1
|
Esmaeilzadeh A, Mohammadi V, Elahi R, Rezakhani N. The role of heat shock proteins (HSPs) in type 2 diabetes mellitus pathophysiology. J Diabetes Complications 2023; 37:108564. [PMID: 37852076 DOI: 10.1016/j.jdiacomp.2023.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 10/20/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by sustained hyperglycemia caused by impaired insulin signaling and secretion. Metabolic stress, caused by an inappropriate diet, is one of the major hallmarks provoking inflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Heat shock proteins (HSPs) are a group of highly conserved proteins that have a crucial role in chaperoning damaged and misfolded proteins to avoid disruption of cellular homeostasis under stress conditions. To do this, HSPs interact with diverse intra-and extracellular pathways among which are the insulin signaling, insulin secretion, and apoptosis pathways. Therefore, HSP dysfunction, e.g. HSP70, may lead to disruption of the pathways responsible for insulin secretion and uptake. Consistently, the altered expression of other HSPs and genetic polymorphisms in HSP-producing genes in diabetic subjects has made HSPs hot research in T2DM. This paper provides a comprehensive overview of the role of different HSPs in T2DM pathogenesis, affected cellular pathways, and the potential therapeutic strategies targeting HSPs in T2DM.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Rezakhani
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Zhao Q, Luo T, Gao F, Fu Y, Li B, Shao X, Chen H, Zhou Z, Guo S, Shen L, Jin L, Cen D, Zhou H, Lyu J, Fang H. GRP75 Regulates Mitochondrial-Supercomplex Turnover to Modulate Insulin Sensitivity. Diabetes 2022; 71:233-248. [PMID: 34810178 DOI: 10.2337/db21-0173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022]
Abstract
GRP75 (75-kDA glucose-regulated protein), defined as a major component of both the mitochondrial quality control system and mitochondria-associated membrane, plays a key role in mitochondrial homeostasis. In this study, we assessed the roles of GRP75, other than as a component, in insulin action in both in vitro and in vivo models with insulin resistance. We found that GRP75 was downregulated in mice fed a high-fat diet (HFD) and that induction of Grp75 in mice could prevent HFD-induced obesity and insulin resistance. Mechanistically, GRP75 influenced insulin sensitivity by regulating mitochondrial function through its modulation of mitochondrial-supercomplex turnover rather than mitochondria-associated membrane communication: GRP75 was negatively associated with respiratory chain complex activity and was essential for mitochondrial-supercomplex assembly and stabilization. Moreover, mitochondrial dysfunction in Grp75-knockdown cells might further increase mitochondrial fragmentation, thus triggering cytosolic mtDNA release and activating the cGAS/STING-dependent proinflammatory response. Therefore, GRP75 can serve as a potential therapeutic target of insulin resistant-related diabetes or other metabolic diseases.
Collapse
Affiliation(s)
- Qiongya Zhao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ting Luo
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Feng Gao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinxu Fu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoli Shao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuohua Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sihan Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqin Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dong Cen
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Sun Y, Ding S. ER-Mitochondria Contacts and Insulin Resistance Modulation through Exercise Intervention. Int J Mol Sci 2020; 21:ijms21249587. [PMID: 33339212 PMCID: PMC7765572 DOI: 10.3390/ijms21249587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
The endoplasmic reticulum (ER) makes physical contacts with mitochondria at specific sites, and the hubs between the two organelles are called mitochondria-associated ER membranes (MAMs). MAMs are known to play key roles in biological processes, such as intracellular Ca2+ regulation, lipid trafficking, and metabolism, as well as cell death, etc. Studies demonstrated that dysregulation of MAMs significantly contributed to insulin resistance. Alterations of MAMs’ juxtaposition and integrity, impaired expressions of insulin signaling molecules, disruption of Ca2+ homeostasis, and compromised metabolic flexibility are all actively involved in the above processes. In addition, exercise training is considered as an effective stimulus to ameliorate insulin resistance. Although the underlying mechanisms for exercise-induced improvement in insulin resistance are not fully understood, MAMs may be critical for the beneficial effects of exercise.
Collapse
Affiliation(s)
- Yi Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China;
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China;
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
- Correspondence:
| |
Collapse
|
4
|
Lakshmi PK, Kumar S, Pawar S, Kuriakose BB, Sudheesh MS, Pawar RS. Targeting metabolic syndrome with phytochemicals: Focus on the role of molecular chaperones and hormesis in drug discovery. Pharmacol Res 2020; 159:104925. [PMID: 32492491 DOI: 10.1016/j.phrs.2020.104925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Adaptive cellular stress response confers stress tolerance against inflammatory and metabolic disorders. In response to metabolic stress, the key mediator of cellular adaptation and tolerance is a class of molecules called the molecular chaperones (MCs). MCs are highly conserved molecules that play critical role in maintaining protein stability and functionality. Hormesis in this context is a unique adaptation mechanism where a low dose of a stressor (which is toxic at high dose) confers a stress-resistant adaptive cellular phenotype. Hormesis can be observed at different level of biological organization at various measurable endpoints. The MCs are believed to play a key role in adaptation during hormesis. Several phytochemicals are known for their hormetic response and are called phytochemical hormetins. The role of phytochemical-mediated hormesis on the adaptive cellular processes is proposed as a potential therapeutic approach to target inflammation associated with metabolic syndrome. However, the screening of phytochemical hormetins would require a paradigm shift in the methods currently used in drug discovery.
Collapse
Affiliation(s)
- P K Lakshmi
- Pharmacognosy and Phytochemistry Laboratory, Faculty of Pharmacy, VNS Group of Institutions, VNS Campus, Vidya Vihar, Neelbad-462044, Bhopal, MP, India
| | - Shweta Kumar
- Pharmacognosy and Phytochemistry Laboratory, Faculty of Pharmacy, VNS Group of Institutions, VNS Campus, Vidya Vihar, Neelbad-462044, Bhopal, MP, India
| | - Sulakshhna Pawar
- Ravi Shankar College of Pharmacy, Bypass Road, Bhanpur Square, Bhopal, MP 462010, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis, Mushayt, Saudi Arabia
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Rajesh Singh Pawar
- Truba Institute of Pharmacy, Karond-Gandhi Nagar, By Pass Road, Bhopal, 462038, India.
| |
Collapse
|
5
|
Xiao T, Liang X, Liu H, Zhang F, Meng W, Hu F. Mitochondrial stress protein HSP60 regulates ER stress-induced hepatic lipogenesis. J Mol Endocrinol 2020; 64:67-75. [PMID: 31804966 PMCID: PMC6993205 DOI: 10.1530/jme-19-0207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are associated with hepatic steatosis and insulin resistance. Molecular mechanisms underlying ER stress and/or mitochondrial dysfunction that cause metabolic disorders and hepatic steatosis remain to be fully understood. Here, we found that a high fat diet (HFD) or chemically induced ER stress can stimulate mitochondrial stress protein HSP60 expression, impair mitochondrial respiration, and decrease mitochondrial membrane potential in mouse hepatocytes. HSP60 overexpression promotes ER stress and hepatic lipogenic protein expression and impairs insulin signaling in mouse hepatocytes. Mechanistically, HSP60 regulates ER stress-induced hepatic lipogenesis via the mTORC1-SREBP1 signaling pathway. These results suggest that HSP60 is an important ER and mitochondrial stress cross-talking protein and may control ER stress-induced hepatic lipogenesis and insulin resistance.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiuci Liang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Zhang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Meng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Correspondence should be addressed to F Hu: or to W Meng:
| | - Fang Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Metabolic Syndrome Research Center, Central South University, Changsha, Hunan, China
- Correspondence should be addressed to F Hu: or to W Meng:
| |
Collapse
|
6
|
Mitochondrial dynamics, quality control and miRNA regulation in skeletal muscle: implications for obesity and related metabolic disease. Clin Sci (Lond) 2016; 130:843-52. [DOI: 10.1042/cs20150780] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/12/2016] [Indexed: 01/14/2023]
Abstract
The western dietary habits and sedentary lifestyle largely contributes to the growing epidemic of obesity. Mitochondria are at the front line of cellular energy homoeostasis and are implicated in the pathophysiology of obesity and obesity-related metabolic disease. In recent years, novel aspects in the regulation of mitochondrial metabolism, such as mitochondrial dynamics, mitochondrial protein quality control and post-transcriptional regulation of genes coding for mitochondrial proteins, have emerged. In this review, we discuss the recent findings concerning the dysregulation of these processes in skeletal muscle in obesogenic conditions.
Collapse
|
7
|
Weber D, Davies MJ, Grune T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol 2015; 5:367-380. [PMID: 26141921 PMCID: PMC4506980 DOI: 10.1016/j.redox.2015.06.005] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/19/2022] Open
Abstract
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples.
Collapse
Affiliation(s)
- Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| |
Collapse
|
8
|
Gram M, Vigelsø A, Yokota T, Hansen CN, Helge JW, Hey-Mogensen M, Dela F. Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men. Exp Gerontol 2014; 58:269-78. [PMID: 25193555 DOI: 10.1016/j.exger.2014.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative capacity in 17 young (23±1years) and 15 elderly (68±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mtHSP70) and voltage dependent anion channel (VDAC) were measured in skeletal muscle by Western blotting. The elderly men had lower content of complexes I-V and mtHSP70 but similar respiratory capacity and content of VDAC compared to the young. In both groups the respiratory capacity and protein content of VDAC, mtHSP70 and complexes I, II, IV and V decreased with immobilization and increased with retraining. Moreover, there was no overall difference in the response between the groups. When the intrinsic mitochondrial capacity was evaluated by normalizing respiration to citrate synthase activity, the respiratory differences with immobilization and training disappeared. In conclusion, aging is not associated with a decrease in muscle respiratory capacity in spite of lower complexes I-V and mtHSP70 protein content. Furthermore, immobilization decreased and aerobic training increased the respiratory capacity and protein contents of complexes I-V, mtHSP70 and VDAC similarly in the two groups. This suggests that inactivity and training alter mitochondrial biogenesis equally in young and elderly men.
Collapse
Affiliation(s)
- Martin Gram
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Andreas Vigelsø
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Takashi Yokota
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Christina Neigaard Hansen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Martin Hey-Mogensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
9
|
Beltran Valls MR, Dimauro I, Brunelli A, Tranchita E, Ciminelli E, Caserotti P, Duranti G, Sabatini S, Parisi P, Parisi A, Caporossi D. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly. AGE (DORDRECHT, NETHERLANDS) 2014; 36:759-772. [PMID: 24136652 PMCID: PMC4039278 DOI: 10.1007/s11357-013-9584-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/04/2013] [Indexed: 06/01/2023]
Abstract
Current recommendations aimed at reducing neuromuscular and functional loss in aged muscle have identified muscle power as a key target for intervention trials, although little is known about the biological and cardiovascular systemic response in the elderly. This study investigated the effects of 12 weeks of low-frequency, moderate-intensity, explosive-type resistance training (EMRT) on muscle strength and power in old community-dwelling people (70-75 years), monitoring functional performance linked to daily living activities (ADL) and cardiovascular response, as well as biomarkers of muscle damage, cardiovascular risk, and cellular stress response. The present study provides the first evidence that EMRT was highly effective in achieving a significant enhancement in muscular strength and power as well as in functional performance without causing any detrimental modification in cardiovascular, inflammatory, and damage parameters. Moreover, trained elderly subjects showed an adaptive response at both systemic and cellular levels by modulation of antioxidant and stress-induced markers such as myeloperoxidase (MPO), heat shock protein 70 (Hsp70) and 27 (Hsp27), and thioredoxin reductase 1 (TrxR1).
Collapse
Affiliation(s)
- Maria Reyes Beltran Valls
- />Unit of Biology, Genetics and Biochemistry, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Ivan Dimauro
- />Unit of Biology, Genetics and Biochemistry, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Andrea Brunelli
- />Unit of Biology, Genetics and Biochemistry, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Eliana Tranchita
- />Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Emanuela Ciminelli
- />Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Paolo Caserotti
- />Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense M, Denmark
| | - Guglielmo Duranti
- />Unit of Biology, Genetics and Biochemistry, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Stefania Sabatini
- />Unit of Biology, Genetics and Biochemistry, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Paolo Parisi
- />Unit of Biology, Genetics and Biochemistry, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Attilio Parisi
- />Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Daniela Caporossi
- />Unit of Biology, Genetics and Biochemistry, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Rome, Italy
| |
Collapse
|
10
|
Decreased thioredoxin-1 and increased HSP90 expression in skeletal muscle in subjects with type 2 diabetes or impaired glucose tolerance. BIOMED RESEARCH INTERNATIONAL 2014; 2014:386351. [PMID: 24689038 PMCID: PMC3932292 DOI: 10.1155/2014/386351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/29/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022]
Abstract
In diabetes, the endogenous defence systems are overwhelmed, causing various types of stress in tissues. In this study, newly diagnosed or diet-treated type 2 diabetics (T2D) (n = 10) were compared with subjects with impaired glucose tolerance (IGT) (n = 8). In both groups, at resting conditions, blood samples were drawn for assessing metabolic indices and skeletal muscle samples (m. vastus lateralis) were taken for the measurements of cellular defence markers: thioredoxin-1 (TRX-1) and stress proteins HSP72, HSP90. The protein level of TRX-1 was 36.1% lower (P = 0.031) and HSP90 was 380% higher (P < 0.001) in the T2D than in the IGT subjects, with no significant changes in HSP72. However, after the adjustment of both analyses with HOMA-IR only HSP90 difference remained significant. In conclusion, level of TRX-1 in skeletal muscle tissue was lower while that of HSP90 was higher in T2D than in IGT subjects. This may impair antioxidant defence and lead to disruptions of protein homoeostasis and redox regulation of cellular defences. Because HSP90 may be involved in sustaining functional insulin signalling pathway in type 2 diabetic muscles and higher HSP90 levels can be a consequence of type 2 diabetes, our results are potentially important for the diabetes research.
Collapse
|
11
|
Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases? Cell Signal 2011; 23:1528-33. [PMID: 21616143 DOI: 10.1016/j.cellsig.2011.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/09/2011] [Indexed: 12/16/2022]
Abstract
Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPR(mt)) and initiation of a retrograde stress signaling pathway. Defects in the UPR(mt) and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting in endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective approach to improve mitochondria function and to suppress obesity-induced metabolic disorders such as insulin resistance and type 2 diabetes.
Collapse
|
12
|
|
13
|
Pimenta A, Gorjão R, Silveira LR, Curi R. Changes of gene expression in electrically stimulated and contralateral rat soleus muscles. Muscle Nerve 2009; 40:838-46. [PMID: 19722257 DOI: 10.1002/mus.21360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study we investigate the effect of a single session of high-intensity contractions on expression of pleiotropic genes and, in particular, those genes associated with metabolism in soleus muscle from electrically stimulated (ES) and contralateral (CL) limbs. The right limbs of male Wistar rats were submitted to contractions by 200-ms trains of electrical stimulation at 100-HZ frequency with pulses of 0.1 ms (voltage 24 +/- 3 V) delivered each second for 1 hour. Soleus muscles were isolated 1 hour after contraction, and gene expression was analyzed by a macroarray technique (Atlas Toxicology 1.2 Array; Clontech Laboratories). Electrical stimulation increased expression in 92 genes (16% of the genes present in the membrane). Sixty-six genes were upregulated in both ES and CL soleus muscles, and expression of 26 genes was upregulated in the ES muscle only. The most altered genes were those related to stress response and metabolism. Electrical stimulation also raised expression of transcription factors, translation and posttranslational modification of proteins, ribosomal proteins, and intracellular transducers/effectors/modulators. The results indicate that a single session of electrical stimulation upregulated expression of genes related to metabolism and oxidative stress in soleus muscle from both ES and CL limbs. These findings may indicate an association with tissue hypertrophy and metabolic adaptations induced by physical exercise training not only in the ES but also in the CL non-stimulated muscle, suggesting a cross-education phenomenon.
Collapse
Affiliation(s)
- Aurélio Pimenta
- National Institute of Obesity and Diabetes/Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Avenida Prof. Lineu Prestes 1524, 05508-900, Butantã, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
14
|
Dalla Libera L, Ravara B, Gobbo V, Tarricone E, Vitadello M, Biolo G, Vescovo G, Gorza L. A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle. J Appl Physiol (1985) 2009; 107:549-57. [PMID: 19478193 DOI: 10.1152/japplphysiol.00280.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is presently unknown whether oxidative stress increases in disused skeletal muscle in humans. Markers of oxidative stress were investigated in biopsies from the vastus lateralis muscle, collected from healthy subjects before [time 0 (T0)], after 1 wk (T8), and after 5 wk (T35) of bed rest. An 18% decrease in fiber cross-sectional area was detected in T35 biopsies (P<0.05). Carbonylation of muscle proteins significantly increased about twofold at T35 (P<0.02) and correlated positively with the decrease in fiber cross-sectional area (P=0.04). Conversely, T8 biopsies showed a significant increase in protein levels of heme oxygenase-1 and glucose-regulated protein-75 (Grp75)/mitochondrial heat shock protein-70, two stress proteins involved in the antioxidant defense (P<0.05). Heme oxygenase-1 increase, which involved a larger proportion of slow fibers compared with T0, appeared blunted in T35 biopsies. Grp75 protein level increased threefold in T8 biopsies and localized especially in slow fibers (P<0.025), to decrease significantly in T35 biopsies (P<0.05). Percent change in Grp75 levels positively correlated with fiber cross-sectional area (P=0.01). Parallel investigations on rat soleus muscles, performed after 1-15 days of hindlimb suspension, showed that Grp75 protein levels significantly increased after 24 h of unloading (P = 0.02), i.e., before statistically significant evidence of muscle atrophy, to decrease thereafter in relation to the degree of muscle atrophy (P=0.03). Therefore, in humans as in rodents, disuse muscle atrophy is characterized by increased protein carbonylation and by the blunting of the antioxidant stress response evoked by disuse.
Collapse
Affiliation(s)
- Luciano Dalla Libera
- Consiglio Nazionale delle Ricerche-Institute for Neuroscience, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|