monkey coronary arteries, exposure to hypoxia resulted in impaired relaxation by nitroglycerin in endothelium-denuded but not endothelium-intact porcine coronary arteries. <b><i>Conclusion:</i></b> These findings suggest that coronary endothelium plays a pivotal role in preventing the hypoxia-induced impairment of nitroglycerin responsiveness, regardless of the animal species.
Collapse
|
6
|
Che X, Wang X, Zhang J, Peng C, Zhen Y, Shao X, Zhang G, Dong L. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation. Am J Transl Res 2016; 8:3319-3328. [PMID: 27648122 PMCID: PMC5009384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. METHODS A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. RESULTS Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. CONCLUSIONS Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease.
Collapse
Affiliation(s)
- Xia Che
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical UniversityHefei 230032, China
| | - Xin Wang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical UniversityHefei 230032, China
| | - Junyan Zhang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical UniversityHefei 230032, China
| | - Chengfeng Peng
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical UniversityHefei 230032, China
| | - Yilan Zhen
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical UniversityHefei 230032, China
| | - Xu Shao
- Hefei Qi-Xing Medicine and Technology Co., LtdHefei 230084, Anhui, China
| | - Gongliang Zhang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical UniversityHefei 230032, China
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical UniversityHefei 230032, China
| |
Collapse
|
7
|
Hedegaard ER, Johnsen J, Povlsen JA, Jespersen NR, Shanmuganathan JA, Laursen MR, Kristiansen SB, Simonsen U, Botker HE. Inhibition of KV7 Channels Protects the Rat Heart against Myocardial Ischemia and Reperfusion Injury. ACTA ACUST UNITED AC 2016; 357:94-102. [DOI: 10.1124/jpet.115.230409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
|
8
|
Morales-Cano D, Moreno L, Barreira B, Pandolfi R, Chamorro V, Jimenez R, Villamor E, Duarte J, Perez-Vizcaino F, Cogolludo A. Kv7 channels critically determine coronary artery reactivity: left-right differences and down-regulation by hyperglycaemia. Cardiovasc Res 2015; 106:98-108. [PMID: 25616413 DOI: 10.1093/cvr/cvv020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Voltage-gated potassium channels encoded by KCNQ genes (Kv7 channels) are emerging as important regulators of vascular tone. In this study, we analysed the contribution of Kv7 channels to the vasodilation induced by hypoxia and the cyclic AMP pathway in the coronary circulation. We also assessed their regional distribution and possible impairment by diabetes. METHODS AND RESULTS We examined the effects of Kv7 channel modulators on K+ currents and vascular reactivity in rat left and right coronary arteries (LCAs and RCAs, respectively). Currents from LCA were more sensitive to Kv7 channel inhibitors (XE991, linopirdine) and activators (flupirtine, retigabine) than those from RCA. Accordingly, LCAs were more sensitive than RCAs to the relaxation induced by Kv7 channel enhancers. Likewise, relaxation induced by the adenylyl cyclase activator forskolin and hypoxia, which were mediated through Kv7 channel activation, were greater in LCA than in RCA. KCNQ1 and KCNQ5 expression was markedly higher in LCA than in RCA. After incubation with high glucose (HG, 30 mmol/L), myocytes from LCA, but not from RCA, were more depolarized and showed reduced Kv7 currents. In HG-incubated LCA, the effects of Kv7 channel modulators and forskolin were diminished, and the expression of KCNQ1 and KCNQ5 was reduced. Finally, vascular responses induced by Kv7 channel modulators were impaired in LCA, but not in RCA, from type 1 diabetic rats. CONCLUSION Our results reveal that the high expression and function of Kv7 channels in the LCA and their down-regulation by diabetes critically determine the sensitivity to key regulators of coronary tone.
Collapse
Affiliation(s)
- Daniel Morales-Cano
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rachele Pandolfi
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Virginia Chamorro
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rosario Jimenez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
9
|
Wong PS, Roberts RE, Randall MD. Sex differences in endothelial function in porcine coronary arteries: a role for H2O2 and gap junctions? Br J Pharmacol 2014; 171:2751-66. [PMID: 24467384 DOI: 10.1111/bph.12595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/02/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardiovascular risk is higher in men and postmenopausal women compared with premenopausal women. This may be due to sex differences in endothelial function. Here, sex differences in endothelial function of porcine coronary arteries (PCAs) were investigated. EXPERIMENTAL APPROACH Distal PCAs were studied under myographic conditions and after precontraction with U46619. Concentration-response curves to bradykinin were constructed in the presence of a range of inhibitors. KEY RESULTS In male and female PCAs, bradykinin produced comparable vasorelaxant responses. Inhibition of NO and prostanoid synthesis produced greater inhibition in males compared with females. Removing H2 O2 with PEG-catalase reduced the maximum relaxation in the absence, but not the presence of L-NAME and indomethacin in females, and had no effect in males. Blocking gap junctions with 100 µM carbenoxolone or 18α-glycyrrhetinic acid further inhibited the endothelium-derived hyperpolarization (EDH)-mediated response in females but not in males. In female PCAs, the maximum EDH-mediated response was reduced by inhibiting SKCa with apamin and by inhibiting IKCa with TRAM-34, or with both. In male PCAs, at maximum bradykinin concentration, the EDH-mediated response was reduced in the presence of apamin but not TRAM-34. Western blot did not detect any differences in connexins 40 or 43 or in IKCa expression between male and female PCAs. CONCLUSIONS AND IMPLICATIONS H2 O2 mediated some part of endothelium-dependent vasorelaxation in female PCAs and EDH was more important in females, with differences in the contribution of gap junctions and IKCa channels. These findings may contribute to understanding vascular protection in premenopausal women.
Collapse
Affiliation(s)
- P S Wong
- Pharmacology Research Group, Queen's Medical Centre, School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | | |
Collapse
|
10
|
Hedegaard ER, Nielsen BD, Kun A, Hughes AD, Krøigaard C, Mogensen S, Matchkov VV, Fröbert O, Simonsen U. KV 7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries. Br J Pharmacol 2014; 171:69-82. [PMID: 24111896 DOI: 10.1111/bph.12424] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/08/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypoxia causes vasodilatation of coronary arteries, but the underlying mechanisms are poorly understood. We hypothesized that hypoxia reduces intracellular Ca(2+) concentration ([Ca(2+)](i)) by opening of K channels and release of H₂S. EXPERIMENTAL APPROACH Porcine coronary arteries without endothelium were mounted for measurement of isometric tension and [Ca(2+)](i), and the expression of voltage-gated K channels K(V)7 channels (encoded by KCNQ genes) and large-conductance calcium-activated K channels (K(Ca)1.1) was examined. Voltage clamp assessed the role of K(V)7 channels in hypoxia. KEY RESULTS Gradual reduction of oxygen concentration from 95 to 1% dilated the precontracted coronary arteries and this was associated with reduced [Ca(2+)](i) in PGF(2α) (10 μM)-contracted arteries whereas no fall in [Ca(2+)](i) was observed in 30 mM K-contracted arteries. Blockers of ATP-sensitive voltage-gated potassium channels and K(Ca)1.1 inhibited hypoxia-induced dilatation in PGF2α -contracted arteries; this inhibition was more marked in the presence of the K(v)7 channel blockers, XE991 and linopirdine, while a K(V)7.1 blocker, failed to change hypoxic vasodilatation. XE991 also inhibited H₂S- and adenosine-induced vasodilatation. PCR revealed the expression of K(V)7.1, K(V)7.4, K(V)7.5 and K(Ca)1.1 channels, and K(Ca)1.1, K(V)7.4 and K(V)7.5 were also identified by immunoblotting. Voltage clamp studies showed the XE991-sensitive current was more marked in hypoxic conditions. CONCLUSION The K(V)7.4 and K(V)7.5 channels, which we identified in the coronary arteries, appear to have a major role in hypoxia-induced vasodilatation. The voltage clamp results further support the involvement of K(V)7 channels in this vasodilatation. Activation of these K(V)7 channels may be induced by H₂S and adenosine.
Collapse
Affiliation(s)
- E R Hedegaard
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Paradis A, Zhang L. Role of endothelin in uteroplacental circulation and fetal vascular function. Curr Vasc Pharmacol 2014; 11:594-605. [PMID: 24063378 DOI: 10.2174/1570161111311050004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/10/2012] [Accepted: 07/12/2012] [Indexed: 01/01/2023]
Abstract
Endothelins are 21-amino acid peptides involved in vascular homeostasis. Three types of peptide have been identified, with endothelin-1 (ET-1) being the most potent vasoconstrictor currently known. Two endothelin receptor subtypes are found in various tissues, including the brain, heart, blood vessel, lung, and placenta. The ETA-receptor is associated with vasoconstriction in vascular smooth muscle. Conversely, the ETB-receptor can elicit a vasoconstrictor effect in vascular smooth muscle and a vasodilator effect via its action in endothelial cells. Both receptors play a key role in maintaining circulatory homeostasis and vascular function. Changes in ET-1 expression are found in various disease states, and overexpression of ET-1 is observed in hypertension and preeclampsia in pregnancy. Placental localization of ET-1 implies a key role in regulating the uteroplacental circulation. Additionally, ET-1 is important in the fetal circulation and is involved in the pulmonary circulation and closure of the ductus arteriosus after birth, as well as fetal growth constriction in utero. ET receptor antagonists and nitric oxide donors may provide therapeutic potential in treating conditions associated with overexpression of ET and hypertension.
Collapse
Affiliation(s)
- Alexandra Paradis
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
12
|
Hedegaard ER, Nielsen BD, Mogensen S, Rembold CM, Frøbert O, Simonsen U. Mechanisms involved in increased sensitivity to adenosine A(2A) receptor activation and hypoxia-induced vasodilatation in porcine coronary arteries. Eur J Pharmacol 2013; 723:216-26. [PMID: 24309216 DOI: 10.1016/j.ejphar.2013.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 01/11/2023]
Abstract
Hypoxia-induced coronary vasorelaxation is a compensatory mechanism increasing blood flow. We hypothesized that hypoxia shares pathways with adenosine and causes vasorelaxation through the adenosine A(2A) receptor and force suppression by increasing cAMP and phosphorylated heat shock protein (HSP)20. Adenosine receptors in porcine left anterior descending coronary arteries (LAD) were examined by RT-PCR and isometric tension recording in myographs. Vasorelaxation was induced by adenosine, 1% oxygen, or both in the absence or presence of ZM241385, an adenosine A(2A) receptor antagonist. cAMP was determined by ELISA and p-HSP20/HSP20 and p-MLC/MLC were determined by immunoblotting and densitometric analyses. In coronary arteries exposed to 1% oxygen, there was increased sensitivity to adenosine, the adenosine A2 selective agonist NECA, and the adenosine A(2A) selective receptor agonist CGS21680. ZM241385 shifted concentration-response curves for CGS21680 to the right, whereas the adenosine A1 antagonist DPCPX, the adenosine A2B receptor antagonist MRS1754 and the adenosine A3 receptor antagonist MRS1523 failed to reduce vasodilatation induced by CGS21680. 1% oxygen or adenosine increased cAMP accumulation and HSP20 phosphorylation without changing T850-MYPT1 and MLC phosphorylation. ZM241385 failed to change 1% oxygen-induced vasodilation, cAMP accumulation, HSP20 phosphorylation and MLC phosphorylation. The PKA inhibitor Rp-8-CPT-cAMPS significantly reduced vasorelaxation induced by 1% oxygen or CGS21680. Our findings suggest that the increased sensitivity to adenosine, NECA, and CGS21680 at 1% oxygen involves adenosine A(2A) receptors. Adenosine and 1% oxygen induce vasorelaxation in PGF2α-contracted porcine coronary arteries partly by force suppression caused by increased cAMP and phosphorylation of HSP20.
Collapse
Affiliation(s)
- Elise R Hedegaard
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark.
| | - Berit D Nielsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark; Department of Rheumatology, Aarhus University Hospital, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark
| | - Christopher M Rembold
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Ole Frøbert
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark; Department of Cardiology, Örebro University Hospital, Sweden
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark
| |
Collapse
|
13
|
Plass CA, Sabdyusheva-Litschauer I, Bernhart A, Samaha E, Petnehazy O, Szentirmai E, Petrási Z, Lamin V, Pavo N, Nyolczas N, Jakab A, Murlasits Z, Bergler-Klein J, Maurer G, Gyöngyösi M. Time course of endothelium-dependent and -independent coronary vasomotor response to coronary balloons and stents. Comparison of plain and drug-eluting balloons and stents. JACC Cardiovasc Interv 2012; 5:741-51. [PMID: 22814779 DOI: 10.1016/j.jcin.2012.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/07/2012] [Accepted: 03/29/2012] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This study sought to determine the time dependency of the endothelium-dependent and -independent vascular responses after percutaneous coronary intervention (PCI) with drug-eluting (DEB) or plain balloons, bare-metal (BMS), and drug-eluting (DES) stents, or controls. BACKGROUND Long-term endothelial dysfunction after DES implantation is associated with delayed healing and late thrombosis. METHODS Domestic pigs underwent PCI using DEB or plain balloon, BMS, or DES. The dilated and stented segments, and the proximal reference segments of stents and control arteries were explanted at 5-h, 24-h, 1-week, and 1-month follow-up (FUP). Endothelin-induced vasoconstriction and endothelium-dependent and -independent vasodilation of the arterial segments were determined in vitro and were related to histological results. RESULTS DES- and BMS-treated arteries showed proneness to vasoconstriction 5 h post-PCI. The endothelium-dependent vasodilation was profoundly (p < 0.05) impaired early after PCI (9.8 ± 3.7%, 13.4 ± 9.2%, 5.7 ± 5.3%, and 7.6 ± 4.7% using plain balloon, DEB, BMS, and DES, respectively), as compared with controls (49.6 ± 9.5%), with slow recovery. In contrast to DES, the endothelium-related vasodilation of vessels treated with plain balloon, DEB, and BMS was increased at 1 month, suggesting enhanced endogenous nitric oxide production of the neointima. The endothelium-independent (vascular smooth muscle-related) vasodilation decreased significantly at 1 day, with slow normalization during FUP. All PCI-treated vessels exhibited imbalance between vasoconstriction-vasodilation, which was more pronounced in DES- and BMS-treated vessels. No correlation between histological parameters and vasomotor function was found, indicating complex interactions between the healing neoendothelium and smooth muscle post-PCI. CONCLUSIONS Coronary arteries treated with plain balloon, DEB, BMS, and DES showed time-dependent loss of endothelial-dependent and -independent vasomotor function, with imbalanced contraction/dilation capacity.
Collapse
Affiliation(s)
- Christian A Plass
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|