1
|
Schneider TD, Jejjala V. Restriction enzymes use a 24 dimensional coding space to recognize 6 base long DNA sequences. PLoS One 2019; 14:e0222419. [PMID: 31671158 PMCID: PMC6822723 DOI: 10.1371/journal.pone.0222419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/29/2019] [Indexed: 11/19/2022] Open
Abstract
Restriction enzymes recognize and bind to specific sequences on invading bacteriophage DNA. Like a key in a lock, these proteins require many contacts to specify the correct DNA sequence. Using information theory we develop an equation that defines the number of independent contacts, which is the dimensionality of the binding. We show that EcoRI, which binds to the sequence GAATTC, functions in 24 dimensions. Information theory represents messages as spheres in high dimensional spaces. Better sphere packing leads to better communications systems. The densest known packing of hyperspheres occurs on the Leech lattice in 24 dimensions. We suggest that the single protein EcoRI molecule employs a Leech lattice in its operation. Optimizing density of sphere packing explains why 6 base restriction enzymes are so common.
Collapse
Affiliation(s)
- Thomas D. Schneider
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, RNA Biology Laboratory, Frederick, Maryland, United States of America
| | - Vishnu Jejjala
- Mandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS, University of the Witwatersrand, Johannesburg, South Africa
- David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Skowronek K, Boniecki MJ, Kluge B, Bujnicki JM. Rational engineering of sequence specificity in R.MwoI restriction endonuclease. Nucleic Acids Res 2012; 40:8579-92. [PMID: 22735699 PMCID: PMC3458533 DOI: 10.1093/nar/gks570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
R.MwoI is a Type II restriction endonucleases enzyme (REase), which specifically recognizes a palindromic interrupted DNA sequence 5′-GCNNNNNNNGC-3′ (where N indicates any nucleotide), and hydrolyzes the phosphodiester bond in the DNA between the 7th and 8th base in both strands. R.MwoI exhibits remote sequence similarity to R.BglI, a REase with known structure, which recognizes an interrupted palindromic target 5′-GCCNNNNNGGC-3′. A homology model of R.MwoI in complex with DNA was constructed and used to predict functionally important amino acid residues that were subsequently targeted by mutagenesis. The model, together with the supporting experimental data, revealed regions important for recognition of the common bases in DNA sequences recognized by R.BglI and R.MwoI. Based on the bioinformatics analysis, we designed substitutions of the S310 residue in R.MwoI to arginine or glutamic acid, which led to enzyme variants with altered sequence selectivity compared with the wild-type enzyme. The S310R variant of R.MwoI preferred the 5′-GCCNNNNNGGC-3′ sequence as a target, similarly to R.BglI, whereas the S310E variant preferentially cleaved a subset of the MwoI sites, depending on the identity of the 3rd and 9th nucleotide residues. Our results represent a case study of a REase sequence specificity alteration by a single amino acid substitution, based on a theoretical model in the absence of a crystal structure.
Collapse
Affiliation(s)
- Krzysztof Skowronek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.
| | | | | | | |
Collapse
|
3
|
Identification of the critical structural determinants of the EF-hand domain arrangements in calcium binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:608-19. [PMID: 22285364 DOI: 10.1016/j.bbapap.2012.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/02/2011] [Accepted: 01/04/2012] [Indexed: 11/22/2022]
Abstract
EF-hand calcium binding proteins (CaBPs) share strong sequence homology, but exhibit great diversity in structure and function. Thus although calmodulin (CaM) and calcineurin B (CNB) both consist of four EF hands, their domain arrangements are quite distinct. CaM and the CaM-like proteins are characterized by an extended architecture, whereas CNB and the CNB-like proteins have a more compact form. In this study, we performed structural alignments and molecular dynamics (MD) simulations on 3 CaM-like proteins and 6 CNB-like proteins, and quantified their distinct structural and dynamical features in an effort to establish how their sequences specify their structures and dynamics. Alignments of the EF2-EF3 region of these proteins revealed that several residues (not restricted to the linker between the EF2 and EF3 motifs) differed between the two groups of proteins. A customized inverse folding approach followed by structural assessments and MD simulations established the critical role of these residues in determining the structure of the proteins. Identification of the critical determinants of the two different EF-hand domain arrangements and the distinct dynamical features relevant to their respective functions provides insight into the relationships between sequence, structure, dynamics and function among these EF-hand CaBPs.
Collapse
|
4
|
Bellamy SRW, Kovacheva YS, Zulkipli IH, Halford SE. Differences between Ca2+ and Mg2+ in DNA binding and release by the SfiI restriction endonuclease: implications for DNA looping. Nucleic Acids Res 2009; 37:5443-53. [PMID: 19596810 PMCID: PMC2760798 DOI: 10.1093/nar/gkp569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many enzymes acting on DNA require Mg(2+) ions not only for catalysis but also to bind DNA. Binding studies often employ Ca(2+) as a substitute for Mg(2+), to promote DNA binding whilst disallowing catalysis. The SfiI endonuclease requires divalent metal ions to bind DNA but, in contrast to many systems where Ca(2+) mimics Mg(2+), Ca(2+) causes SfiI to bind DNA almost irreversibly. Equilibrium binding by wild-type SfiI cannot be conducted with Mg(2+) present as the DNA is cleaved so, to study the effect of Mg(2+) on DNA binding, two catalytically-inactive mutants were constructed. The mutants bound DNA in the presence of either Ca(2+) or Mg(2+) but, unlike wild-type SfiI with Ca(2+), the binding was reversible. With both mutants, dissociation was slow with Ca(2+) but was in one case much faster with Mg(2+). Hence, Ca(2+) can affect DNA binding differently from Mg(2+). Moreover, SfiI is an archetypal system for DNA looping; on DNA with two recognition sites, it binds to both sites and loops out the intervening DNA. While the dynamics of looping cannot be measured with wild-type SfiI and Ca(2+), it becomes accessible with the mutant and Mg(2+).
Collapse
Affiliation(s)
- Stuart R W Bellamy
- The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
5
|
Nakonieczna J, Kaczorowski T, Obarska-Kosinska A, Bujnicki JM. Functional analysis of MmeI from methanol utilizer Methylophilus methylotrophus, a subtype IIC restriction-modification enzyme related to type I enzymes. Appl Environ Microbiol 2009; 75:212-23. [PMID: 18997032 PMCID: PMC2612229 DOI: 10.1128/aem.01322-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 10/29/2008] [Indexed: 11/20/2022] Open
Abstract
MmeI from Methylophilus methylotrophus belongs to the type II restriction-modification enzymes. It recognizes an asymmetric DNA sequence, 5'-TCCRAC-3' (R indicates G or A), and cuts both strands at fixed positions downstream of the specific site. This particular feature has been exploited in transcript profiling of complex genomes (using serial analysis of gene expression technology). We have shown previously that the endonucleolytic activity of MmeI is strongly dependent on the presence of S-adenosyl-l-methionine (J. Nakonieczna, J. W. Zmijewski, B. Banecki, and A. J. Podhajska, Mol. Biotechnol. 37:127-135, 2007), which puts MmeI in subtype IIG. The same cofactor is used by MmeI as a methyl group donor for modification of an adenine in the upper strand of the recognition site to N(6)-methyladenine. Both enzymatic activities reside in a single polypeptide (919 amino acids [aa]), which puts MmeI also in subtype IIC of the restriction-modification systems. Based on a molecular model, generated with the use of bioinformatic tools and validated by site-directed mutagenesis, we were able to localize three functional domains in the structure of the MmeI enzyme: (i) the N-terminal portion containing the endonucleolytic domain with the catalytic Mg2+-binding motif D(70)-X(9)-EXK(82), characteristic for the PD-(D/E)XK superfamily of nucleases; (ii) a central portion (aa 310 to 610) containing nine sequence motifs conserved among N(6)-adenine gamma-class DNA methyltransferases; (iii) the C-terminal portion (aa 610 to 919) containing a putative target recognition domain. Interestingly, all three domains showed highest similarity to the corresponding elements of type I enzymes rather than to classical type II enzymes. We have found that MmeI variants deficient in restriction activity (D70A, E80A, and K82A) can bind and methylate specific nucleotide sequence. This suggests that domains of MmeI responsible for DNA restriction and modification can act independently. Moreover, we have shown that a single amino acid residue substitution within the putative target recognition domain (S807A) resulted in a MmeI variant with a higher endonucleolytic activity than the wild-type enzyme.
Collapse
Affiliation(s)
- Joanna Nakonieczna
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | |
Collapse
|
6
|
Majorek KA, Bujnicki JM. Modeling of Escherichia coli Endonuclease V structure in complex with DNA. J Mol Model 2008; 15:173-82. [PMID: 19043748 DOI: 10.1007/s00894-008-0414-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/02/2008] [Indexed: 01/24/2023]
Abstract
Endonuclease V (EndoV) is a metal-dependent DNA repair enzyme involved in removal of deaminated bases (e.g., deoxyuridine, deoxyinosine, and deoxyxanthosine), with pairing specificities different from the original bases. Homologs of EndoV are present in all major phyla from bacteria to humans and their function is quite well analyzed. EndoV has been combined with DNA ligase to develop an enzymatic method for mutation scanning and has been engineered to obtain variants with different substrate specificities that serve as improved tools in mutation recognition and cancer mutation scanning. However, little is known about the structure and mechanism of substrate DNA binding by EndoV. Here, we present the results of a bioinformatic analysis and a structural model of EndoV from Escherichia coli in complex with DNA. The structure was obtained by a combination of fold-recognition, comparative modeling, de novo modeling and docking methods. The modeled structure provides a convenient tool to study protein sequence-structure-function relationships in EndoV and to engineer its further variants.
Collapse
Affiliation(s)
- Karolina A Majorek
- Institute for Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | | |
Collapse
|
7
|
Type II restriction endonuclease R.Hpy188I belongs to the GIY-YIG nuclease superfamily, but exhibits an unusual active site. BMC STRUCTURAL BIOLOGY 2008; 8:48. [PMID: 19014591 PMCID: PMC2630997 DOI: 10.1186/1472-6807-8-48] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 11/14/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Catalytic domains of Type II restriction endonucleases (REases) belong to a few unrelated three-dimensional folds. While the PD-(D/E)XK fold is most common among these enzymes, crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI). Bioinformatics analyses supported by mutagenesis experiments suggested that some REases belong to the HNH fold (e.g. R.KpnI), and that a small group represented by R.Eco29kI belongs to the GIY-YIG fold. However, for a large fraction of REases with known sequences, the three-dimensional fold and the architecture of the active site remain unknown, mostly due to extreme sequence divergence that hampers detection of homology to enzymes with known folds. RESULTS R.Hpy188I is a Type II REase with unknown structure. PSI-BLAST searches of the non-redundant protein sequence database reveal only 1 homolog (R.HpyF17I, with nearly identical amino acid sequence and the same DNA sequence specificity). Standard application of state-of-the-art protein fold-recognition methods failed to predict the relationship of R.Hpy188I to proteins with known structure or to other protein families. In order to increase the amount of evolutionary information in the multiple sequence alignment, we have expanded our sequence database searches to include sequences from metagenomics projects. This search resulted in identification of 23 further members of R.Hpy188I family, both from metagenomics and the non-redundant database. Moreover, fold-recognition analysis of the extended R.Hpy188I family revealed its relationship to the GIY-YIG domain and allowed for computational modeling of the R.Hpy188I structure. Analysis of the R.Hpy188I model in the light of sequence conservation among its homologs revealed an unusual variant of the active site, in which the typical Tyr residue of the YIG half-motif had been substituted by a Lys residue. Moreover, some of its homologs have the otherwise invariant Arg residue in a non-homologous position in sequence that nonetheless allows for spatial conservation of the guanidino group potentially involved in phosphate binding. CONCLUSION The present study eliminates a significant "white spot" on the structural map of REases. It also provides important insight into sequence-structure-function relationships in the GIY-YIG nuclease superfamily. Our results reveal that in the case of proteins with no or few detectable homologs in the standard "non-redundant" database, it is useful to expand this database by adding the metagenomic sequences, which may provide evolutionary linkage to detect more remote homologs.
Collapse
|
8
|
Obarska-Kosinska A, Taylor JEN, Callow P, Orlowski J, Bujnicki JM, Kneale GG. HsdR subunit of the type I restriction-modification enzyme EcoR124I: biophysical characterisation and structural modelling. J Mol Biol 2008; 376:438-452. [PMID: 18164032 PMCID: PMC2878639 DOI: 10.1016/j.jmb.2007.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 01/19/2023]
Abstract
Type I restriction-modification (RM) systems are large, multifunctional enzymes composed of three different subunits. HsdS and HsdM form a complex in which HsdS recognizes the target DNA sequence, and HsdM carries out methylation of adenosine residues. The HsdR subunit, when associated with the HsdS-HsdM complex, translocates DNA in an ATP-dependent process and cleaves unmethylated DNA at a distance of several thousand base-pairs from the recognition site. The molecular mechanism by which these enzymes translocate the DNA is not fully understood, in part because of the absence of crystal structures. To date, crystal structures have been determined for the individual HsdS and HsdM subunits and models have been built for the HsdM-HsdS complex with the DNA. However, no structure is available for the HsdR subunit. In this work, the gene coding for the HsdR subunit of EcoR124I was re-sequenced, which showed that there was an error in the published sequence. This changed the position of the stop codon and altered the last 17 amino acid residues of the protein sequence. An improved purification procedure was developed to enable HsdR to be purified efficiently for biophysical and structural analysis. Analytical ultracentrifugation shows that HsdR is monomeric in solution, and the frictional ratio of 1.21 indicates that the subunit is globular and fairly compact. Small angle neutron-scattering of the HsdR subunit indicates a radius of gyration of 3.4 nm and a maximum dimension of 10 nm. We constructed a model of the HsdR using protein fold-recognition and homology modelling to model individual domains, and small-angle neutron scattering data as restraints to combine them into a single molecule. The model reveals an ellipsoidal shape of the enzymatic core comprising the N-terminal and central domains, and suggests conformational heterogeneity of the C-terminal region implicated in binding of HsdR to the HsdS-HsdM complex.
Collapse
Affiliation(s)
- Agnieszka Obarska-Kosinska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - James E N Taylor
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, PO1 2DT, UK
| | - Philip Callow
- EPSAM and ISTM Research Institutes, Keele University, Staffordshire ST5 5BG, UK; ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, Institut Laue Langevin, 38042 Grenoble Cedex 9, Grenoble, France
| | - Jerzy Orlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.
| | - G Geoff Kneale
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, PO1 2DT, UK.
| |
Collapse
|
9
|
Kosinski J, Kubareva E, Bujnicki JM. A model of restriction endonuclease MvaI in complex with DNA: a template for interpretation of experimental data and a guide for specificity engineering. Proteins 2007; 68:324-36. [PMID: 17407166 DOI: 10.1002/prot.21460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
R.MvaI is a Type II restriction enzyme (REase), which specifically recognizes the pentanucleotide DNA sequence 5'-CCWGG-3' (W indicates A or T). It belongs to a family of enzymes, which recognize related sequences, including 5'-CCSGG-3' (S indicates G or C) in the case of R.BcnI, or 5'-CCNGG-3' (where N indicates any nucleoside) in the case of R.ScrFI. REases from this family hydrolyze the phosphodiester bond in the DNA between the 2nd and 3rd base in both strands, thereby generating a double strand break with 5'-protruding single nucleotides. So far, no crystal structures of REases with similar cleavage patterns have been solved. Characterization of sequence-structure-function relationships in this family would facilitate understanding of evolution of sequence specificity among REases and could aid in engineering of enzymes with new specificities. However, sequences of R.MvaI or its homologs show no significant similarity to any proteins with known structures, thus precluding straightforward comparative modeling. We used a fold recognition approach to identify a remote relationship between R.MvaI and the structure of DNA repair enzyme MutH, which belongs to the PD-(D/E)XK superfamily together with many other REases. We constructed a homology model of R.MvaI and used it to predict functionally important amino acid residues and the mode of interaction with the DNA. In particular, we predict that only one active site of R.MvaI interacts with the DNA target at a time, and the cleavage of both strands (5'-CCAGG-3' and 5'-CCTGG-3') is achieved by two independent catalytic events. The model is in good agreement with the available experimental data and will serve as a template for further analyses of R.MvaI, R.BcnI, R.ScrFI and other related enzymes.
Collapse
Affiliation(s)
- Jan Kosinski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.
| | | | | |
Collapse
|
10
|
Bellamy SRW, Milsom SE, Kovacheva YS, Sessions RB, Halford SE. A switch in the mechanism of communication between the two DNA-binding sites in the SfiI restriction endonuclease. J Mol Biol 2007; 373:1169-83. [PMID: 17870087 PMCID: PMC2082129 DOI: 10.1016/j.jmb.2007.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 11/29/2022]
Abstract
While many Type II restriction enzymes are dimers with a single DNA-binding cleft between the subunits, SfiI is a tetramer of identical subunits. Two of its subunits (a dimeric unit) create one DNA-binding cleft, and the other two create a second cleft on the opposite side of the protein. The two clefts bind specific DNA cooperatively to give a complex of SfiI with two recognition sites. This complex is responsible for essentially all of the DNA-cleavage reactions by SfiI: virtually none is due to the complex with one site. The communication between the DNA-binding clefts was examined by disrupting one of the very few polar interactions in the otherwise hydrophobic interface between the dimeric units: a tyrosine hydroxyl was removed by mutation to phenylalanine. The mutant protein remained tetrameric in solution and could bind two DNA sites. But instead of being activated by binding two sites, like wild-type SfiI, it showed maximal activity when bound to a single site and had a lower activity when bound to two sites. This interaction across the dimer interface thus enforces in wild-type SfiI a cooperative transition between inactive and active states in both dimers, but without this interaction as in the mutant protein, a single dimer can undergo the transition to give a stable intermediate with one inactive dimer and one active dimer.
Collapse
Affiliation(s)
- Stuart R W Bellamy
- The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | |
Collapse
|
11
|
Niv MY, Ripoll DR, Vila JA, Liwo A, Vanamee ES, Aggarwal AK, Weinstein H, Scheraga HA. Topology of Type II REases revisited; structural classes and the common conserved core. Nucleic Acids Res 2007; 35:2227-37. [PMID: 17369272 PMCID: PMC1874628 DOI: 10.1093/nar/gkm045] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type II restriction endonucleases (REases) are deoxyribonucleases that cleave DNA sequences with remarkable specificity. Type II REases are highly divergent in sequence as well as in topology, i.e. the connectivity of secondary structure elements. A widely held assumption is that a structural core of five β-strands flanked by two α-helices is common to these enzymes. We introduce a systematic procedure to enumerate secondary structure elements in an unambiguous and reproducible way, and use it to analyze the currently available X-ray structures of Type II REases. Based on this analysis, we propose an alternative definition of the core, which we term the αβα-core. The αβα-core includes the most frequently observed secondary structure elements and is not a sandwich, as it consists of a five-strand β-sheet and two α-helices on the same face of the β-sheet. We use the αβα-core connectivity as a basis for grouping the Type II REases into distinct structural classes. In these new structural classes, the connectivity correlates with the angles between the secondary structure elements and with the cleavage patterns of the REases. We show that there exists a substructure of the αβα-core, namely a common conserved core, ccc, defined here as one α-helix and four β-strands common to all Type II REase of known structure.
Collapse
Affiliation(s)
- Masha Y Niv
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cymerman IA, Obarska A, Skowronek KJ, Lubys A, Bujnicki JM. Identification of a new subfamily of HNH nucleases and experimental characterization of a representative member, HphI restriction endonuclease. Proteins 2007; 65:867-76. [PMID: 17029241 DOI: 10.1002/prot.21156] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The restriction endonuclease (REase) R. HphI is a Type IIS enzyme that recognizes the asymmetric target DNA sequence 5'-GGTGA-3' and in the presence of Mg(2+) hydrolyzes phosphodiester bonds in both strands of the DNA at a distance of 8 nucleotides towards the 3' side of the target, producing a 1 nucleotide 3'-staggered cut in an unspecified sequence at this position. REases are typically ORFans that exhibit little similarity to each other and to any proteins in the database. However, bioinformatics analyses revealed that R.HphI is a member of a relatively big sequence family with a conserved C-terminal domain and a variable N-terminal domain. We predict that the C-terminal domains of proteins from this family correspond to the nuclease domain of the HNH superfamily rather than to the most common PD-(D/E)XK superfamily of nucleases. We constructed a three-dimensional model of the R.HphI catalytic domain and validated our predictions by site-directed mutagenesis and studies of DNA-binding and catalytic activities of the mutant proteins. We also analyzed the genomic neighborhood of R.HphI homologs and found that putative nucleases accompanied by a DNA methyltransferase (i.e. predicted REases) do not form a single group on a phylogenetic tree, but are dispersed among free-standing putative nucleases. This suggests that nucleases from the HNH superfamily were independently recruited to become REases in the context of RM systems multiple times in the evolution and that members of the HNH superfamily may be much more frequent among the so far unassigned REase sequences than previously thought.
Collapse
Affiliation(s)
- Iwona A Cymerman
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
13
|
Skowronek KJ, Kosinski J, Bujnicki JM. Theoretical model of restriction endonuclease HpaI in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis. Proteins 2006; 63:1059-68. [PMID: 16498623 DOI: 10.1002/prot.20920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type II restriction enzymes are commercially important deoxyribonucleases and very attractive targets for protein engineering of new specificities. At the same time they are a very challenging test bed for protein structure prediction methods. Typically, enzymes that recognize different sequences show little or no amino acid sequence similarity to each other and to other proteins. Based on crystallographic analyses that revealed the same PD-(D/E)XK fold for more than a dozen case studies, they were nevertheless considered to be related until the combination of bioinformatics and mutational analyses has demonstrated that some of these proteins belong to other, unrelated folds PLD, HNH, and GIY-YIG. As a part of a large-scale project aiming at identification of a three-dimensional fold for all type II REases with known sequences (currently approximately 1000 proteins), we carried out preliminary structure prediction and selected candidates for experimental validation. Here, we present the analysis of HpaI REase, an ORFan with no detectable homologs, for which we detected a structural template by protein fold recognition, constructed a model using the FRankenstein monster approach and identified a number of residues important for the DNA binding and catalysis. These predictions were confirmed by site-directed mutagenesis and in vitro analysis of the mutant proteins. The experimentally validated model of HpaI will serve as a low-resolution structural platform for evolutionary considerations in the subgroup of blunt-cutting REases with different specificities. The research protocol developed in the course of this work represents a streamlined version of the previously used techniques and can be used in a high-throughput fashion to build and validate models for other enzymes, especially ORFans that exhibit no sequence similarity to any other protein in the database.
Collapse
|
14
|
Vanamee ÉS, Viadiu H, Kucera R, Dorner L, Picone S, Schildkraut I, Aggarwal AK. A view of consecutive binding events from structures of tetrameric endonuclease SfiI bound to DNA. EMBO J 2005; 24:4198-208. [PMID: 16308566 PMCID: PMC1356319 DOI: 10.1038/sj.emboj.7600880] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 10/28/2005] [Indexed: 11/09/2022] Open
Abstract
Many reactions in cells proceed via the sequestration of two DNA molecules in a synaptic complex. SfiI is a member of a growing family of restriction enzymes that can bind and cleave two DNA sites simultaneously. We present here the structures of tetrameric SfiI in complex with cognate DNA. The structures reveal two different binding states of SfiI: one with both DNA-binding sites fully occupied and the other with fully and partially occupied sites. These two states provide details on how SfiI recognizes and cleaves its target DNA sites, and gives insight into sequential binding events. The SfiI recognition sequence (GGCCNNNN[downward arrow]NGGCC) is a subset of the recognition sequence of BglI (GCCNNNN[downward arrow]NGGC), and both enzymes cleave their target DNAs to leave 3-base 3' overhangs. We show that even though SfiI is a tetramer and BglI is a dimer, and there is little sequence similarity between the two enzymes, their modes of DNA recognition are unusually similar.
Collapse
Affiliation(s)
- Éva Scheuring Vanamee
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY, USA
| | - Hector Viadiu
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | - Aneel K Aggarwal
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY, USA
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA. Tel.: +1 212 659 8647; Fax: +1 212 849 2456; E-mail:
| |
Collapse
|
15
|
Armalyte E, Bujnicki JM, Giedriene J, Gasiunas G, Kosiński J, Lubys A. Mva1269I: a monomeric type IIS restriction endonuclease from Micrococcus varians with two EcoRI- and FokI-like catalytic domains. J Biol Chem 2005; 280:41584-94. [PMID: 16223716 DOI: 10.1074/jbc.m506775200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5'-GAATGCN / -3'/5'-NG / CATTC-3' and cuts top and bottom DNA strands at positions, indicated by the "/" symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis revealed that Mva1269I comprises two "PD-(D/E)XK" domains. The N-terminal domain is related to the 5'-GAATTC-3'-specific restriction endonuclease EcoRI, whereas the C-terminal one resembles the nonspecific nuclease domain of restriction endonuclease FokI. Inactivation of the C-terminal catalytic site transformed Mva1269I into a very active bottom strand-nicking enzyme, whereas mutants in the N-terminal domain nicked the top strand, but only at elevated enzyme concentrations. We found that the cleavage of the bottom strand is a prerequisite for the cleavage of the top strand. We suggest that Mva1269I evolved the ability to recognize and to cleave its asymmetrical target by a fusion of an EcoRI-like domain, which incises the bottom strand within the target, and a FokI-like domain that completes the cleavage within the nonspecific region outside the target sequence. Our results have implications for the molecular evolution of restriction endonucleases, as well as for perspectives of engineering new restriction and nicking enzymes with asymmetric target sites.
Collapse
Affiliation(s)
- Elena Armalyte
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania
| | | | | | | | | | | |
Collapse
|
16
|
Kosinski J, Feder M, Bujnicki JM. The PD-(D/E)XK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto) unknown function. BMC Bioinformatics 2005; 6:172. [PMID: 16011798 PMCID: PMC1189080 DOI: 10.1186/1471-2105-6-172] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 07/12/2005] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The PD-(D/E)XK nuclease superfamily, initially identified in type II restriction endonucleases and later in many enzymes involved in DNA recombination and repair, is one of the most challenging targets for protein sequence analysis and structure prediction. Typically, the sequence similarity between these proteins is so low, that most of the relationships between known members of the PD-(D/E)XK superfamily were identified only after the corresponding structures were determined experimentally. Thus, it is tempting to speculate that among the uncharacterized protein families, there are potential nucleases that remain to be discovered, but their identification requires more sensitive tools than traditional PSI-BLAST searches. RESULTS The low degree of amino acid conservation hampers the possibility of identification of new members of the PD-(D/E)XK superfamily based solely on sequence comparisons to known members. Therefore, we used a recently developed method HHsearch for sensitive detection of remote similarities between protein families represented as profile Hidden Markov Models enhanced by secondary structure. We carried out a comparison of known families of PD-(D/E)XK nucleases to the database comprising the COG and PFAM profiles corresponding to both functionally characterized as well as uncharacterized protein families to detect significant similarities. The initial candidates for new nucleases were subsequently verified by sequence-structure threading, comparative modeling, and identification of potential active site residues. CONCLUSION In this article, we report identification of the PD-(D/E)XK nuclease domain in numerous proteins implicated in interactions with DNA but with unknown structure and mechanism of action (such as putative recombinase RmuC, DNA competence factor CoiA, a DNA-binding protein SfsA, a large human protein predicted to be a DNA repair enzyme, predicted archaeal transcription regulators, and the head completion protein of phage T4) and in proteins for which no function was assigned to date (such as YhcG, various phage proteins, novel candidates for restriction enzymes). Our results contributes to the reduction of "white spaces" on the sequence-structure-function map of the protein universe and will help to jump-start the experimental characterization of new nucleases, of which many may be of importance for the complete understanding of mechanisms that govern the evolution and stability of the genome.
Collapse
Affiliation(s)
- Jan Kosinski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland
| | - Marcin Feder
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland
| |
Collapse
|
17
|
Nikolajewa S, Beyer A, Friedel M, Hollunder J, Wilhelm T. Common patterns in type II restriction enzyme binding sites. Nucleic Acids Res 2005; 33:2726-33. [PMID: 15888729 PMCID: PMC1097771 DOI: 10.1093/nar/gki575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Restriction enzymes are among the best studied examples of DNA binding proteins. In order to find general patterns in DNA recognition sites, which may reflect important properties of protein–DNA interaction, we analyse the binding sites of all known type II restriction endonucleases. We find a significantly enhanced GC content and discuss three explanations for this phenomenon. Moreover, we study patterns of nucleotide order in recognition sites. Our analysis reveals a striking accumulation of adjacent purines (R) or pyrimidines (Y). We discuss three possible reasons: RR/YY dinucleotides are characterized by (i) stronger H-bond donor and acceptor clusters, (ii) specific geometrical properties and (iii) a low stacking energy. These features make RR/YY steps particularly accessible for specific protein–DNA interactions. Finally, we show that the recognition sites of type II restriction enzymes are underrepresented in host genomes and in phage genomes.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Wilhelm
- To whom correspondence should be addressed. Tel: +49 3641 65 6208; Fax: +49 3641 65 6191;
| |
Collapse
|
18
|
Chmiel AA, Radlinska M, Pawlak SD, Krowarsch D, Bujnicki JM, Skowronek KJ. A theoretical model of restriction endonuclease NlaIV in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis and circular dichroism spectroscopy. Protein Eng Des Sel 2005; 18:181-9. [PMID: 15849215 DOI: 10.1093/protein/gzi019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Restriction enzymes (REases) are commercial reagents commonly used in DNA manipulations and mapping. They are regarded as very attractive models for studying protein-DNA interactions and valuable targets for protein engineering. Their amino acid sequences usually show no similarities to other proteins, with rare exceptions of other REases that recognize identical or very similar sequences. Hence, they are extremely hard targets for structure prediction and modeling. NlaIV is a Type II REase, which recognizes the interrupted palindromic sequence GGNNCC (where N indicates any base) and cleaves it in the middle, leaving blunt ends. NlaIV shows no sequence similarity to other proteins and virtually nothing is known about its sequence-structure-function relationships. Using protein fold recognition, we identified a remote relationship between NlaIV and EcoRV, an extensively studied REase, which recognizes the GATATC sequence and whose crystal structure has been determined. Using the 'FRankenstein's monster' approach we constructed a comparative model of NlaIV based on the EcoRV template and used it to predict the catalytic and DNA-binding residues. The model was validated by site-directed mutagenesis and analysis of the activity of the mutants in vivo and in vitro as well as structural characterization of the wild-type enzyme and two mutants by circular dichroism spectroscopy. The structural model of the NlaIV-DNA complex suggests regions of the protein sequence that may interact with the 'non-specific' bases of the target and thus it provides insight into the evolution of sequence specificity in restriction enzymes and may help engineer REases with novel specificities. Before this analysis was carried out, neither the three-dimensional fold of NlaIV, its evolutionary relationships or its catalytic or DNA-binding residues were known. Hence our analysis may be regarded as a paradigm for studies aiming at reducing 'white spaces' on the evolutionary landscape of sequence-function relationships by combining bioinformatics with simple experimental assays.
Collapse
Affiliation(s)
- Agnieszka A Chmiel
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|