1
|
Harihar B, Saravanan KM, Gromiha MM, Selvaraj S. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design. Mol Biotechnol 2024:10.1007/s12033-024-01119-4. [PMID: 38498284 DOI: 10.1007/s12033-024-01119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Inter-residue interactions in protein structures provide valuable insights into protein folding and stability. Understanding these interactions can be helpful in many crucial applications, including rational design of therapeutic small molecules and biologics, locating functional protein sites, and predicting protein-protein and protein-ligand interactions. The process of developing machine learning models incorporating inter-residue interactions has been improved recently. This review highlights the theoretical models incorporating inter-residue interactions in predicting folding and unfolding rates of proteins. Utilizing contact maps to depict inter-residue interactions aids researchers in developing computer models for detecting remote homologs and interface residues within protein-protein complexes which, in turn, enhances our knowledge of the relationship between sequence and structure of proteins. Further, the application of contact maps derived from inter-residue interactions is highlighted in the field of drug discovery. Overall, this review presents an extensive assessment of the significant models that use inter-residue interactions to investigate folding rates, unfolding rates, remote homology, and drug development, providing potential future advancements in constructing efficient computational models in structural biology.
Collapse
Affiliation(s)
- Balasubramanian Harihar
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Konda Mani Saravanan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Michael M Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Samuel Selvaraj
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
2
|
Putz I, Brock O. Elastic network model of learned maintained contacts to predict protein motion. PLoS One 2017; 12:e0183889. [PMID: 28854238 PMCID: PMC5576689 DOI: 10.1371/journal.pone.0183889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
We present a novel elastic network model, lmcENM, to determine protein motion even for localized functional motions that involve substantial changes in the protein's contact topology. Existing elastic network models assume that the contact topology remains unchanged throughout the motion and are thus most appropriate to simulate highly collective function-related movements. lmcENM uses machine learning to differentiate breaking from maintained contacts. We show that lmcENM accurately captures functional transitions unexplained by the classical ENM and three reference ENM variants, while preserving the simplicity of classical ENM. We demonstrate the effectiveness of our approach on a large set of proteins covering different motion types. Our results suggest that accurately predicting a "deformation-invariant" contact topology offers a promising route to increase the general applicability of ENMs. We also find that to correctly predict this contact topology a combination of several features seems to be relevant which may vary slightly depending on the protein. Additionally, we present case studies of two biologically interesting systems, Ferric Citrate membrane transporter FecA and Arachidonate 15-Lipoxygenase.
Collapse
Affiliation(s)
- Ines Putz
- Robotics and Biology Laboratory, Department of Computer Science and Electrical Engineering, Technische Universität Berlin, Berlin, Berlin, Germany
| | - Oliver Brock
- Robotics and Biology Laboratory, Department of Computer Science and Electrical Engineering, Technische Universität Berlin, Berlin, Berlin, Germany
| |
Collapse
|
3
|
Stahl K, Schneider M, Brock O. EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction. BMC Bioinformatics 2017; 18:303. [PMID: 28623886 PMCID: PMC5474060 DOI: 10.1186/s12859-017-1713-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Accurately predicted contacts allow to compute the 3D structure of a protein. Since the solution space of native residue-residue contact pairs is very large, it is necessary to leverage information to identify relevant regions of the solution space, i.e. correct contacts. Every additional source of information can contribute to narrowing down candidate regions. Therefore, recent methods combined evolutionary and sequence-based information as well as evolutionary and physicochemical information. We develop a new contact predictor (EPSILON-CP) that goes beyond current methods by combining evolutionary, physicochemical, and sequence-based information. The problems resulting from the increased dimensionality and complexity of the learning problem are combated with a careful feature analysis, which results in a drastically reduced feature set. The different information sources are combined using deep neural networks. RESULTS On 21 hard CASP11 FM targets, EPSILON-CP achieves a mean precision of 35.7% for top- L/10 predicted long-range contacts, which is 11% better than the CASP11 winning version of MetaPSICOV. The improvement on 1.5L is 17%. Furthermore, in this study we find that the amino acid composition, a commonly used feature, is rendered ineffective in the context of meta approaches. The size of the refined feature set decreased by 75%, enabling a significant increase in training data for machine learning, contributing significantly to the observed improvements. CONCLUSIONS Exploiting as much and diverse information as possible is key to accurate contact prediction. Simply merging the information introduces new challenges. Our study suggests that critical feature analysis can improve the performance of contact prediction methods that combine multiple information sources. EPSILON-CP is available as a webservice: http://compbio.robotics.tu-berlin.de/epsilon/.
Collapse
Affiliation(s)
- Kolja Stahl
- Robotics and Biology Laboratory, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Marchstraße 23, Berlin, 10587 Germany
| | - Michael Schneider
- Robotics and Biology Laboratory, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Marchstraße 23, Berlin, 10587 Germany
| | - Oliver Brock
- Robotics and Biology Laboratory, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Marchstraße 23, Berlin, 10587 Germany
| |
Collapse
|
4
|
Bhattacharya D, Cao R, Cheng J. UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling. Bioinformatics 2016; 32:2791-9. [PMID: 27259540 PMCID: PMC5018369 DOI: 10.1093/bioinformatics/btw316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/15/2016] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Recent experimental studies have suggested that proteins fold via stepwise assembly of structural units named 'foldons' through the process of sequential stabilization. Alongside, latest developments on computational side based on probabilistic modeling have shown promising direction to perform de novo protein conformational sampling from continuous space. However, existing computational approaches for de novo protein structure prediction often randomly sample protein conformational space as opposed to experimentally suggested stepwise sampling. RESULTS Here, we develop a novel generative, probabilistic model that simultaneously captures local structural preferences of backbone and side chain conformational space of polypeptide chains in a united-residue representation and performs experimentally motivated conditional conformational sampling via stepwise synthesis and assembly of foldon units that minimizes a composite physics and knowledge-based energy function for de novo protein structure prediction. The proposed method, UniCon3D, has been found to (i) sample lower energy conformations with higher accuracy than traditional random sampling in a small benchmark of 6 proteins; (ii) perform comparably with the top five automated methods on 30 difficult target domains from the 11th Critical Assessment of Protein Structure Prediction (CASP) experiment and on 15 difficult target domains from the 10th CASP experiment; and (iii) outperform two state-of-the-art approaches and a baseline counterpart of UniCon3D that performs traditional random sampling for protein modeling aided by predicted residue-residue contacts on 45 targets from the 10th edition of CASP. AVAILABILITY AND IMPLEMENTATION Source code, executable versions, manuals and example data of UniCon3D for Linux and OSX are freely available to non-commercial users at http://sysbio.rnet.missouri.edu/UniCon3D/ CONTACT: chengji@missouri.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Jianlin Cheng
- Department of Computer Science Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Márquez-Chamorro AE, Asencio-Cortés G, Santiesteban-Toca CE, Aguilar-Ruiz JS. Soft computing methods for the prediction of protein tertiary structures: A survey. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2015.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Clark SA, Tronrud DE, Karplus PA. Residue-level global and local ensemble-ensemble comparisons of protein domains. Protein Sci 2015; 24:1528-42. [PMID: 26032515 DOI: 10.1002/pro.2714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/13/2015] [Indexed: 02/03/2023]
Abstract
Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a "consistency check" of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons.
Collapse
Affiliation(s)
- Sarah A Clark
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97331
| | - Dale E Tronrud
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97331
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97331
| |
Collapse
|
7
|
Carlsen M, Koehl P, Røgen P. On the importance of the distance measures used to train and test knowledge-based potentials for proteins. PLoS One 2014; 9:e109335. [PMID: 25411785 PMCID: PMC4239004 DOI: 10.1371/journal.pone.0109335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/31/2014] [Indexed: 12/15/2022] Open
Abstract
Knowledge-based potentials are energy functions derived from the analysis of databases of protein structures and sequences. They can be divided into two classes. Potentials from the first class are based on a direct conversion of the distributions of some geometric properties observed in native protein structures into energy values, while potentials from the second class are trained to mimic quantitatively the geometric differences between incorrectly folded models and native structures. In this paper, we focus on the relationship between energy and geometry when training the second class of knowledge-based potentials. We assume that the difference in energy between a decoy structure and the corresponding native structure is linearly related to the distance between the two structures. We trained two distance-based knowledge-based potentials accordingly, one based on all inter-residue distances (PPD), while the other had the set of all distances filtered to reflect consistency in an ensemble of decoys (PPE). We tested four types of metric to characterize the distance between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*), and two based on intrinsic geometry (Q* and MT). The corresponding eight potentials were tested on a large collection of decoy sets. We found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms PPD, emphasizing the benefits of capturing consistent information in an ensemble. The relevance of these results for the design of knowledge-based potentials is discussed.
Collapse
Affiliation(s)
- Martin Carlsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Patrice Koehl
- Department of Computer Science and Genome Center, University of California Davis, Davis, CA, United States of America
| | - Peter Røgen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| |
Collapse
|
8
|
Schneider M, Brock O. Combining physicochemical and evolutionary information for protein contact prediction. PLoS One 2014; 9:e108438. [PMID: 25338092 PMCID: PMC4206277 DOI: 10.1371/journal.pone.0108438] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information--evolutionary and physicochemical--we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/.
Collapse
Affiliation(s)
- Michael Schneider
- Robotics and Biology Laboratory, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
| | - Oliver Brock
- Robotics and Biology Laboratory, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
9
|
Abstract
Motivation: Gaussian network model (GNM) is widely adopted to analyze and understand protein dynamics, function and conformational changes. The existing GNM-based approaches require atomic coordinates of the corresponding protein and cannot be used when only the sequence is known. Results: We report, first of its kind, GNM model that allows modeling using the sequence. Our linear regression-based, parameter-free, sequence-derived GNM (L-pfSeqGNM) uses contact maps predicted from the sequence and models local, in the sequence, contact neighborhoods with the linear regression. Empirical benchmarking shows relatively high correlations between the native and the predicted with L-pfSeqGNM B-factors and between the cross-correlations of residue fluctuations derived from the structure- and the sequence-based GNM models. Our results demonstrate that L-pfSeqGNM is an attractive platform to explore protein dynamics. In contrast to the highly used GNMs that require protein structures that number in thousands, our model can be used to study motions for the millions of the readily available sequences, which finds applications in modeling conformational changes, protein–protein interactions and protein functions. Contact:zerozhua@126.com Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hua Zhang
- School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P.R. China and Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | | |
Collapse
|
10
|
Eickholt J, Cheng J. A study and benchmark of DNcon: a method for protein residue-residue contact prediction using deep networks. BMC Bioinformatics 2013; 14 Suppl 14:S12. [PMID: 24267585 PMCID: PMC3850995 DOI: 10.1186/1471-2105-14-s14-s12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the use and importance of predicted protein residue-residue contacts has grown considerably with demonstrated applications such as drug design, protein tertiary structure prediction and model quality assessment. Nevertheless, reported accuracies in the range of 25-35% stubbornly remain the norm for sequence based, long range contact predictions on hard targets. This is in spite of a prolonged effort on behalf of the community to improve the performance of residue-residue contact prediction. A thorough study of the quality of current residue-residue contact predictions and the evaluation metrics used as well as an analysis of current methods is needed to stimulate further advancement in contact prediction and its application. Such a study will better explain the quality and nature of residue-residue contact predictions generated by current methods and as a result lead to better use of this contact information. RESULTS We evaluated several sequence based residue-residue contact predictors that participated in the tenth Critical Assessment of protein Structure Prediction (CASP) experiment. The evaluation was performed using standard assessment techniques such as those used by the official CASP assessors as well as two novel evaluation metrics (i.e., cluster accuracy and cluster count). An in-depth analysis revealed that while most residue-residue contact predictions generated are not accurate at the residue level, there is quite a strong contact signal present when allowing for less than residue level precision. Our residue-residue contact predictor, DNcon, performed particularly well achieving an accuracy of 66% for the top L/10 long range contacts when evaluated in a neighbourhood of size 2. The coverage of residue-residue contact areas was also greater with DNcon when compared to other methods. We also provide an analysis of DNcon with respect to its underlying architecture and features used for classification. CONCLUSIONS Our novel evaluation metrics demonstrate that current residue-residue contact predictions do contain a strong contact signal and are of better quality than standard evaluation metrics indicate. Our method, DNcon, is a robust, state-of-the-art residue-residue sequence based contact predictor and excelled under a number of evaluation schemes. It is available as a web service at http://iris.rnet.missouri.edu/dncon/.
Collapse
|
11
|
Cheng J, Eickholt J, Wang Z, Deng X. Recursive protein modeling: a divide and conquer strategy for Protein Structure Prediction and its case study in CASP9. J Bioinform Comput Biol 2012; 10:1242003. [PMID: 22809379 DOI: 10.1142/s0219720012420036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After decades of research, protein structure prediction remains a very challenging problem. In order to address the different levels of complexity of structural modeling, two types of modeling techniques--template-based modeling and template-free modeling--have been developed. Template-based modeling can often generate a moderate- to high-resolution model when a similar, homologous template structure is found for a query protein but fails if no template or only incorrect templates are found. Template-free modeling, such as fragment-based assembly, may generate models of moderate resolution for small proteins of low topological complexity. Seldom have the two techniques been integrated together to improve protein modeling. Here we develop a recursive protein modeling approach to selectively and collaboratively apply template-based and template-free modeling methods to model template-covered (i.e. certain) and template-free (i.e. uncertain) regions of a protein. A preliminary implementation of the approach was tested on a number of hard modeling cases during the 9th Critical Assessment of Techniques for Protein Structure Prediction (CASP9) and successfully improved the quality of modeling in most of these cases. Recursive modeling can significantly reduce the complexity of protein structure modeling and integrate template-based and template-free modeling to improve the quality and efficiency of protein structure prediction.
Collapse
Affiliation(s)
- Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
12
|
Eickholt J, Cheng J. Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics 2012; 28:3066-72. [PMID: 23047561 DOI: 10.1093/bioinformatics/bts598] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field. RESULTS Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance. AVAILABILITY The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/. CONTACT chengji@missouri.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jesse Eickholt
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
13
|
|
14
|
Fritsche M, Pandey RB, Farmer BL, Heermann DW. Conformational temperature-dependent behavior of a histone H2AX: a coarse-grained Monte Carlo approach via knowledge-based interaction potentials. PLoS One 2012; 7:e32075. [PMID: 22442661 PMCID: PMC3307718 DOI: 10.1371/journal.pone.0032075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/22/2012] [Indexed: 11/19/2022] Open
Abstract
Histone proteins are not only important due to their vital role in cellular processes such as DNA compaction, replication and repair but also show intriguing structural properties that might be exploited for bioengineering purposes such as the development of nano-materials. Based on their biological and technological implications, it is interesting to investigate the structural properties of proteins as a function of temperature. In this work, we study the spatial response dynamics of the histone H2AX, consisting of 143 residues, by a coarse-grained bond fluctuating model for a broad range of normalized temperatures. A knowledge-based interaction matrix is used as input for the residue-residue Lennard-Jones potential.We find a variety of equilibrium structures including global globular configurations at low normalized temperature (T* = 0.014), combination of segmental globules and elongated chains (T* = 0.016,0.017), predominantly elongated chains (T* = 0.019,0.020), as well as universal SAW conformations at high normalized temperature (T* ≥ 0.023). The radius of gyration of the protein exhibits a non-monotonic temperature dependence with a maximum at a characteristic temperature (T(c)* = 0.019) where a crossover occurs from a positive (stretching at T* ≤ T(c)*) to negative (contraction at T* ≥ T(c)*) thermal response on increasing T*.
Collapse
Affiliation(s)
- Miriam Fritsche
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|