1
|
Reyes AP, León NY, Frost ER, Harley VR. Genetic control of typical and atypical sex development. Nat Rev Urol 2023:10.1038/s41585-023-00754-x. [PMID: 37020056 DOI: 10.1038/s41585-023-00754-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.
Collapse
Affiliation(s)
- Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Genetics Department, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Emily R Frost
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Markouli M, Michala L. Fertility potential in 5α-reductase type 2 deficient males. J Pediatr Urol 2023; 19:108-114. [PMID: 36153242 DOI: 10.1016/j.jpurol.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Males with 5α-reductase deficiency experience oligospermia or azoospermia, resulting in fertility problems. OBJECTIVE The aim of the present systemic review was to assess the fertility status of males with 5α-reductase type 2 deficiency and explore how reproduction can be achieved in these patients. STUDY DESIGN An extensive search of two databases (Pubmed and SCOPUS) was performed. Studies with original clinical data in patients with 5α-reductase deficiency evaluating the impact of the disease on semen quality and quantity and pregnancy outcomes through assisted or natural conception methods were eligible to be included in this systematic review. RESULTS A total of nine cases were identified based on the eligibility criteria, all of which included reports of successful reproduction in males with 5α-reductase type 2 deficiency. DISCUSSION In five individuals, assisted reproduction technology was used to achieve conception, highlighting its importance in solving the fertility problems that males with 5α-reductase deficiency are facing. Potential future fertility is a further indication for assigning the male gender in diagnosed newborns. CONCLUSION In order to achieve this, the development of a management plan starting at birth is crucial for these patients, so that spermatogenesis and potential fertility can be preserved. In adulthood, semen analysis and mutation screening may also help in guiding these patients to select the correct fertilization method for their individual genetic and phenotypic characteristics.
Collapse
Affiliation(s)
- Mariam Markouli
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vas Sofias Avenue, Athens, Greece.
| | - Lina Michala
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vas Sofias Avenue, Athens, Greece
| |
Collapse
|
3
|
Guaragna-Filho G, Calixto AR, Astur ABLDV, de Paula GB, de Oliveira LC, Morcillo AM, Gonçalves EM, de Mello MP, Maciel-Guerra AT, Guerra-Junior G. Leydig and Sertoli cell function in individuals with genital ambiguity, 46,XY karyotype, palpable gonads and normal testosterone secretion: a case-control study. SAO PAULO MED J 2022; 140:163-170. [PMID: 35137906 PMCID: PMC9610247 DOI: 10.1590/1516-3180.2021.0042.r1.08062021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Because normal male sexual differentiation is more complex than normal female sexual differentiation, there are more cases of disorders of sex development (DSDs) with 46,XY karyotype that have unclear etiology. However, Leydig and Sertoli cell markers are rarely used in distinguishing such individuals. OBJECTIVES To evaluate the function of Leydig and Sertoli cells in individuals with genital ambiguity, 46,XY karyotype, palpable gonads and normal testosterone secretion. STUDY DESIGN AND SETTING Case-control study with 77 patients, including eight with partial androgen insensitivity syndrome, eight with 5α-reductase deficiency type 2 (5ARD2) and 19 with idiopathic 46,XY DSD, and 42 healthy controls, from the Interdisciplinary Study Group for Sex Determination and Differentiation (GIEDDS), at the State University of Campinas (UNICAMP), Campinas, Brazil. METHODS Baseline levels of gonadotropins, anti-Müllerian hormone (AMH), inhibin B, insulin-like 3 (INSL3), testosterone and dihydrotestosterone in cases, and AMH, inhibin B, and INSL3 levels in controls, were assessed. RESULTS There was no significant difference in age between cases and controls (P = 0.595). AMH and inhibin B levels were significantly lower in cases than in controls (P = 0.031 and P < 0.001, respectively). INSL3 levels were significantly higher in cases than in controls (P = 0.003). Inhibin B levels were lower in 5ARD2 patients (P = 0.045) and idiopathic patients (P = 0.001), in separate comparisons with the controls. CONCLUSION According to our findings, we can speculate that inhibin B levels may be used to differentiate among DSD cases.
Collapse
Affiliation(s)
- Guilherme Guaragna-Filho
- MD, PhD. Adjunct Professor, Department of Pediatrics, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.
| | - Antônio Ramos Calixto
- PhD. Researcher, Laboratory of Investigation in Metabolism and Diabetes (LIMED), Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Anna Beatriz Lima do Valle Astur
- MD. Attending Physician, Interdisciplinary Group for Study of Sex Determination and Differentiation (GIEDDS), School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Georgette Beatriz de Paula
- MD, MSc. Attending Physician, Interdisciplinary Group for Study of Sex Determination and Differentiation (GIEDDS), School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Laurione Cândido de Oliveira
- PhD. Researcher, Laboratory of Physiology, Clinical Hospital, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - André Moreno Morcillo
- MD, PhD. Associate Professor, Department of Pediatrics, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Ezequiel Moreira Gonçalves
- PhD. Adjunct Professor, Growth and Development Laboratory, Center for Investigation in Pediatrics (CIPED), School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Maricilda Palandi de Mello
- PhD. Researcher, Center of Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Andrea Trevas Maciel-Guerra
- MD, PhD. Full Professor, Interdisciplinary Group for Study of Sex Determination and Differentiation (GIEDDS), School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Gil Guerra-Junior
- MD, PhD. Full Professor, Interdisciplinary Group for Study of Sex Determination and Differentiation (GIEDDS), School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| |
Collapse
|
4
|
Wada T, Ichikawa C, Takeuchi M, Matsui F, Matsumoto F, Ida S, Etani Y, Kawai M. Histological analysis of testes in patients with 5 alpha-reductase deficiency type 2: comparison with cryptorchid testes in patients without endocrinological abnormalities and a review of the literature. Clin Pediatr Endocrinol 2022; 31:144-151. [PMID: 35928389 PMCID: PMC9297171 DOI: 10.1297/cpe.2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Tamaki Wada
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Chihiro Ichikawa
- Department of Pathology, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Makoto Takeuchi
- Department of Pathology, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Futoshi Matsui
- Department of Urology, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Fumi Matsumoto
- Department of Urology, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Shinobu Ida
- Department of Clinical Laboratory, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Yuri Etani
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Masanobu Kawai
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women’s and Children’s Hospital, Osaka, Japan
| |
Collapse
|
5
|
Abacı A, Çatlı G, Kırbıyık Ö, Şahin NM, Abalı ZY, Ünal E, Şıklar Z, Mengen E, Özen S, Güran T, Kara C, Yıldız M, Eren E, Nalbantoğlu Ö, Güven A, Çayır A, Akbaş ED, Kor Y, Çürek Y, Aycan Z, Baş F, Darcan Ş, Berberoğlu M. Genotype-phenotype correlation, gonadal malignancy risk, gender preference, and testosterone/dihydrotestosterone ratio in steroid 5-alpha-reductase type 2 deficiency: a multicenter study from Turkey. J Endocrinol Invest 2019; 42:453-470. [PMID: 30132287 DOI: 10.1007/s40618-018-0940-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Studies regarding genetic and clinical characteristics, gender preference, and gonadal malignancy rates for steroid 5-alpha-reductase type 2 deficiency (5α-RD2) are limited and they were conducted on small number of patients. OBJECTIVE To present genotype-phenotype correlation, gonadal malignancy risk, gender preference, and diagnostic sensitivity of serum testosterone/dihydrotestosterone (T/DHT) ratio in patients with 5α-RD2. MATERIALS AND METHODS Patients with variations in the SRD5A2 gene were included in the study. Demographic characteristics, phenotype, gender assignment, hormonal tests, molecular genetic data, and presence of gonadal malignancy were evaluated. RESULTS A total of 85 patients were included in the study. Abnormality of the external genitalia was the most dominant phenotype (92.9%). Gender assignment was male in 58.8% and female in 29.4% of the patients, while it was uncertain for 11.8%. Fourteen patients underwent bilateral gonadectomy, and no gonadal malignancy was detected. The most frequent pathogenic variants were p.Ala65Pro (30.6%), p.Leu55Gln (16.5%), and p.Gly196Ser (15.3%). The p.Ala65Pro and p.Leu55Gln showed more undervirilization than the p.Gly196Ser. The diagnostic sensitivity of stimulated T/DHT ratio was higher than baseline serum T/DHT ratio, even in pubertal patients. The cut-off values yielding the best sensitivity for stimulated T/DHT ratio were ≥ 8.5 for minipuberty, ≥ 10 for prepuberty, and ≥ 17 for puberty. CONCLUSION There is no significant genotype-phenotype correlation in 5α-RD2. Gonadal malignancy risk seems to be low. If genetic analysis is not available at the time of diagnosis, stimulated T/DHT ratio can be useful, especially if different cut-off values are utilized in accordance with the pubertal status.
Collapse
Affiliation(s)
- A Abacı
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey.
| | - G Çatlı
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Katip Çelebi University, Izmir, Turkey
| | - Ö Kırbıyık
- Division of Genetics, Tepecik Training and Research Hospital, Sağlık Bilimleri University, Izmir, Turkey
| | - N M Şahin
- Department of Pediatric Endocrinology, Faculty of Medicine and Dr Sami Ulus Woman Health and Children Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Z Y Abalı
- Department of Pediatric Endocrinology, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - E Ünal
- Department of Pediatric Endocrinology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Z Şıklar
- Department of Pediatric Endocrinology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - E Mengen
- Department of Pediatric Endocrinology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - S Özen
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - T Güran
- Department of Pediatric Endocrinology, Faculty of Medicine, Marmara University, İstanbul, Turkey
| | - C Kara
- Department of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - M Yıldız
- Division of Pediatric Endocrinology, Kanuni Sultan Süleyman Training and Research Hospital, İstanbul, Turkey
| | - E Eren
- Department of Pediatric Endocrinology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Ö Nalbantoğlu
- Division of Pediatric Endocrinology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - A Güven
- Department of Pediatric Endocrinology, Göztepe Training and Research Hospital, İstanbul, Turkey
- Department of Pediatric Endocrinology, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - A Çayır
- Division of Pediatric Endocrinology, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - E D Akbaş
- Department of Pediatric Endocrinology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Y Kor
- Department of Pediatric Endocrinology, Numune Training and Research Hospital, Sağlık Bilimleri University, Adana, Turkey
| | - Y Çürek
- Department of Pediatric Endocrinology, Sağlık Bilimleri University Antalya Training and Research Hospital, Antalya, Turkey
| | - Z Aycan
- Department of Pediatric Endocrinology, Faculty of Medicine and Dr Sami Ulus Woman Health and Children Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - F Baş
- Department of Pediatric Endocrinology, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ş Darcan
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - M Berberoğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Banco B, Grilli G, Giudice C, Marques AT, Cotti Cometti S, Visigalli G, Grieco V. Immunophenotyping of Rabbit Testicular Germ and Sertoli Cells Across Maturational Stages. J Histochem Cytochem 2016; 64:715-726. [PMID: 27680667 DOI: 10.1369/0022155416669918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During testicular maturation, both Sertoli cells (SCs) and germ cells (GCs) switch from an immature to a mature immunophenotype. The reexpression of markers of immaturity in adults has been reported in cancer and in other testicular pathologies, in men as well as in animal species. Naturally affected with testicular cancer, rabbits have long been used in human reproductive research, but reports on the expression of testicular cell markers in this species are few and data about the immunophenotype of normal postnatal SCs and GCs are lacking. The aim of this study was to investigate the immunophenotype of SCs and GCs in the rabbit, from neonatal to adult age, using the antibodies anti-Müllerian hormone (AMH), vimentin (VIM), CKAE1/AE3 (cytokeratins [CKs]), desmin (DES), inhibin alpha (INH-α), placental alkaline phosphatase (PLAP), and periodic acid-Schiff (PAS) staining. In SCs, VIM was constantly expressed, and AMH and CKs expression was limited to neonatal and prepubertal age, whereas DES, INH-α, PLAP, and PAS were constantly negative. GCs were negatively stained for PLAP, PAS, and for the other markers. Results revealed analogies with human testicular immunophenotype, suggesting that rabbits could represent a potential experimental model for the study of human testicular pathology.
Collapse
Affiliation(s)
- B Banco
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy (BB, GG, CG, ATM, SCC, VG)
| | - G Grilli
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy (BB, GG, CG, ATM, SCC, VG)
| | - C Giudice
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy (BB, GG, CG, ATM, SCC, VG)
| | - A Tomas Marques
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy (BB, GG, CG, ATM, SCC, VG)
| | - S Cotti Cometti
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy (BB, GG, CG, ATM, SCC, VG)
| | - G Visigalli
- Clinica Veterinaria Liana Blu, Varedo (MI), Italy (GV)
| | - V Grieco
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy (BB, GG, CG, ATM, SCC, VG)
| |
Collapse
|
7
|
Bertelloni S, Baldinotti F, Russo G, Ghirri P, Dati E, Michelucci A, Moscuzza F, Meroni S, Colombo I, Sessa MR, Baroncelli GI. 5α-Reductase-2 Deficiency: Clinical Findings, Endocrine Pitfalls, and Genetic Features in a Large Italian Cohort. Sex Dev 2016; 10:28-36. [PMID: 27070133 DOI: 10.1159/000445090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 11/19/2022] Open
Abstract
Clinical records (n = 24) with an established diagnosis of 5α-reductase-2 deficiency were reviewed. A previous misdiagnosis was present in about 70% (period from first observation to definitive diagnosis: 9.1 ± 10.8 years), and in 8 children gonadal removal was performed before certain diagnosis. Initial sex assignment was female in 16/24 (67%) and male in 8/24 (33%) cases. After diagnosis, sex re-assignment was performed in 5 babies (4 girls to male sex; 1 boy to female sex). Baseline testosterone/DHT ratio was diagnostic in 6/12 subjects (first months of life n = 4; puberty n = 2), while post-hCG testosterone/DHT ratio was diagnostic in all tested individuals (choosing both the cut-off value 15 or 10). Eighteen different mutations in the steroid-5α-reductase-2 (SRD5A2) gene were identified, 5 of which have never been reported. In conclusion, a time lag exists before the diagnosis of 5α-reductase-2 deficiency is established; sex assignment and gonadal removal may be performed before certain diagnosis. Sex re-assignment is usually female to male, but the contrary may occur. A large variability in clinical phenotypes and genetic mutations was present in this cohort. Accurate endocrine evaluation is recommended in babies possibly affected by 5α-reductase-2 deficiency, since the use of appropriate cut-off values of testosterone/DHT ratio after hCG stimulation may permit to select individuals for SRD5A2 gene analysis. A genotype-phenotype correlation was not found in this study.
Collapse
Affiliation(s)
- Silvano Bertelloni
- Adolescent Medicine, Pediatric Division, Azienda Ospedaliero-Universitaria Pisana (AOUP), Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Burckhardt MA, Udhane SS, Marti N, Schnyder I, Tapia C, Nielsen JE, Mullis PE, Rajpert-De Meyts E, Flück CE. Human 3β-hydroxysteroid dehydrogenase deficiency seems to affect fertility but may not harbor a tumor risk: lesson from an experiment of nature. Eur J Endocrinol 2015; 173:K1-K12. [PMID: 26290012 DOI: 10.1530/eje-15-0599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/19/2015] [Indexed: 11/08/2022]
Abstract
CONTEXT 3β-hydroxysteroid dehydrogenase deficiency (3βHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3βHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis histology, fertility and malignancy risk. OBJECTIVE To describe the molecular genetics, the steroid biochemistry, the (immuno-)histochemistry and the clinical implications of a loss-of-function HSD3B2 mutation. METHODS Biochemical, genetic and immunohistochemical investigations on human biomaterials. RESULTS A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene revealed a homozygous c.687del27 deletion. At pubertal age, he showed some virilization of the external genitalia and some sex steroid metabolites appeared likely through conversion of precursors secreted by the testis and converted by unaffected HSD3B1 in peripheral tissues. However, he also developed enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS The testis with HSD3B2 deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis.
Collapse
Affiliation(s)
- Marie-Anne Burckhardt
- Pediatric Endocrinology and DiabetologyDepartments of Pediatrics and Clinical ResearchPediatric SurgeryInstitute of PathologyUniversity of Bern, CH-3010 Bern, SwitzerlandDepartment of Growth and ReproductionRigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sameer S Udhane
- Pediatric Endocrinology and DiabetologyDepartments of Pediatrics and Clinical ResearchPediatric SurgeryInstitute of PathologyUniversity of Bern, CH-3010 Bern, SwitzerlandDepartment of Growth and ReproductionRigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nesa Marti
- Pediatric Endocrinology and DiabetologyDepartments of Pediatrics and Clinical ResearchPediatric SurgeryInstitute of PathologyUniversity of Bern, CH-3010 Bern, SwitzerlandDepartment of Growth and ReproductionRigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Isabelle Schnyder
- Pediatric Endocrinology and DiabetologyDepartments of Pediatrics and Clinical ResearchPediatric SurgeryInstitute of PathologyUniversity of Bern, CH-3010 Bern, SwitzerlandDepartment of Growth and ReproductionRigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Coya Tapia
- Pediatric Endocrinology and DiabetologyDepartments of Pediatrics and Clinical ResearchPediatric SurgeryInstitute of PathologyUniversity of Bern, CH-3010 Bern, SwitzerlandDepartment of Growth and ReproductionRigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - John E Nielsen
- Pediatric Endocrinology and DiabetologyDepartments of Pediatrics and Clinical ResearchPediatric SurgeryInstitute of PathologyUniversity of Bern, CH-3010 Bern, SwitzerlandDepartment of Growth and ReproductionRigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Primus E Mullis
- Pediatric Endocrinology and DiabetologyDepartments of Pediatrics and Clinical ResearchPediatric SurgeryInstitute of PathologyUniversity of Bern, CH-3010 Bern, SwitzerlandDepartment of Growth and ReproductionRigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Pediatric Endocrinology and DiabetologyDepartments of Pediatrics and Clinical ResearchPediatric SurgeryInstitute of PathologyUniversity of Bern, CH-3010 Bern, SwitzerlandDepartment of Growth and ReproductionRigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christa E Flück
- Pediatric Endocrinology and DiabetologyDepartments of Pediatrics and Clinical ResearchPediatric SurgeryInstitute of PathologyUniversity of Bern, CH-3010 Bern, SwitzerlandDepartment of Growth and ReproductionRigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|