1
|
Prešern U, Goličnik M. Enzyme Databases in the Era of Omics and Artificial Intelligence. Int J Mol Sci 2023; 24:16918. [PMID: 38069254 PMCID: PMC10707154 DOI: 10.3390/ijms242316918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Enzyme research is important for the development of various scientific fields such as medicine and biotechnology. Enzyme databases facilitate this research by providing a wide range of information relevant to research planning and data analysis. Over the years, various databases that cover different aspects of enzyme biology (e.g., kinetic parameters, enzyme occurrence, and reaction mechanisms) have been developed. Most of the databases are curated manually, which improves reliability of the information; however, such curation cannot keep pace with the exponential growth in published data. Lack of data standardization is another obstacle for data extraction and analysis. Improving machine readability of databases is especially important in the light of recent advances in deep learning algorithms that require big training datasets. This review provides information regarding the current state of enzyme databases, especially in relation to the ever-increasing amount of generated research data and recent advancements in artificial intelligence algorithms. Furthermore, it describes several enzyme databases, providing the reader with necessary information for their use.
Collapse
Affiliation(s)
| | - Marko Goličnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Insights to the Structural Basis for the Stereospecificity of the Escherichia coli Phytase, AppA. Int J Mol Sci 2022; 23:ijms23116346. [PMID: 35683026 PMCID: PMC9181005 DOI: 10.3390/ijms23116346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
AppA, the Escherichia coli periplasmic phytase of clade 2 of the histidine phosphatase (HP2) family, has been well-characterized and successfully engineered for use as an animal feed supplement. AppA is a 1D-6-phytase and highly stereospecific but transiently accumulates 1D-myo-Ins(2,3,4,5)P4 and other lower phosphorylated intermediates. If this bottleneck in liberation of orthophosphate is to be obviated through protein engineering, an explanation of its rather rigid preference for the initial site and subsequent cleavage of phytic acid is required. To help explain this behaviour, the role of the catalytic proton donor residue in determining AppA stereospecificity was investigated. Four variants were generated by site-directed mutagenesis of the active site HDT amino acid sequence motif containing the catalytic proton donor, D304. The identity and position of the prospective proton donor residue was found to strongly influence stereospecificity. While the wild-type enzyme has a strong preference for 1D-6-phytase activity, a marked reduction in stereospecificity was observed for a D304E variant, while a proton donor-less mutant (D304A) displayed exclusive 1D-1/3-phytase activity. High-resolution X-ray crystal structures of complexes of the mutants with a non-hydrolysable substrate analogue inhibitor point to a crucial role played by D304 in stereospecificity by influencing the size and polarity of specificity pockets A and B. Taken together, these results provide the first evidence for the involvement of the proton donor residue in determining the stereospecificity of HP2 phytases and prepares the ground for structure-informed engineering studies targeting the production of animal feed enzymes capable of the efficient and complete dephosphorylation of dietary phytic acid.
Collapse
|
3
|
O'Donnell T, Robert CH, Cazals F. Tripeptide loop closure: a detailed study of reconstructions based on Ramachandran distributions. Proteins 2021; 90:858-868. [PMID: 34783395 DOI: 10.1002/prot.26281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Tripeptide loop closure (TLC) is a standard procedure to reconstruct protein backbone conformations, by solving a zero dimensional polynomial system yielding up to 16 solutions. In this work, we first show that multiprecision is required in a TLC solver to guarantee the existence and the accuracy of solutions. We then compare solutions yielded by the TLC solver against tripeptides from the Protein Data Bank. We show that these solutions are geometrically diverse (up to 3å RMSD with respect to the data), and sound in terms of potential energy. Finally, we compare Ramachandran distributions of data and reconstructions for the three amino acids. The distribution of reconstructions in the second angular space (φ2 , ψ2) stands out, with a rather uniform distribution leaving a central void. We anticipate that these insights, coupled to our robust implementation in the (https://sbl.inria.fr/doc/Tripeptide_loop_closure-user-manual.html), will help understanding the properties of TLC reconstructions, with potential applications to the generation of conformations of flexible loops in particular. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - C H Robert
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - F Cazals
- Université Côte d'Azur, Inria, France
| |
Collapse
|
4
|
Acquistapace IM, Zi Etek MA, Li AWH, Salmon M, Kühn I, Bedford MR, Brearley CA, Hemmings AM. Snapshots during the catalytic cycle of a histidine acid phytase reveal an induced-fit structural mechanism. J Biol Chem 2020; 295:17724-17737. [PMID: 33454010 PMCID: PMC7762957 DOI: 10.1074/jbc.ra120.015925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
Highly engineered phytases, which sequentially hydrolyze the hexakisphosphate ester of inositol known as phytic acid, are routinely added to the feeds of monogastric animals to improve phosphate bioavailability. New phytases are sought as starting points to further optimize the rate and extent of dephosphorylation of phytate in the animal digestive tract. Multiple inositol polyphosphate phosphatases (MINPPs) are clade 2 histidine phosphatases (HP2P) able to carry out the stepwise hydrolysis of phytate. MINPPs are not restricted by a strong positional specificity making them attractive targets for development as feed enzymes. Here, we describe the characterization of a MINPP from the Gram-positive bacterium Bifidobacterium longum (BlMINPP). BlMINPP has a typical HP2P-fold but, unusually, possesses a large α-domain polypeptide insertion relative to other MINPPs. This insertion, termed the U-loop, spans the active site and contributes to substrate specificity pockets underpopulated in other HP2Ps. Mutagenesis of U-loop residues reveals its contribution to enzyme kinetics and thermostability. Moreover, four crystal structures of the protein along the catalytic cycle capture, for the first time in an HP2P, a large ligand-driven α-domain motion essential to allow substrate access to the active site. This motion recruits residues both downstream of a molecular hinge and on the U-loop to participate in specificity subsites, and mutagenesis identified a mobile lysine residue as a key determinant of positional specificity of the enzyme. Taken together, these data provide important new insights to the factors determining stability, substrate recognition, and the structural mechanism of hydrolysis in this industrially important group of enzymes.
Collapse
Affiliation(s)
| | - Monika A Zi Etek
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Arthur W H Li
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Melissa Salmon
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Andrew M Hemmings
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom; School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
5
|
Abideen ZU, Ahmad A, Usman M, Majaz S, Ali W, Noreen S, Mahmood T, Nouroz F. Dynamics and conformational propensities of staphylococcal CntA. J Biomol Struct Dyn 2020; 39:4923-4935. [PMID: 32573341 DOI: 10.1080/07391102.2020.1782263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Enzymes use transition metals as co-factors for catalytic roles in biological processes. Notably, manganese, iron, cobalt, nickel, copper and zinc are abundantly used. Staphylococcus aureus, a commensal bacterium asymptomatically, lies on the human body causing variety of infections. S. aureus is equipped by advanced virulence-regulatory circuits of metal acquisition like Cnt that acquires metals at infection sites by utilizing a nicotianamine-like metallophore staphylopine. Despite significant growth in structural studies, how CntA of Cnt system transmits conformational signal upon staphylopine recognition remains elusive. Here, we analyzed the structural changes adopted by CntA during close-to-open transition by computational approaches. CntA uses a bi-domain architectural form of domain II which performed 37° rigid body rotation and 1.1 Å translation assisted by inter-domain hinge cluster residues. Important clustered communities were found regulating the conformational changes in CntA where communities 4 and 5 are found crucial. Besides open and close states, the fluctuating regions sampled two additional intermediate states which were considered close or open previously. CntA prefers fluctuating the non-conserved regions rather than conserved where domain II turned out to be rigid and maintains a stable fold. Overall, the CntA system is a potential target for structural biologist to hamper such conformational behaviors at family level.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zain Ul Abideen
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Muhammad Usman
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Waqar Ali
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Shumaila Noreen
- Department of Zoology, University of Peshawar, Peshawar, KPK, Pakistan
| | - Tariq Mahmood
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan.,Department of Agriculture, Hazara University, Mansehra, KPK, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan.,Department of Botany, Hazara University, Mansehra, KPK, Pakistan
| |
Collapse
|
6
|
Clark JJ, Benson ML, Smith RD, Carlson HA. Inherent versus induced protein flexibility: Comparisons within and between apo and holo structures. PLoS Comput Biol 2019; 15:e1006705. [PMID: 30699115 PMCID: PMC6370239 DOI: 10.1371/journal.pcbi.1006705] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/11/2019] [Accepted: 12/07/2018] [Indexed: 11/18/2022] Open
Abstract
Understanding how ligand binding influences protein flexibility is important, especially in rational drug design. Protein flexibility upon ligand binding is analyzed herein using 305 proteins with 2369 crystal structures with ligands (holo) and 1679 without (apo). Each protein has at least two apo and two holo structures for analysis. The inherent variation in structures with and without ligands is first established as a baseline. This baseline is then compared to the change in conformation in going from the apo to holo states to probe induced flexibility. The inherent backbone flexibility across the apo structures is roughly the same as the variation across holo structures. The induced backbone flexibility across apo-holo pairs is larger than that of the apo or holo states, but the increase in RMSD is less than 0.5 Å. Analysis of χ1 angles revealed a distinctly different pattern with significant influences seen for ligand binding on side-chain conformations in the binding site. Within the apo and holo states themselves, the variation of the χ1 angles is the same. However, the data combining both apo and holo states show significant displacements. Upon ligand binding, χ1 angles are frequently pushed to new orientations outside the range seen in the apo states. Influences on binding-site variation could not be easily attributed to features such as ligand size or x-ray structure resolution. By combining these findings, we find that most binding site flexibility is compatible with the common practice in flexible docking, where backbones are kept rigid and side chains are allowed some degree of flexibility.
Collapse
Affiliation(s)
- Jordan J. Clark
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mark L. Benson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard D. Smith
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Heather A. Carlson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Marks C, Shi J, Deane CM. Predicting loop conformational ensembles. Bioinformatics 2018; 34:949-956. [PMID: 29136084 DOI: 10.1093/bioinformatics/btx718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Motivation Protein function is often facilitated by the existence of multiple stable conformations. Structure prediction algorithms need to be able to model these different conformations accurately and produce an ensemble of structures that represent a target's conformational diversity rather than just a single state. Here, we investigate whether current loop prediction algorithms are capable of this. We use the algorithms to predict the structures of loops with multiple experimentally determined conformations, and the structures of loops with only one conformation, and assess their ability to generate and select decoys that are close to any, or all, of the observed structures. Results We find that while loops with only one known conformation are predicted well, conformationally diverse loops are modelled poorly, and in most cases the predictions returned by the methods do not resemble any of the known conformers. Our results contradict the often-held assumption that multiple native conformations will be present in the decoy set, making the production of accurate conformational ensembles impossible, and hence indicating that current methodologies are not well suited to prediction of conformationally diverse, often functionally important protein regions. Contact marks@stats.ox.ac.uk. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Claire Marks
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Jiye Shi
- Department of Chemistry, UCB Pharma, Slough SL1 3WE, UK
| | | |
Collapse
|
8
|
High Affinity vs. Native Fibronectin in the Modulation of αvβ3 Integrin Conformational Dynamics: Insights from Computational Analyses and Implications for Molecular Design. PLoS Comput Biol 2017; 13:e1005334. [PMID: 28114375 PMCID: PMC5293283 DOI: 10.1371/journal.pcbi.1005334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/06/2017] [Accepted: 12/23/2016] [Indexed: 11/19/2022] Open
Abstract
Understanding how binding events modulate functional motions of multidomain proteins is a major issue in chemical biology. We address several aspects of this problem by analyzing the differential dynamics of αvβ3 integrin bound to wild type (wtFN10, agonist) or high affinity (hFN10, antagonist) mutants of fibronectin. We compare the dynamics of complexes from large-scale domain motions to inter-residue coordinated fluctuations to characterize the distinctive traits of conformational evolution and shed light on the determinants of differential αvβ3 activation induced by different FN sequences. We propose an allosteric model for ligand-based integrin modulation: the conserved integrin binding pocket anchors the ligand, while different residues on the two FN10's act as the drivers that reorganize relevant interaction networks, guiding the shift towards inactive (hFN10-bound) or active states (wtFN10-bound). We discuss the implications of results for the design of integrin inhibitors.
Collapse
|
9
|
Kobayashi C, Koike R, Ota M, Sugita Y. Hierarchical domain-motion analysis of conformational changes in sarcoplasmic reticulum Ca2+
-ATPase. Proteins 2015; 83:746-56. [DOI: 10.1002/prot.24763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/15/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Chigusa Kobayashi
- Computational Biophysics Research Team, Research Division; RIKEN Advanced Institute for Computational Science; 7-1-26 Minatojima-Minamimachi, Chuo-Ku Kobe Hyogo Kobe 640-0047 Japan
| | - Ryotaro Koike
- Graduate School of Information Science; Nagoya University; Furo-Cho, Chikusa-Ku Nagoya Aichi 464-8601 Japan
| | - Motonori Ota
- Graduate School of Information Science; Nagoya University; Furo-Cho, Chikusa-Ku Nagoya Aichi 464-8601 Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, Research Division; RIKEN Advanced Institute for Computational Science; 7-1-26 Minatojima-Minamimachi, Chuo-Ku Kobe Hyogo Kobe 640-0047 Japan
- RIKEN Theoretical Molecular Science Laboratory; 2-1 Hirosawa Wako-Shi Saitama 351-0198 Japan
- Laboratory for Biomolecular Function Simulation, Computational Biology Research Core; RIKEN Quantitative Biology Center; 7-1-26 Minatojima-Minamimachi, Chuo-Ku Kobe Hyogo Kobe 640-0047 Japan
- RIKEN iTHES; 2-1 Hirosawa Wako-Shi Saitama 351-0198 Japan
| |
Collapse
|
10
|
Taylor D, Cawley G, Hayward S. Quantitative method for the assignment of hinge and shear mechanism in protein domain movements. ACTA ACUST UNITED AC 2014; 30:3189-96. [PMID: 25078396 PMCID: PMC4221117 DOI: 10.1093/bioinformatics/btu506] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Motivation: A popular method for classification of protein domain movements apportions them into two main types: those with a ‘hinge’ mechanism and those with a ‘shear’ mechanism. The intuitive assignment of domain movements to these classes has limited the number of domain movements that can be classified in this way. Furthermore, whether intended or not, the term ‘shear’ is often interpreted to mean a relative translation of the domains. Results: Numbers of occurrences of four different types of residue contact changes between domains were optimally combined by logistic regression using the training set of domain movements intuitively classified as hinge and shear to produce a predictor for hinge and shear. This predictor was applied to give a 10-fold increase in the number of examples over the number previously available with a high degree of precision. It is shown that overall a relative translation of domains is rare, and that there is no difference between hinge and shear mechanisms in this respect. However, the shear set contains significantly more examples of domains having a relative twisting movement than the hinge set. The angle of rotation is also shown to be a good discriminator between the two mechanisms. Availability and implementation: Results are free to browse at http://www.cmp.uea.ac.uk/dyndom/interface/. Contact:sjh@cmp.uea.ac.uk. Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Daniel Taylor
- D'Arcy Thompson Centre for Computational Biology, School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Gavin Cawley
- D'Arcy Thompson Centre for Computational Biology, School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Steven Hayward
- D'Arcy Thompson Centre for Computational Biology, School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
11
|
Koike R, Ota M, Kidera A. Hierarchical Description and Extensive Classification of Protein Structural Changes by Motion Tree. J Mol Biol 2014; 426:752-62. [DOI: 10.1016/j.jmb.2013.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
|
12
|
Palmai Z, Seifert C, Gräter F, Balog E. An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis. PLoS Comput Biol 2014; 10:e1003444. [PMID: 24465199 PMCID: PMC3900376 DOI: 10.1371/journal.pcbi.1003444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
3-Phosphogycerate kinase (PGK) is a two domain enzyme, which transfers a phosphate group between its two substrates, 1,3-bisphosphoglycerate bound to the N-domain and ADP bound to the C-domain. Indispensable for the phosphoryl transfer reaction is a large conformational change from an inactive open to an active closed conformation via a hinge motion that should bring substrates into close proximity. The allosteric pathway resulting in the active closed conformation has only been partially uncovered. Using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA), we describe an allosteric pathway, which connects the substrate binding sites to the interdomain hinge region. Glu192 of alpha-helix 7 and Gly394 of loop L14 act as hinge points, at which these two secondary structure elements straighten, thereby moving the substrate-binding domains towards each other. The long-range allosteric pathway regulating hPGK catalytic activity, which is partially validated and can be further tested by mutagenesis, highlights the virtue of monitoring internal forces to reveal signal propagation, even if only minor conformational distortions, such as helix bending, initiate the large functional rearrangement of the macromolecule. 3-Phosphoglycerate kinase (PGK) is an essential enzyme for living organisms. It catalyzes the phospho-transfer reaction between two catabolites during carbohydrate metabolism. In addition to this physiological role, human PGK has been shown to phosphorylate L-nucleoside analogues, potential drugs against viral infection and cancer. PGK is a two domain enzyme, with the two substrates bound to the two separate domains. In order to perform its function the enzyme has to undergo a large conformational change involving a hinge bending to bring the substrates into close proximity. The allosteric pathway from the open non-reactive state of PGK to the closed reactive state as triggered by substrate binding has only been partially uncovered by experimental studies. Here we describe a complete allosteric pathway, which connects the substrate binding sites to the interdomain hinge region using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA). While previously identified key residues involved in PGK domain closure are part of this pathway, we here fill the numerous gaps in the pathway by identifying newly uncovered residues and interesting candidates for future mutational studies.
Collapse
Affiliation(s)
- Zoltan Palmai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Christian Seifert
- Molecular Biomechanics, Heidelberger Institut für Theoretische Studien gGmbH, Heidelberg, Germany
| | - Frauke Gräter
- Molecular Biomechanics, Heidelberger Institut für Theoretische Studien gGmbH, Heidelberg, Germany
- MPG-CAS Partner Institute and Key Laboratory for Computational Biology, Shanghai, China
- * E-mail: (FG); (EB)
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- * E-mail: (FG); (EB)
| |
Collapse
|
13
|
Taylor D, Cawley G, Hayward S. Classification of domain movements in proteins using dynamic contact graphs. PLoS One 2013; 8:e81224. [PMID: 24260562 PMCID: PMC3832408 DOI: 10.1371/journal.pone.0081224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/09/2013] [Indexed: 12/02/2022] Open
Abstract
A new method for the classification of domain movements in proteins is described and applied to 1822 pairs of structures from the Protein Data Bank that represent a domain movement in two-domain proteins. The method is based on changes in contacts between residues from the two domains in moving from one conformation to the other. We argue that there are five types of elemental contact changes and that these relate to five model domain movements called: “free”, “open-closed”, “anchored”, “sliding-twist”, and “see-saw.” A directed graph is introduced called the “Dynamic Contact Graph” which represents the contact changes in a domain movement. In many cases a graph, or part of a graph, provides a clear visual metaphor for the movement it represents and is a motif that can be easily recognised. The Dynamic Contact Graphs are often comprised of disconnected subgraphs indicating independent regions which may play different roles in the domain movement. The Dynamic Contact Graph for each domain movement is decomposed into elemental Dynamic Contact Graphs, those that represent elemental contact changes, allowing us to count the number of instances of each type of elemental contact change in the domain movement. This naturally leads to sixteen classes into which the 1822 domain movements are classified.
Collapse
Affiliation(s)
- Daniel Taylor
- D'Arcy Thompson Centre for Computational Biology, School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| | - Gavin Cawley
- D'Arcy Thompson Centre for Computational Biology, School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| | - Steven Hayward
- D'Arcy Thompson Centre for Computational Biology, School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Huang WC, Ellis J, Moody P, Raven E, Roberts G. Redox-linked domain movements in the catalytic cycle of cytochrome p450 reductase. Structure 2013; 21:1581-9. [PMID: 23911089 PMCID: PMC3763376 DOI: 10.1016/j.str.2013.06.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022]
Abstract
NADPH-cytochrome P450 reductase is a key component of the P450 mono-oxygenase drug-metabolizing system. There is evidence for a conformational equilibrium involving large-scale domain motions in this enzyme. We now show, using small-angle X-ray scattering (SAXS) and small-angle neutron scattering, that delivery of two electrons to cytochrome P450 reductase leads to a shift in this equilibrium from a compact form, similar to the crystal structure, toward an extended form, while coenzyme binding favors the compact form. We present a model for the extended form of the enzyme based on nuclear magnetic resonance and SAXS data. Using the effects of changes in solution conditions and of site-directed mutagenesis, we demonstrate that the conversion to the extended form leads to an enhanced ability to transfer electrons to cytochrome c. This structural evidence shows that domain motion is linked closely to the individual steps of the catalytic cycle of cytochrome P450 reductase, and we propose a mechanism for this.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, UK
| | - Jacqueline Ellis
- Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, UK
| | - Peter C.E. Moody
- Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, UK
| | - Emma L. Raven
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Gordon C.K. Roberts
- Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, UK
| |
Collapse
|
15
|
Verma R, Schwaneberg U, Roccatano D. Computer-Aided Protein Directed Evolution: a Review of Web Servers, Databases and other Computational Tools for Protein Engineering. Comput Struct Biotechnol J 2012; 2:e201209008. [PMID: 24688649 PMCID: PMC3962222 DOI: 10.5936/csbj.201209008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/07/2012] [Accepted: 10/12/2012] [Indexed: 12/01/2022] Open
Abstract
The combination of computational and directed evolution methods has proven a winning strategy for protein engineering. We refer to this approach as computer-aided protein directed evolution (CAPDE) and the review summarizes the recent developments in this rapidly growing field. We will restrict ourselves to overview the availability, usability and limitations of web servers, databases and other computational tools proposed in the last five years. The goal of this review is to provide concise information about currently available computational resources to assist the design of directed evolution based protein engineering experiment.
Collapse
Affiliation(s)
- Rajni Verma
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany ; Department of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Department of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
16
|
Terada T, Kidera A. Comparative molecular dynamics simulation study of crystal environment effect on protein structure. J Phys Chem B 2012; 116:6810-8. [PMID: 22397704 DOI: 10.1021/jp2125558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Crystal structures of proteins are under the influence from the crystal environment. In this study, we used molecular dynamics (MD) simulations to explore the possibility of eliminating the effect of the crystal packing and recovering the structure in solution. Ten representative proteins were chosen from the Protein Structural Change Database as the target systems, and 50 ns MD stimulations starting from two crystal structures having different domain arrangements were performed for each. The MD trajectories of the relaxation processes upon the release from the crystal environment revealed that the behaviors of the proteins were classified into three groups: "single domain linker", "harmonic motion", and "large barrier". We discuss the structural features common to the proteins in each group.
Collapse
Affiliation(s)
- Tohru Terada
- Molecular Scale Team, Computational Science Research Program, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| | | |
Collapse
|
17
|
Functional domain motions in proteins on the ~1-100 ns timescale: comparison of neutron spin-echo spectroscopy of phosphoglycerate kinase with molecular-dynamics simulation. Biophys J 2012; 102:1108-17. [PMID: 22404933 DOI: 10.1016/j.bpj.2012.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/09/2011] [Accepted: 01/03/2012] [Indexed: 11/22/2022] Open
Abstract
Protein function often requires large-scale domain motion. An exciting new development in the experimental characterization of domain motions in proteins is the application of neutron spin-echo spectroscopy (NSE). NSE directly probes coherent (i.e., pair correlated) scattering on the ~1-100 ns timescale. Here, we report on all-atom molecular-dynamics (MD) simulation of a protein, phosphoglycerate kinase, from which we calculate small-angle neutron scattering (SANS) and NSE scattering properties. The simulation-derived and experimental-solution SANS results are in excellent agreement. The contributions of translational and rotational whole-molecule diffusion to the simulation-derived NSE and potential problems in their estimation are examined. Principal component analysis identifies types of domain motion that dominate the internal motion's contribution to the NSE signal, with the largest being classic hinge bending. The associated free-energy profiles are quasiharmonic and the frictional properties correspond to highly overdamped motion. The amplitudes of the motions derived by MD are smaller than those derived from the experimental analysis, and possible reasons for this difference are discussed. The MD results confirm that a significant component of the NSE arises from internal dynamics. They also demonstrate that the combination of NSE with MD is potentially useful for determining the forms, potentials of mean force, and time dependence of functional domain motions in proteins.
Collapse
|
18
|
Amemiya T, Koike R, Kidera A, Ota M. PSCDB: a database for protein structural change upon ligand binding. Nucleic Acids Res 2011; 40:D554-8. [PMID: 22080505 PMCID: PMC3245091 DOI: 10.1093/nar/gkr966] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteins are flexible molecules that undergo structural changes to function. The Protein Data Bank contains multiple entries for identical proteins determined under different conditions, e.g. with and without a ligand molecule, which provides important information for understanding the structural changes related to protein functions. We gathered 839 protein structural pairs of ligand-free and ligand-bound states from monomeric or homo-dimeric proteins, and constructed the Protein Structural Change DataBase (PSCDB). In the database, we focused on whether the motions were coupled with ligand binding. As a result, the protein structural changes were classified into seven classes, i.e. coupled domain motion (59 structural changes), independent domain motion (70), coupled local motion (125), independent local motion (135), burying ligand motion (104), no significant motion (311) and other type motion (35). PSCDB provides lists of each class. On each entry page, users can view detailed information about the motion, accompanied by a morphing animation of the structural changes. PSCDB is available at http://idp1.force.cs.is.nagoya-u.ac.jp/pscdb/.
Collapse
Affiliation(s)
- Takayuki Amemiya
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
19
|
Neuhaus FC. Role of the omega loop in specificity determination in subsite 2 of the D-alanine:D-alanine (D-lactate) ligase from Leuconostoc mesenteroides: a molecular docking study. J Mol Graph Model 2011; 30:31-7. [PMID: 21727015 DOI: 10.1016/j.jmgm.2011.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 11/25/2022]
Abstract
The synthesis of D-ala-D-lactate in Leuconostoc mesenteroides is catalyzed by D-alanine:D-alanine (D-lactate) ligase (ADP). The ability to assemble this depsipeptide as well as D-ala-D-ala provides a mechanism for the organism's intrinsic resistance to vancomycin. Mutation of Phe261 to Tyr261 in the Ω-loop of this ligase showed a complete loss of the ability to make D-ala-D-lactate (Park and Walsh, J. Biol. Chem. 272 (1997) 9210-9214). Phe261 is a key specificity determinant in the α-helical cap of the Ω-loop when folded into the closed conformation. A molecular docking study of the closed ligase using AutoDock 4.2 defines additional specificity constraints promoted by the Ω-loop capping the catalytic center. Attaining productive orientations of D-lactate with favorable ligation chemistry requires the flexibilities of Phe261 and Arg301 in the docking protocol. These are in addition to the optimization of van der Waals contacts with Lys260, Met326, and Ser327. The location of Phe261 and Lys260 in the α-helical cap of the Ω-loop over subsite 2 is an essential part of the folding process ensuring depsipeptide formation in the hydrophobic environment of the catalytic center. The importance of the F261Y mutation suggests that the hydroxyl of Tyr261 plays an instrumental role in determining non-productive docking orientations of D-lactate. Two of these are presented: (A) D-lactate-OH as an H-bond donor to the Tyr261-OH; (B) D-lactate as an H-bond donor to the phosphoryl of the intermediate D-alanyl phosphate, and the D-lactate-COO- as an H-bond acceptor for the Tyr261-OH. Neither orientation, A or B, show the bifurcated H-bonding with Arg301 recently proposed for the activation of the nucleophilic D-lactate for D-ala-D-lactate formation. Insights into the role of the Ω-loop and its K(F/Y) signature provide additional background for inhibitor design targeted to subsite 2 of the D-alanine:D-alanine (D-X) ligases.
Collapse
Affiliation(s)
- Francis C Neuhaus
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA.
| |
Collapse
|
20
|
Ubhi D, Kavanagh KL, Monzingo AF, Robertus JD. Structure of Candida albicans methionine synthase determined by employing surface residue mutagenesis. Arch Biochem Biophys 2011; 513:19-26. [PMID: 21689631 DOI: 10.1016/j.abb.2011.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Fungal methionine synthase, Met6p, transfers a methyl group from 5-methyl-tetrahydrofolate to homocysteine to generate methionine. The enzyme is essential to fungal growth and is a potential anti-fungal drug design target. We have characterized the enzyme from the pathogen Candida albicans but were unable to crystallize it in native form. We converted Lys103, Lys104, and Glu107 all to Tyr (Met6pY), Thr (Met6pT) and Ala (Met6pA). All variants showed wild-type kinetic activity and formed useful crystals, each with unique crystal packing. In each case the mutated residues participated in beneficial crystal contacts. We have solved the three structures at 2.0-2.8Å resolution and analyzed crystal packing, active-site residues, and similarity to other known methionine synthase structures. C. albicans Met6p has a two domain structure with each of the domains having a (βα)(8)-barrel fold. The barrels are arranged face-to-face and the active site is located in a cleft between the two domains. Met6p utilizes a zinc ion for catalysis that is bound in the C-terminal domain and ligated by four conserved residues: His657, Cys659, Glu679 and Cys739.
Collapse
Affiliation(s)
- Devinder Ubhi
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, United States
| | | | | | | |
Collapse
|
21
|
Gráczer É, Merli A, Singh RK, Karuppasamy M, Závodszky P, Weiss MS, Vas M. Atomic level description of the domain closure in a dimeric enzyme: thermus thermophilus 3-isopropylmalate dehydrogenase. MOLECULAR BIOSYSTEMS 2011; 7:1646-59. [PMID: 21387033 DOI: 10.1039/c0mb00346h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The domain closure associated with the catalytic cycle is described at an atomic level, based on pairwise comparison of the X-ray structures of homodimeric Thermus thermophilus isopropylmalate dehydrogenase (IPMDH), and on their detailed molecular graphical analysis. The structures of the apo-form without substrate and in complex with the divalent metal-ion to 1.8 Å resolution, in complexes with both Mn(2+) and 3-isopropylmalate (IPM), as well as with both Mn(2+) and NADH, were determined at resolutions ranging from 2.0 to 2.5 Å. Single crystal microspectrophotometric measurements demonstrated the presence of a functionally competent protein conformation in the crystal grown in the presence of Mn(2+) and IPM. Structural comparison of the various complexes clearly revealed the relative movement of the two domains within each subunit and allowed the identification of two hinges at the interdomain region: hinge 1 between αd and βF as well as hinge 2 between αh and βE. A detailed analysis of the atomic contacts of the conserved amino acid side-chains suggests a possible operational mechanism of these molecular hinges upon the action of the substrates. The interactions of the protein with Mn(2+) and IPM are mainly responsible for the domain closure: upon binding into the cleft of the interdomain region, the substrate IPM induces a relative movement of the secondary structural elements βE, βF, βG, αd and αh. A further special feature of the conformational change is the movement of the loop bearing the amino acid Tyr139 that precedes the interacting arm of the subunit. The tyrosyl ring rotates and moves by at least 5 Å upon IPM-binding. Thereby, new hydrophobic interactions are formed above the buried isopropyl-group of IPM. Domain closure is then completed only through subunit interactions: a loop of one subunit that is inserted into the interdomain cavity of the other subunit extends the area with the hydrophobic interactions, providing an example of the cooperativity between interdomain and intersubunit interactions.
Collapse
Affiliation(s)
- Éva Gráczer
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, PO Box 7, H1518 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
22
|
Amemiya T, Koike R, Fuchigami S, Ikeguchi M, Kidera A. Classification and annotation of the relationship between protein structural change and ligand binding. J Mol Biol 2011; 408:568-84. [PMID: 21376729 DOI: 10.1016/j.jmb.2011.02.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 11/15/2022]
Abstract
The causal relationship between protein structural change and ligand binding was classified and annotated for 839 nonredundant pairs of crystal structures in the Protein Data Bank-one with and the other without a bound low-molecular-weight ligand molecule. Protein structural changes were first classified into either domain or local motions depending on the size of the moving protein segments. Whether the protein motion was coupled with ligand binding was then evaluated based on the location of the ligand binding site and by application of the linear response theory of protein structural change. Protein motions coupled with ligand binding were further classified into either closure or opening motions. This classification revealed the following: (i) domain motions coupled with ligand binding are dominated by closure motions, which can be described by the linear response theory; (ii) local motions frequently accompany order-disorder or α-helix-coil conformational transitions; and (iii) transferase activity (Enzyme Commission number 2) is the predominant function among coupled domain closure motions. This could be explained by the closure motion acting to insulate the reaction site of these enzymes from environmental water.
Collapse
Affiliation(s)
- Takayuki Amemiya
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
23
|
Choi S, Choe J. Crystal structure of elongation factor P from Pseudomonas aeruginosa at 1.75 Å resolution. Proteins 2011; 79:1688-93. [PMID: 21365687 DOI: 10.1002/prot.22992] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/13/2010] [Accepted: 01/05/2011] [Indexed: 11/05/2022]
Affiliation(s)
- Sarah Choi
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | | |
Collapse
|
24
|
Structural bioinformatics: deriving biological insights from protein structures. Interdiscip Sci 2010; 2:347-66. [PMID: 21153779 DOI: 10.1007/s12539-010-0045-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 12/27/2022]
Abstract
Structural bioinformatics can be described as an approach that will help decipher biological insights from protein structures. As an important component of structural biology, this area promises to provide a high resolution understanding of biology by assisting comprehension and interpretation of a large amount of structural data. Biological function of protein molecules can be inferred from their three-dimensional structures by comparing structures, classifying them and transferring function from a related protein or family. It is well known now that the structure space of protein molecules is more conserved than the sequence space, making it important to seek functional associations at the structural level. An added advantage of structural bioinformatics over simpler sequence-based methods is that the former also provides ultimate insights into the mechanisms by which various biological events take place. A bird's eye-view of the different aspects of structural bioinformatics is given here along with various recent advances in the area including how knowledge obtained from structural bioinformatics can be applied in drug discovery.
Collapse
|