1
|
Mhaidly N, Barake N, Trelcat A, Journe F, Saussez S, Descamps G. Bufalin Suppresses Head and Neck Cancer Development by Modulating Immune Responses and Targeting the β-Catenin Signaling Pathway. Cancers (Basel) 2024; 16:2739. [PMID: 39123466 PMCID: PMC11311268 DOI: 10.3390/cancers16152739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Bufalin, a cardiotonic steroid derived from the Chinese toad (Bufo gargarizans), has demonstrated potent anticancer properties across various cancer types, positioning it as a promising therapeutic candidate. However, comprehensive mechanistic studies specific to head and neck cancers have been lacking. Our study aimed to bridge this gap by investigating bufalin's mechanisms of action in head and neck cancer cells. Using several methods, such as Western blotting, immunofluorescence, and flow cytometry, we observed bufalin's dose-dependent reduction in cell viability, disruption of cell membrane integrity, and inhibition of colony formation in both HPV-positive and HPV-negative cell lines. Bufalin induces apoptosis through the modulation of apoptosis-related proteins, mitochondrial function, and reactive oxygen species production. It also arrests the cell cycle at the G2/M phase and attenuates cell migration while affecting epithelial-mesenchymal transition markers and targeting pivotal signaling pathways, including Wnt/β-catenin, EGFR, and NF-κB. Additionally, bufalin exerted immunomodulatory effects by polarizing macrophages toward the M1 phenotype, bolstering antitumor immune responses. These findings underscore bufalin's potential as a multifaceted therapeutic agent against head and neck cancers, targeting essential pathways involved in proliferation, apoptosis, cell cycle regulation, metastasis, and immune modulation. Further research is warranted to validate these mechanisms and optimize bufalin's clinical application.
Collapse
Affiliation(s)
- Nour Mhaidly
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Noura Barake
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Anne Trelcat
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium;
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| |
Collapse
|
2
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
3
|
Lei X, Wang X, Xiong W, Xiao H, Wu Y, Huang T, Liang R, Li Y, Lin S. Cytochrome P450 Mining for Bufadienolide Diversification. ACS Chem Biol 2024; 19:1169-1179. [PMID: 38624108 DOI: 10.1021/acschembio.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Bufadienolides are a class of steroids with a distinctive α-pyrone ring at C17, mostly produced by toads and consisting of over 100 orthologues. They exhibit potent cardiotonic and antitumor activities and are active ingredients of the traditional Chinese medicine Chansu and Cinobufacini. Direct extraction from toads is costly, and chemical synthesis is difficult, limiting the accessibility of active bufadienolides with diverse modifications and trace content. In this work, based on the transcriptome and genome analyses, using a yeast-based screening platform, we obtained eight cytochrome P450 (CYP) enzymes from toads, which catalyze the hydroxylation of bufalin and resibufogenin at different sites. Moreover, a reported fungal CYP enzyme Sth10 was found functioning in the modification of bufalin and resibufogenin at multiple sites. A total of 15 bufadienolides were produced and structurally identified, of which six were first discovered. All of the compounds were effective in inhibiting the proliferation of tumor cells, especially 19-hydroxy-bufalin (2) and 1β-hydroxy-bufalin (3), which were generated from bufalin hydroxylation catalyzed by CYP46A35. The catalytic efficiency of CYP46A35 was improved about six times and its substrate diversity was expanded to progesterone and testosterone, the common precursors for steroid drugs, achieving their efficient and site-specific hydroxylation. These findings elucidate the key modification process in the synthesis of bufadienolides by toads and provide an effective way for the synthesis of unavailable bufadienolides with site-specific modification and active potentials.
Collapse
Affiliation(s)
- Xiaolai Lei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Liao Y, Wei F, He Z, He J, Ai Y, Guo C, Zhou L, Luo D, Li C, Wen Y, Zeng J, Ma X. Animal-derived natural products for hepatocellular carcinoma therapy: current evidence and future perspectives. Front Pharmacol 2024; 15:1399882. [PMID: 38803433 PMCID: PMC11129636 DOI: 10.3389/fphar.2024.1399882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high morbidity and mortality rate, and the survival rate of HCC patients remains low. Animal medicines have been used as potential therapeutic tools throughout the long history due to their different structures of biologically active substances with high affinity to the human body. Here, we focus on the effects and the mechanism of action of animal-derived natural products against HCC, which were searched in databases encompassing Web of Science, PubMed, Embase, Science Direct, Springer Link, and EBSCO. A total of 24 natural products from 12 animals were summarized. Our study found that these natural products have potent anti-hepatocellular carcinoma effects. The mechanism of action involving apoptosis induction, autophagy induction, anti-proliferation, anti-migration, and anti-drug resistance via phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), Ras/extracellular signal regulated kinases (ERK)/mitogen-activated protein kinase (MAPK), Wnt/β-catenin, and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways. Huachansu injection and sodium cantharidate have been used in clinical applications with good efficacy. We review the potential of animal-derived natural products and their derivatives in the treatment of HCC to date and summarize their application prospect and toxic side effects, hoping to provide a reference for drug development for HCC.
Collapse
Affiliation(s)
- Yichao Liao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Endoscopy Center, Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jingxue He
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanlin Ai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cui Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
6
|
Tao C, Wang J, Gu Z, Ni H, Luo Y, Ling J, Chen Y, Wu Y, Liu X, Zhou Y, Xu T. Network pharmacology and metabolomics elucidate the underlying mechanisms of Venenum Bufonis in the treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116695. [PMID: 37315651 DOI: 10.1016/j.jep.2023.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The present study aims to evaluate the efficacy of Venenum Bufonis (VBF), a traditional Chinese medicine derived from the dried secretions of the Chinese toad, in treating colorectal cancer (CRC). The comprehensive roles of VBF in CRC through systems biology and metabolomics approaches have been rarely investigated. AIMS OF THE STUDY The study sought to uncover the potential underlying mechanisms of VBF's anti-cancer effects by investigating the impact of VBF on cellular metabolic balance. MATERIALS AND METHODS An integrative approach combining biological network analysis, molecular docking and multi-dose metabolomics was used to predict the effects and mechanisms of VBF in CRC treatment. The prediction was verified by cell viability assay, EdU assay and flow cytometry. RESULTS The results of the study indicate that VBF presents anti-CRC effects and impacts cellular metabolic balance through its impact on cell cycle-regulating proteins, such as MTOR, CDK1, and TOP2A. The results of the multi-dose metabolomics analysis suggest a dose-dependent reduction of metabolites related to DNA synthesis after VBF treatment, while the EdU and flow cytometry results indicate that VBF inhibits cell proliferation and arrests the cell cycle at the S and G2/M phases. CONCLUSIONS These findings suggest that VBF disrupts purine and pyrimidine pathways in CRC cancer cells, leading to cell cycle arrest. This proposed workflow integrating molecular docking, multi-dose metabolomics, and biological validation, which contented EdU assay, cell cycle assay, provides a valuable framework for future similar studies.
Collapse
Affiliation(s)
- Cimin Tao
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiao Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhilei Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongfei Ni
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yingjie Luo
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Ling
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Chen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongjiang Wu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuesong Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tengfei Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Ye Q, Zhou X, Ren H, Han F, Lin R, Li J. An overview of the past decade of bufalin in the treatment of refractory and drug-resistant cancers: current status, challenges, and future perspectives. Front Pharmacol 2023; 14:1274336. [PMID: 37860119 PMCID: PMC10582727 DOI: 10.3389/fphar.2023.1274336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Profound progress has been made in cancer treatment in the past three decades. However, drug resistance remains prevalent and a critical challenge. Drug resistance can be attributed to oncogenes mutations, activated defensive mechanisms, ATP-bind cassette transporters overexpression, cancer stem cells, etc. Chinese traditional medicine toad venom has been used for centuries for different diseases, including resistant cancers. Bufalin is one of the bufadienolides in toad venom that has been extensively studied for its potential in refractory and drug-resistant cancer treatments in vitro and in vivo. In this work, we would like to critically review the progress made in the past decade (2013-2022) of bufalin in overcoming drug resistance in cancers. Generally, bufalin shows high potential in killing certain refractory and resistant cancer cells via multiple mechanisms. More importantly, bufalin can work as a chemo-sensitizer that enhances the sensitivity of certain conventional and targeted therapies at low concentrations. In addition, the development of bufalin derivatives was also briefly summarized and discussed. We also analyzed the obstacles and challenges and provided possible solutions for future perspectives. We hope that the collective information may help evoke more effort for more in-depth studies and evaluation of bufalin in both lab and possible clinical trials.
Collapse
Affiliation(s)
- Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Han Ren
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Lin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
8
|
Liang P, Ma Y, Yang L, Mao L, Sun Q, Sun C, Liu Z, Mazhar M, Yang S, Ren W. Uncovering the Mechanisms of Active Components from Toad Venom against Hepatocellular Carcinoma Using Untargeted Metabolomics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227758. [PMID: 36431859 PMCID: PMC9694973 DOI: 10.3390/molecules27227758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Toad venom, a dried product of secretion from Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider, has had the therapeutic effects of hepatocellular carcinoma confirmed. Bufalin and cinobufagin were considered as the two most representative antitumor active components in toad venom. However, the underlying mechanisms of this antitumor effect have not been fully implemented, especially the changes in endogenous small molecules after treatment. Therefore, this study was designed to explore the intrinsic mechanism on hepatocellular carcinoma after the cotreatment of bufalin and cinobufagin based on untargeted tumor metabolomics. Ultraperformance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) was performed to identify the absorbed components of toad venom in rat plasma. In vitro experiments were determined to evaluate the therapeutic effects of bufalin and cinobufagin and screen the optimal ratio between them. An in vivo HepG2 tumor-bearing nude mice model was established, and a series of pharmacodynamic indicators were determined, including the body weight of mice, tumor volume, tumor weight, and histopathological examination of tumor. Further, the entire metabolic alterations in tumor after treating with bufalin and cinobufagin were also profiled by UHPLC-MS/MS. Twenty-seven active components from toad venom were absorbed in rat plasma. We found that the cotreatment of bufalin and cinobufagin exerted significant antitumor effects both in vitro and in vivo, which were reflected in inhibiting proliferation and inducing apoptosis of HepG2 cells and thereby causing cell necrosis. After cotherapy of bufalin and cinobufagin for twenty days, compared with the normal group, fifty-six endogenous metabolites were obviously changed on HepG2 tumor-bearing nude mice. Meanwhile, the abundance of α-linolenic acid and phenethylamine after the bufalin and cinobufagin intervention was significantly upregulated, which involved phenylalanine metabolism and α-linolenic acid metabolism. Furthermore, we noticed that amino acid metabolites were also altered in HepG2 tumor after drug intervention, such as norvaline and Leu-Ala. Taken together, the cotreatment of bufalin and cinobufagin has significant antitumor effects on HepG2 tumor-bearing nude mice. Our work demonstrated that the in-depth mechanism of antitumor activity was mainly through the regulation of phenylalanine metabolism and α-Linolenic acid metabolism.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Changzhen Sun
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zengjin Liu
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
- Correspondence: (S.Y.); (W.R.)
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base, Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
- Correspondence: (S.Y.); (W.R.)
| |
Collapse
|
9
|
Soumoy L, Ghanem GE, Saussez S, Journe F. Bufalin for an innovative therapeutic approach against cancer. Pharmacol Res 2022; 184:106442. [PMID: 36096424 DOI: 10.1016/j.phrs.2022.106442] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium.
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium; Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| |
Collapse
|
10
|
Jiang HY, Zheng HM, Xia C, Li X, Wang G, Zhao T, Cui XN, Wang RY, Liu Y. The Research Progress of Bufalin in the Treatment of Hepatocellular Carcinoma. Onco Targets Ther 2022; 15:291-298. [PMID: 35345394 PMCID: PMC8957335 DOI: 10.2147/ott.s333233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world with a five-year survival rate of less than 20%. Nonetheless, selecting an appropriate therapeutic agent to inhibit the development of hepatoma cells is still a challenge. Bufalin, a component of the traditional Chinese medicine Chansu, has been shown to inhibit the proliferation, invasion and metastasis of HCC through various signaling pathways. In addition, bufalin and sorafenib demonstrate a synergistic effect in cancer therapeutics. This review highlighted on several focal signaling pathways involved in the inhibitory effects of bufalin on HCC and its synergistic mechanisms with sorafenib. The immunotherapy effect of bufalin has also been discussed as a novel property.
Collapse
Affiliation(s)
- Han-Yu Jiang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hui-Min Zheng
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Cheng Xia
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiang Li
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Gang Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Tong Zhao
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiao-Nan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People's Republic of China
| | - Ruo-Yu Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, People's Republic of China
| | - Ying Liu
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, People's Republic of China
| |
Collapse
|
11
|
Zheng Y, Zhang W, Xu L, Zhou H, Yuan M, Xu H. Recent Progress in Understanding the Action of Natural Compounds at Novel Therapeutic Drug Targets for the Treatment of Liver Cancer. Front Oncol 2022; 11:795548. [PMID: 35155196 PMCID: PMC8825370 DOI: 10.3389/fonc.2021.795548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the third most common cause of cancer-related death following lung and stomach cancers. As a highly lethal disease, liver cancer is diagnosed frequently in less developed countries. Natural compounds extracted from herbs, animals and natural materials have been adopted by traditional Chinese medicine (TCM) practices and reported to be effective in the development of new medications for the treatment of diseases. It is important to focus on the mechanisms of action of natural compounds against hepatocellular carcinoma (HCC), particularly in terms of cell cycle regulation, apoptosis induction, autophagy mediation and cell migration and invasion. In this review, we characterize novel representative natural compounds according to their pharmacologic effects based on recently published studies. The aim of this review is to summarize and explore novel therapeutic drug targets of natural compounds, which could accelerate the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Yannan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Lin Xu
- Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Tu D, Ning J, Zou L, Wang P, Zhang Y, Tian X, Zhang F, Zheng J, Ge G. Unique Oxidative Metabolism of Bufalin Generates Two Reactive Metabolites That Strongly Inactivate Human Cytochrome P450 3A. J Med Chem 2022; 65:4018-4029. [DOI: 10.1021/acs.jmedchem.1c01875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dongzhu Tu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Ning
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Liwei Zou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yani Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangge Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Gu R, Zhang Q. Effects of low-dose bufalin combined with hydroxycamptothecin on human castration-resistant prostate cancer xenografts in nude mice. Exp Ther Med 2021; 22:1015. [PMID: 34373701 PMCID: PMC8343571 DOI: 10.3892/etm.2021.10447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the most prevalent tumor found in men worldwide. Despite the efficiency of primary endocrine prostate cancer therapies, more efficient drugs are needed to tackle the most advanced and resistant forms of this condition. The present study investigated the antitumor effects of low-dose bufalin combined with hydroxycamptothecin on castration-resistant prostate cancer (CRPC) in mice, as well as the possible mechanisms of apoptosis induction. CRPC xenograft tumors were generated in mice and, subsequently, mice received appropriate doses of bufalin, hydroxycamptothecin or a combination of the two drugs. Tumors from each treatment group were removed, and the tumor volume, weight and inhibition rate of each group was determined. Hematoxylin and eosin staining was performed for pathological analysis and TUNEL staining was used to assess the level of apoptosis in the xenografts. Immunohistochemistry was used for the analysis of proliferating cell nuclear antigen expression and the expression of Bax, Bcl-XL, p53, programmed cell death 4 (PDCD4), phosphorylated (p)-AKT and glycogen synthase kinase (GSK)-3β was determined by western blotting. Treatment with bufalin significantly (P<0.05) reduced tumor volumes compared with the negative control group, reducing tumor volumes to lower levels when combined with hydroxycampothecin. The combination of bufalin (0.6 or 0.8 mg/kg) and hydroxycampothecin significantly (P<0.05) induced higher levels of cell apoptosis compared with the administration of bufalin or hydroxycampothecin alone. The combination of bufalin and hydroxycampothecin also increased the expression of apoptosis-related proteins Bax, p53, PDCD4 and GSK-3β, and decreased the expression of Bcl-XL and p-AKT compared with a single drug treatment. The present study suggested that the combination of bufalin and hydroxycampothecin improved the inhibitory effects of both drugs on CRPC tumors in vivo, potentially via the regulation of the PI3K/AKT/GSK-3β and p53-dependent apoptosis signaling pathways.
Collapse
Affiliation(s)
- Renze Gu
- Department of Urology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingchuan Zhang
- Department of Urology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
14
|
Yang H, Liu Y, Zhao MM, Guo Q, Zheng XK, Liu D, Zeng KW, Tu PF. Therapeutic potential of targeting membrane-spanning proteoglycan SDC4 in hepatocellular carcinoma. Cell Death Dis 2021; 12:492. [PMID: 33990545 PMCID: PMC8121893 DOI: 10.1038/s41419-021-03780-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Syndecan-4 (SDC4) functions as a major endogenous membrane-associated receptor and widely regulates cytoskeleton, cell adhesion, and cell migration in human tumorigenesis and development, which represents a charming anti-cancer therapeutic target. Here, SDC4 was identified as a direct cellular target of small-molecule bufalin with anti-hepatocellular carcinoma (HCC) activity. Mechanism studies revealed that bufalin directly bond to SDC4 and selectively increased SDC4 interaction with substrate protein DEAD-box helicase 23 (DDX23) to induce HCC genomic instability. Meanwhile, pharmacological promotion of SDC4/DDX23 complex formation also inactivated matrix metalloproteinases (MMPs) and augmented p38/JNK MAPKs phosphorylation, which are highly associated with HCC proliferation and migration. Notably, specific knockdown of SDC4 or DDX23 markedly abolished bufalin-dependent inhibition of HCC proliferation and migration, indicating SDC4/DDX23 signaling axis is highly involved in the HCC process. Our results indicate that membrane-spanning proteoglycan SDC4 is a promising druggable target for HCC, and pharmacological regulation of SDC4/DDX23 signaling axis with small-molecule holds great potential to benefit HCC patients.
Collapse
Affiliation(s)
- Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xi-Kang Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
15
|
Li FJ, Hu JH, Ren X, Zhou CM, Liu Q, Zhang YQ. Toad venom: A comprehensive review of chemical constituents, anticancer activities, and mechanisms. Arch Pharm (Weinheim) 2021; 354:e2100060. [PMID: 33887066 DOI: 10.1002/ardp.202100060] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
Toad venom, a traditional natural medicine, has been used for hundreds of years in China for treating different diseases. Many studies have been performed to elucidate the cardiotonic and analgesic activities of toad venom. Until the last decade, an increasing number of studies have documented that toad venom is a source of lead compound(s) for the development of potential cancer treatment drugs. Research has shown that toad venom contains 96 types of bufadienolide monomers and 23 types of indole alkaloids, such as bufalin, cinobufagin, arenobufagin, and resibufogenin, which exhibit a wide range of anticancer activities in vitro and, in particular, in vivo for a range of cancers. The main antitumor mechanisms are likely to be apoptosis or/and autophagy induction, cell cycle arrest, cell metastasis suppression, reversal of drug resistance, or growth inhibition of cancer cells. This review summarizes the chemical constituents of toad venom, analyzing their anticancer activities and molecular mechanisms for cancer treatments. We also outline the importance of further studies regarding the material basis and anticancer mechanisms of toad venom.
Collapse
Affiliation(s)
- Fang-Jie Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Hong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Mei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Yong-Qing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Yu Z, Feng H, Zhuo Y, Li M, Zhu X, Huang L, Zhang X, Zhou Z, Zheng C, Jiang Y, Le F, Yu DY, Cheng AS, Sun X, Gao Y. Bufalin inhibits hepatitis B virus-associated hepatocellular carcinoma development through androgen receptor dephosphorylation and cell cycle-related kinase degradation. Cell Oncol (Dordr) 2020; 43:1129-1145. [PMID: 32623699 DOI: 10.1007/s13402-020-00546-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), which has a male predominance, lacks effective therapeutic options. Previously, the cardiac glycoside analogue bufalin has been found to inhibit HBV infection and HCC development. As yet, however, its molecular role in HBV-associated HCC has remained obscure. METHODS Colony formation and soft agar assays, xenograft and orthotopic mouse models and HBV X protein (HBx) transgenic mice with exposure to diethylnitrosamine were used to evaluate the effect of bufalin on HBV-associated HCC growth and tumorigenicity. HBx-induced oncogenic signaling regulated by bufalin was assessed using PCR array, chromatin immunoprecipitation, site-directed mutagenesis, luciferase reporter, transcription and protein expression assays. Synergistic HCC therapeutic effects were examined using combinations of bufalin and sorafenib. RESULTS We found that bufalin exerted a more profound effect on inhibiting the proliferation of HBV-associated HCC cells than of non HBV-associated HCC cells. Bufalin significantly inhibited HBx-induced malignant transfromation in vitro and tumorigenicity in vivo. Androgen receptor (AR) signaling was found to be a target of bufalin resistance to HBV-associated hepatocarcinogenesis. We also found that bufalin induced both AR dephosphorylation and cell cycle-related kinase (CCRK) degradation to inhibit β-catenin/TCF signaling, which subsequently led to cell cycle arrest via cyclin D1 down-regulation and p21 up-regulation, resulting in HCC regression. Furthermore, we found that bufalin reduced > 60% diethylnitrosamine-induced hepatocarcinogenesis in HBx transgenic mice, and improved the sensitivity of refractory HBV-associated HCC cells to sorafenib treatment. CONCLUSION Our results indicate that bufalin acts as a potential anti-HCC therapeutic candidate to block HBx-induced AR/CCRK/β-catenin signaling by targeting AR and CCRK, which may provide a novel strategy for the treatment of HBV-associated HCC.
Collapse
Affiliation(s)
- Zhuo Yu
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China.
| | - Hai Feng
- Department of pharmacology, School of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yunhui Zhuo
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaojun Zhu
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Lingying Huang
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhenhua Zhou
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chao Zheng
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Yun Jiang
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Fan Le
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea
| | - Alfred Szelok Cheng
- School of Biomedical Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xuehua Sun
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China.
| | - Yueqiu Gao
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China. .,Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Ayogu JI, Odoh AS. Prospects and Therapeutic Applications of Cardiac Glycosides in Cancer Remediation. ACS COMBINATORIAL SCIENCE 2020; 22:543-553. [PMID: 32786321 DOI: 10.1021/acscombsci.0c00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Active metabolites from natural sources are the predominant molecular targets in numerous biological studies owing to their appropriate compatibility with biological systems and desirable selective toxicities. Thus, their potential for therapeutic development could span a broad scope of disease areas, including pathological and neurological dysfunctions. Cardiac glycosides are a unique class of specialized metabolites that have been extensively applied as therapeutic agents for the treatment of numerous heart conditions, and more recently, they have also been explored as probable antitumor agents. They are a class of naturally derived compounds that bind to and inhibit Na+/K+-ATPase. This study presents cardiac glycosides and their analogues with highlights on their applications, challenges, and prospects as lead compounds for cancer treatment.
Collapse
Affiliation(s)
- Jude I. Ayogu
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka 410001, Nigeria
- Department of Chemistry, School of Physical and Chemical Science, University of Canterbury, Christchurch 8041, New Zealand
| | - Amaechi S. Odoh
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
18
|
Ren D, Li F, Cao Q, Gao A, Ai Y, Zhang J. Yangxin granules alleviate doxorubicin-induced cardiotoxicity by suppressing oxidative stress and apoptosis mediated by AKT/GSK3 β/ β-catenin signaling. J Int Med Res 2020; 48:300060520945161. [PMID: 32780664 PMCID: PMC7425278 DOI: 10.1177/0300060520945161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Yangxin granules (YXC), a Chinese herbal medicine, have been confirmed to have clinical benefits in the treatment of heart failure. This study examined the effects and molecular mechanisms of YXC in the treatment of doxorubicin-induced cardiotoxicity in vitro. METHODS H9c2 cardiomyocytes were pretreated with YXC (5, 10, or 20 mg/mL) or the AKT inhibitor MK-2206 (50 nM) before doxorubicin treatment (1 µM). Cell apoptosis, viability, inflammatory factor expression (TNF-α, IL-1β, and IL-6), and oxidative stress mediator levels including superoxide dismutase, reactive oxygen species, and malondialdehyde were detected. RESULTS YXC increased the viability of H9c2 cells. In addition, doxorubicin inhibited AKT/GSK3β/β-catenin signaling, whereas YXC increased the expression of phosphorylated AKT and GSK3β, and β-catenin in doxorubicin-treated H9c2 cells. Moreover, T-cell factor/lymphoid enhancer factor signaling downstream of β-catenin was also activated by YXC. YXC pretreatment also inhibited doxorubicin-induced inflammation, oxidative stress, and apoptosis. However, MK-2206 reversed the effects of YXC in doxorubicin-treated H9c2 cells. CONCLUSIONS YXC alleviates doxorubicin-induced inflammation, oxidative stress, and apoptosis in H9c2 cells. These effects might be mediated by the AKT/GSK3β/β-catenin signaling pathway. YXC might have preventive effects against doxorubicin-induced heart failure.
Collapse
Affiliation(s)
- Dezhi Ren
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China
| | - Fang Li
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China.,College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Qingwen Cao
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China
| | - An Gao
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China
| | - Yingna Ai
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China
| | - Junru Zhang
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China.,First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| |
Collapse
|
19
|
Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions. Molecules 2020; 25:E3596. [PMID: 32784680 PMCID: PMC7465415 DOI: 10.3390/molecules25163596] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac glycosides (CGs) have a long history of treating cardiac diseases. However, recent reports have suggested that CGs also possess anticancer and antiviral activities. The primary mechanism of action of these anticancer agents is by suppressing the Na+/k+-ATPase by decreasing the intracellular K+ and increasing the Na+ and Ca2+. Additionally, CGs were known to act as inhibitors of IL8 production, DNA topoisomerase I and II, anoikis prevention and suppression of several target genes responsible for the inhibition of cancer cell proliferation. Moreover, CGs were reported to be effective against several DNA and RNA viral species such as influenza, human cytomegalovirus, herpes simplex virus, coronavirus, tick-borne encephalitis (TBE) virus and Ebola virus. CGs were reported to suppress the HIV-1 gene expression, viral protein translation and alters viral pre-mRNA splicing to inhibit the viral replication. To date, four CGs (Anvirzel, UNBS1450, PBI05204 and digoxin) were in clinical trials for their anticancer activity. This review encapsulates the current knowledge about CGs as anticancer and antiviral drugs in isolation and in combination with some other drugs to enhance their efficiency. Further studies of this class of biomolecules are necessary to determine their possible inhibitory role in cancer and viral diseases.
Collapse
Affiliation(s)
- Dhanasekhar Reddy
- Department of Genomic Science, School of Biological Sciences, University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India;
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India;
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur WB-721172, India;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal deMinas Gerais (UFMG), Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
20
|
Deng LJ, Li Y, Qi M, Liu JS, Wang S, Hu LJ, Lei YH, Jiang RW, Chen WM, Qi Q, Tian HY, Han WL, Wu BJ, Chen JX, Ye WC, Zhang DM. Molecular mechanisms of bufadienolides and their novel strategies for cancer treatment. Eur J Pharmacol 2020; 887:173379. [PMID: 32758567 DOI: 10.1016/j.ejphar.2020.173379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Bufadienolides are cardioactive C24 steroids with an α-pyrone ring at position C17. In the last ten years, accumulating studies have revealed the anticancer activities of bufadienolides and their underlying mechanisms, such as induction of autophagy and apoptosis, cell cycle disruption, inhibition of angiogenesis, epithelial-mesenchymal transition (EMT) and stemness, and multidrug resistance reversal. As Na+/K+-ATPase inhibitors, bufadienolides have inevitable cardiotoxicity. Short half-lives, poor stability, low plasma concentration and oral bioavailability in vivo are obstacles for their applications as drugs. To improve the drug potency of bufadienolides and reduce their side effects, prodrug strategies and drug delivery systems such as liposomes and nanoparticles have been applied. Therefore, systematic and recapitulated information about the antitumor activity of bufadienolides, with special emphasis on the molecular or cellular mechanisms, prodrug strategies and drug delivery systems, is of high interest. Here, we systematically review the anticancer effects of bufadienolides and the molecular or cellular mechanisms of action. Research advancements regarding bufadienolide prodrugs and their tumor-targeting delivery strategies are critically summarized. This work highlights recent scientific advances regarding bufadienolides as effective anticancer agents from 2011 to 2019, which will help researchers to understand the molecular pathways involving bufadienolides, resulting in a selective and safe new lead compound or therapeutic strategy with improved therapeutic applications of bufadienolides for cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Deng
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Jun-Shan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Jun Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yu-He Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518034, China
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Hai-Yan Tian
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wei-Li Han
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bao-Jian Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Liu X, Zhou Y, Peng J, Xie B, Shou Q, Wang J. Silencing c-Myc Enhances the Antitumor Activity of Bufalin by Suppressing the HIF-1α/SDF-1/CXCR4 Pathway in Pancreatic Cancer Cells. Front Pharmacol 2020; 11:495. [PMID: 32362830 PMCID: PMC7181899 DOI: 10.3389/fphar.2020.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Pancreatic cancer is one of the most aggressive malignancies. Bufalin, a traditional Chinese medicine, has been used to treat pancreatic cancer as an antitumor agent although the mechanism by which it exerts its effects is still unclear. c-Myc has been found to be overexpressed in more than half of human cancers including pancreatic cancer. However, the role of c-Myc in pancreatic cancer cells and its influence in bufalin-treated pancreatic cancer are yet to be clarified. The present study aimed to investigate the role of c-Myc in the antitumor activity of bufalin in pancreatic cancer. Methods c-Myc siRNA and overexpression plasmid were transfected into pancreatic cancer cells to construct the cell models. c-Myc expression was detected via quantitative real-time polymerase chain reaction and western blot. The effect of c-Myc on bufalin-induced inhibition of cell proliferation was detected via CCK-8 assay. Cell apoptosis and the cell cycle were analyzed via flow cytometry. Cell invasion and migration was detected via Transwell and wound healing assays, respectively. In addition, the effect of bufalin on the suppression of tumor growth in vivo was studied in nude mice model subcutaneously injected with PANC-1 and SW1990 cells. Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay were used to evaluate pathological changes in vivo. The expression of HIF-1α/SDF-1/CXCR4 were detected via western blot. Results CCK-8 assay showed that bufalin could inhibit the proliferation of pancreatic cancer cell, and c-Myc downregulation enhanced this effect. Similarly, c-Myc downregulation enhanced the effect of bufalin on cell cycle arrest, apoptosis, and the invasion and migration of pancreatic cancer cell in vitro. Further mechanism assay showed that c-Myc enhances the effect by regulating the HIF-1α/SDF-1/CXCR4 signaling pathway. The in vivo studies verified the results that c-Myc enhances the effect of bufalin through regulation of the HIF-1α/SDF-1/CXCR4 pathway. Conclusions Downregulation of c-Myc enhanced the antitumor activity of bufalin in pancreatic cancer cells by suppressing the HIF-1α/SDF-1/CXCR4 pathway. These findings indicate that c-Myc inhibitors could enhance the clinical therapeutic effect of bufalin and may expand the clinical application of bufalin accordingly.
Collapse
Affiliation(s)
- Xia Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yayun Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jiamin Peng
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bei Xie
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyang Shou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianchao Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
22
|
Huang J, Chen F, Zhong Z, Tan HY, Wang N, Liu Y, Fang X, Yang T, Feng Y. Interpreting the Pharmacological Mechanisms of Huachansu Capsules on Hepatocellular Carcinoma Through Combining Network Pharmacology and Experimental Evaluation. Front Pharmacol 2020; 11:414. [PMID: 32308626 PMCID: PMC7145978 DOI: 10.3389/fphar.2020.00414] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancers across the world. Chinese medicine has been used as adjunctive or complementary therapy for the management of HCC. Huachansu belongs to a class of toxic steroids isolated from toad venom that has important anti-cancer property. This study was aimed to identify the bioactive constituents and molecular targets of Huachansu capsules (HCSCs) for treating HCC using network pharmacology analysis and experimental assays. The major bioactive components of HCSCs were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A series of network pharmacology methods including target prediction, pathway identification, and network establishment were applied to identify the modes of action of HCSCs against HCC. Furthermore, a series of experiments, including MTT, clonogenic assay, 3-D transwell, wound healing assay, as well as flow cytometry, were conducted to verify the inhibitory ability of HCSCs on HCC in vitro. The results showed that 11 chemical components were identified from HCSCs. The network pharmacological analysis showed that there were 82 related anti-HCC targets and 14 potential pathways for these 11 components. Moreover, experimental assays confirmed the inhibitory effects of HCSCs against HCC in vitro. Taken together, our study revealed the synergistic effects of HCSCs on a systematic level, and suggested that HCSCs exhibited anti-HCC effects in a multi-component, multi-target, and multi-pathway manner.
Collapse
Affiliation(s)
- Jihan Huang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Zhangfeng Zhong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuting Liu
- Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyuan Fang
- Marine College, Shandong University (Weihai), Weihai, China
| | - Tao Yang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
23
|
Qian L, Su H, Wang G, Li B, Shen G, Gao Q. Anti-tumor Activity of Bufalin by Inhibiting c-MET Mediated MEK/ERK and PI3K/AKT Signaling Pathways in Gallbladder Cancer. J Cancer 2020; 11:3114-3123. [PMID: 32231716 PMCID: PMC7097950 DOI: 10.7150/jca.38393] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
Gallbladder cancer is one of the most common malignant tumors in the biliary tract. In recent years, the chemotherapy treatment for gallbladder carcinoma has exhibited obvious characteristics of drug resistance and insensitivity, and one of the main factors is the existence of cancer stem cells. Here in this study, the effect of Bufalin on gallbladder cancer (GBC-SD) cells and the related mechanism were studied. The results indicated that Bufalin could inhibit the growth of gallbladder carcinoma both in vivo and in vitro. According to the biological behavior analysis, Bufalin induced apoptosis, inhibited the propagation, migration and invasion of GBC-SD cells, and blocked cell cycle at the G2/M stage. Besides, Bufalin inhibited the tumor sphere formation capability of gallbladder carcinoma in matrigel, reduced the expression of multiple stemness-associated proteins, including Oct4, Sox2 and the stem cell-surface marker proteins CD133 and CD44. Western blot assay showed that Bufalin inhibited MEK/ERK and PI3-K/AKT signaling pathways by inhibiting the expression of p-c-Met, which in turn affected the expression of apoptosis-related protein Mcl-1, and the invasion-associated proteins E-cadherin, MMP9 and Snail. Bufalin was found to have an inhibitory effect on the GBC-SD cell growth and reduce the self-renewal and characteristic of gallbladder cancer stem cells. It enhanced the chemotherapeutic sensitivity and reduced the metastasis of gallbladder carcinoma. In conclusion, Bufalin can be used as a new promising anticancer drug for gallbladder cancer patients who are resistant to traditional chemotherapy.
Collapse
Affiliation(s)
- Liqiang Qian
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Haoyuan Su
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Gang Wang
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Genhai Shen
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Quangen Gao
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| |
Collapse
|
24
|
Wei WL, An YL, Li ZW, Wang YY, Ji HJ, Hou JJ, Wu WY, Guo DA. Simultaneous determination of resibufogenin and its eight metabolites in rat plasma by LC-MS/MS for metabolic profiles and pharmacokinetic study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152971. [PMID: 31178234 DOI: 10.1016/j.phymed.2019.152971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Resibufogenin is one of the main active compounds of Venenum Bufonis and exhibits diverse pharmacological activities. It is brought into focus for its potency in heart failure and cancer therapy. PURPOSE The purpose of this study was to establish a convenient and effective method which was used to simultaneously determine the resibufogenin and its metabolites in rat plasma for further understanding the metabolic profiles of resibufogenin in vivo and pharmacokinetic study by LC-MS/MS. METHODS The analytes were separated on a BEH C18 column with a mobile phase of water containing 0.05% formic acid and acetonitrile under gradient elution at a flow rate of 0.4 ml/min. Resibufogenin and its eight metabolites were quantified in positive electrospray ionization and MRM mode with transitions of m/z 385.5→349.2 for resibufogenin; m/z 513.7→145.3 for IS (internal standard); m/z 401.23→365.21, m/z 417.23→285.21 and m/z 385.24→349.21 for three main metabolites (hydroxylated-resibufogenin; dihydroxylated-resibufogenin and 3-epi-resibufogenin, respectively). RESULTS This method was successfully validated with a good linearity over the concentration ranges of 1-200 ng/ml for resibufogenin and the correlation coefficients was more than 0.990. The lower limit of quantification was 1 ng/ml and the precision and accuracy values were less than 15%. The method was applied to study the metabolic profiles of resibufogenin in rat plasma after oral administration of 20 mg/kg. The results indicated that the metabolic reactions of resibufogenin were mainly hydroxylation, dihydroxylation, dehydrogenation and isomerization. Totally eleven metabolites were identified, among which eight were successfully quantified. CONCLUSION The results could provide further research foundation for the mechanisms study of activity and toxicity in vivo and facilitate the appropriate clinical application of resibufogenin.
Collapse
Affiliation(s)
- Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Ya-Ling An
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Zhen-Wei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Ying-Ying Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Hong-Jian Ji
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Jin-Jun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Wan-Ying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China.
| |
Collapse
|
25
|
Xia F, Gao F, Yao H, Zhang G, Gao B, Lu Y, Wang X, Qian Y. Identification of angiogenesis-inhibiting peptides from Chan Su. Protein Expr Purif 2019; 163:105445. [PMID: 31252070 DOI: 10.1016/j.pep.2019.105445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023]
Abstract
Chan Su is a traditional medicine prepared from toxic secretions from the auricular and skin glands of Chinese toads. Previous studies show that active components in Chan Su can inhibit the proliferation of tumor cells. To study the effect of Chan Su peptides on angiogenesis, fresh Chan Su was collected and its component peptides were isolated by an extraction and precipitation method. A high-performance liquid chromatography (HPLC) fingerprint of the Chan Su component peptides revealed that there were more than 18 peptide component peaks. We demonstrate that Chan Su peptides inhibit angiogenesis in vitro by inhibiting human umbilical vein endothelial cell (HUVEC) proliferation and tube formation in a dose-dependent manner. Western blots indicated that Chan Su peptides inhibited the protein expression of VEGF165 and Ras, leading us to conclude that Chan Su peptide components exert anti-angiogenic effects by suppressing the VEGF165-VEGFR2-Ras signalling pathway. Finally, we identified the partial amino acid sequences of seven Chan Su peptides using the shotgun proteomics method.
Collapse
Affiliation(s)
- Fengyan Xia
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Fei Gao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Huili Yao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Guobing Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Bo Gao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ying Lu
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiangjun Wang
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yongchang Qian
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
26
|
Zhang Y, Tian Z, Zhao X, Li N, Garamus VM, Yin P, Zou A. Dual-modified bufalin loaded liposomes for enhanced tumor targeting. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Cheng CS, Wang J, Chen J, Kuo KT, Tang J, Gao H, Chen L, Chen Z, Meng Z. New therapeutic aspects of steroidal cardiac glycosides: the anticancer properties of Huachansu and its main active constituent Bufalin. Cancer Cell Int 2019; 19:92. [PMID: 31011289 PMCID: PMC6458819 DOI: 10.1186/s12935-019-0806-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Aim of the review In the past decade, increasing research attention investigated the novel therapeutic potential of steroidal cardiac glycosides in cancer treatment. Huachansu and its main active constituent Bufalin have been studied in vitro, in vivo and clinical studies. This review aims to summarize the multi-target and multi-pathway pharmacological effects of Bufalin and Huachansu in the last decade, with the aim of providing a more comprehensive view and highlighting the recently discovered molecular mechanisms. Results Huachansu and its major derivative, Bufalin, had been found to possess anti-cancer effects in a variety of cancer cell lines both in vitro and in vivo. The underlying anti-cancer molecular mechanisms mainly involved anti-proliferation, apoptosis induction, anti-metastasis, anti-angiogenesis, epithelial-mesenchymal transition inhibition, anti-inflammation, Na+/K+-ATPase activity targeting, the steroid receptor coactivator family inhibitions, etc. Moreover, the potential side-effects and toxicities of the toad extract, Huachansu, and Bufalin, including hematological, gastrointestinal, mucocutaneous and cardiovascular adverse reactions, were reported in animal studies and clinic trails. Conclusions Further research is needed to elucidate the potential drug-drug interactions and multi-target interaction of Bufalin and Huachansu. Large-scale clinical trials are warranted to translate the knowledge of the anticancer actions of Bufalin and Huachansu into clinical applications as effective and safe treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jiaqiang Wang
- 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433 China.,5Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Jie Chen
- 3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China.,6Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Kuei Ting Kuo
- 3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jian Tang
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Huifeng Gao
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lianyu Chen
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhiqiang Meng
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
28
|
Lan YL, Lou JC, Jiang XW, Wang X, Xing JS, Li S, Zhang B. A research update on the anticancer effects of bufalin and its derivatives. Oncol Lett 2019; 17:3635-3640. [PMID: 30915168 DOI: 10.3892/ol.2019.10062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Bufalin (BF) is a cardiotonic steroid that has recently been found to have substantial anticancer activity; however, more efforts should be directed toward clarifying the detailed molecular mechanisms underlying this activity. BF could exert its anticancer effect by inducing apoptosis in various human cancer cells and thus triggering autophagic cancer cell death. The anti-inflammatory activities of BF are potentially important for its anticancer functions. Notably, some promising synthetic BF derivatives, including poly (ethylene glycol)-based polymeric prodrug of BF and BF211, have shown potent anticancer activity. Additionally, clinical trials regarding the use of BF-related agents in patients have supported the positive effect of BF as an anticancer treatment. Currently, large-scale randomized, double-blind, placebo or positive drug parallel controlled studies are required to confirm the anticancer potential of BF in various cancer types in the clinical setting. The present review will evaluate the potential mechanisms mediated by BF in intracellular signaling events in cancer cells and various promising BF derivatives that may have greater anticancer activity, thereby clarifying BF-mediated anticancer effects. The experimental and clinical results reviewed strongly emphasize the importance of this topic in future investigations.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xue-Wen Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jin-Shan Xing
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
29
|
Wu D, Zhou WY, Lin XT, Fang L, Xie CM. Bufalin induces apoptosis via mitochondrial ROS-mediated caspase-3 activation in HCT-116 and SW620 human colon cancer cells. Drug Chem Toxicol 2019; 42:444-450. [PMID: 30777466 DOI: 10.1080/01480545.2018.1512611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Bufalin has been reported to kill various types of cancer including human colorectal cancer. Our previous study demonstrated that bufalin induced cell death via autophagy in HT-29 and Caco-2 colon cancer cells, but the action of bufalin remains unclear. This study was conducted to investigate the role of bufalin in other colon cancer HCT-116 and SW620 cells as well as its potential mechanism. METHODS The effect of bufalin in HCT-116 and SW620 colon cancer cells was detected by assessing cell viability and cell death. Apoptotic cells were analyzed by Western blot and trypan blue dye exclusion assay. Mitochondrial ROS production was analyzed by flow cytometry after DCFDA and DHR-123 staining. The potential mechanism was investigated via pharmacological inhibitors. RESULTS Bufalin had high potency against HCT-116 and SW620 cells with IC50 values of 12.823 ± 1.792 nM and 26.303 ± 2.498 nM in HCT-116 and SW620 cells, respectively. Bufalin decreased cell viability, increased cell death as well as caspase-3 downstream target (cleaved PARP) accumulation, and these actions were significantly blocked by pan-caspase inhibitor zVAD-FMK. Mechanistically, ROS production, but neither the NAD(P)H oxidase, AMPK, ERK nor p38, is responsible for bufalin-induced apoptotic cell death. Moreover, bufalin-induced ROS generation is derived from mitochondria. CONCLUSION Bufalin significantly induces apoptosis in HCT-116 and SW620 colon cancer cells via mitochondrial ROS-mediated caspase-3 activation. We believe that our novel findings will greatly alter our current understanding on the anti-cancer mechanism of bufalin in colon cancer cells and will pave the way for further exploiting the clinical application.
Collapse
Affiliation(s)
- Di Wu
- a Institute of Hepatobiliary Surgery, Southwest Hospital , Third Military Medical University (Army Medical University) , Chongqing , China
| | - Wen-Yi Zhou
- b Essence Securities Co., Ltd. , Chongqing , China
| | - Xiao-Tong Lin
- a Institute of Hepatobiliary Surgery, Southwest Hospital , Third Military Medical University (Army Medical University) , Chongqing , China
| | - Lei Fang
- a Institute of Hepatobiliary Surgery, Southwest Hospital , Third Military Medical University (Army Medical University) , Chongqing , China
| | - Chuan-Ming Xie
- a Institute of Hepatobiliary Surgery, Southwest Hospital , Third Military Medical University (Army Medical University) , Chongqing , China
| |
Collapse
|
30
|
Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Med 2018; 16:732-748. [PMID: 30322607 DOI: 10.1016/s1875-5364(18)30113-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 01/14/2023]
Abstract
The steroidal saponins are one of the saponin types that exist in an unbound state and have various pharmacological activities, such as anticancer, anti-inflammatory, antiviral, antibacterial and nerves-calming properties. Cancer is a growing health problem worldwide. Significant progress has been made to understand the antitumor effects of steroidal saponins in recent years. According to reported findings, steroidal saponins exert various antitumor activities, such as inhibiting proliferation, inducing apoptosis and autophagy, and regulating the tumor microenvironment, through multiple related signaling pathways. This article focuses on the advances in domestic and foreign studies on the antitumor activity and mechanism of actions of steroidal saponins in the last five years to provide a scientific basis and research ideas for further development and clinical application of steroidal saponins.
Collapse
|
31
|
Xi SY, Minuk GY. Role of traditional Chinese medicine in the management of patients with hepatocellular carcinoma. World J Hepatol 2018; 10:799-806. [PMID: 30533181 PMCID: PMC6280158 DOI: 10.4254/wjh.v10.i11.799] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been employed for centuries in the treatment of patients with hepatocellular carcinoma (HCC). Previous reviews of this topic have focused on certain aspects of TCM treatment rather than an overall assessment of their value and mechanisms of action. Both the Chinese and English medical literatures were reviewed to identify where TCM might be of value in the treatment of HCC and the justification for such treatment. TCM treatment corrects the "internal disequilibriums" thought to be responsible for the development, growth, and spread of the tumor. It has also been used to manage symptoms associated with HCC and the adverse effects of chemo- and radiation-therapies. Recent research has documented the precise effects of TCM on tumor biology. There are also increasing efforts to identify which of the many components of TCM herbal remedies are primarily responsible for these beneficial effects. This review outlines the benefits of TCM treatment of HCC and the laboratory data describing their anti-tumor properties.
Collapse
Affiliation(s)
- Sheng-Yan Xi
- Department of Traditional Chinese Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, Fujian Province, China
| | - Gerald Yosel Minuk
- Section of Hepatology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
32
|
Dai XY, Zhou BF, Xie YY, Lou J, Li KQ. Bufalin and 5-fluorouracil synergistically induce apoptosis in colorectal cancer cells. Oncol Lett 2018; 15:8019-8026. [PMID: 29849804 DOI: 10.3892/ol.2018.8332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 10/18/2017] [Indexed: 11/06/2022] Open
Abstract
5-fluorouracil (5-FU) has been used in the treatment of colorectal cancer for >50 years. However, drug resistance remains an obstacle in the application of 5-FU-based chemotherapy. Bufalin, a type of steroid with anti-tumor activity, may be purified from the skin and parotid venom glands of toads. In order to improve the anti-tumor effect of 5-FU, the present study examined the combined effects of bufalin with 5-FU on human colorectal cancer HCT116 cells. Following treatment, cell proliferation was quantified using MTT assay and apoptotic cell percentage was assessed by flow cytometry. The apoptosis-associated protein expression was evaluated by western blotting. It was observed that bufalin enhanced the cytotoxicity of 5-FU in HCT116 cells via the induction of the mitochondrial apoptotic pathway. Additionally, bufalin combined with 5-FU reduced the expression levels of anti-apoptotic proteins, such as Mcl-1, XIAP and Bcl-2 and upregulated the levels of the pro-apoptotic proteins, Bax and Bad. To verify the role of Bax, RNA interference was used to knock-down Bax. It was determined that the synergistic effect between 5-FU and bufalin was diminished following the silencing of Bax. In summary, bufalin in combination with 5-FU may induce a higher level of apoptosis compared with monotherapy, and the combination mat be a potential therapeutic strategy for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Yu Dai
- Department of Anorectal Surgery, Clinical Research Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Bao-Feng Zhou
- Department of Anorectal Surgery, Clinical Research Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yang-Yang Xie
- Department of Anorectal Surgery, Clinical Research Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jie Lou
- Department of Digestion, Clinical Research Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Ke-Qiang Li
- Key Laboratory of Molecular Biology of Cancer, Clinical Research Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
33
|
Wang H, Zhang C, Chi H, Meng Z. Synergistic anti-hepatoma effect of bufalin combined with sorafenib via mediating the tumor vascular microenvironment by targeting mTOR/VEGF signaling. Int J Oncol 2018; 52:2051-2060. [PMID: 29620259 DOI: 10.3892/ijo.2018.4351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/20/2018] [Indexed: 11/05/2022] Open
Abstract
Sorafenib inhibits tumor growth primarily by inhibiting vessel formation, however, its efficacy requires improvement, therefore, the development of strategies which augment its antiangiogenic effect are of primary concern. Bufalin inhibits tumor cell proliferation and metastasis, and induces apoptosis. In our previous study, it was demonstrated that the antiangiogenic effect of sorafenib was improved by bufalin in human umbilical vein endothelial cells (HUVECs). However, whether bufalin synergizes with sorafenib by affecting the tumor vascular microenvironment remains to be elucidated. In the present study, it was found that hepatocellular carcinoma (HCC) cell proliferation was inhibited by either bufalin or sorafenib following incubation for 24 h, and the inhibition was enhanced upon treatment with a combination of the two. Conditioned medium (CM), comprising supernatant from HCC cells was collected from each of the treatment groups. The migration and tubule formation were suppressed the most in the combination-CM treated HUVECs. The secretion of vascular endothelial growth factor (VEGF) was decreased in HCC cells treated with the combination-CM, as determined by an angiogenesis array, enzyme-linked immunosorbent assay (ELISA) and western blot analysis. The inhibition of tube formation in HUVECs treated with the combination-CM was reversed by incubation with VEGF. The in vivo experiments demonstrated that subcutaneous HCC cell tumors from mice treated with the combination treatment expressed the lowest levels of VEGF, as evidenced by immunohistochemistry and ELISA. Additionally, the level of phosphorylated mechanistic target of rapamycin (mTOR) was reduced in HUVECs pretreated with the phosphoinositide 3-kinase inhibitor PI103. Furthermore, the migration of HCC cells and HUVEC tube formation were attenuated by PI103 pretreatment. In conclusion, the results revealed a synergistic anti-hepatoma effect of bufalin combined with sorafenib via affecting the tumor vascular microenvironment by targeting mTOR/VEGF signaling.
Collapse
Affiliation(s)
- Haiyong Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Huiying Chi
- Shanghai Geriatrics Institute of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
34
|
Wang J, Xia Y, Zuo Q, Chen T. Molecular mechanisms underlying the antimetastatic activity of bufalin. Mol Clin Oncol 2018; 8:631-636. [PMID: 29732152 DOI: 10.3892/mco.2018.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Bufalin is a monomer compound extract from Chansu, which is a traditional Chinese medicine obtained from the skin and parotid venom glands of toads, such as Bufo bufo gargarizans Cantor and Bufo melanostictus Schneider. Chansu had been used in traditional Chinese medicine for >1,000 years due to its cardiac, anti-inflammatory and anticancer properties. Previous studies identified bufalin as the main anticancer compound of Chansu, and recent evidence has corroborated its anticancer properties. Bufalin inhibits cancer cell proliferation, induces cell cycle arrest, induces cancer cell apoptosis, inhibits neovascularization, induces cell differentiation, inhibits cancer metastasis and invasion, and enhances chemotherapeutic drug sensitivity. However, the function and mechanism of bufalin in metastatic cancer cells have not yet been expounded. The aim of the present review was to discuss the recent progress and prospects of bufalin in the prevention of cancer metastasis, particularly in inhibiting epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Jie Wang
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yue Xia
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingshong Zuo
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Teng Chen
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
35
|
Shi XJ, Qiu YY, Yu H, Liu C, Yuan YX, Yin PH, Liu T. Increasing the anticancer performance of bufalin (BUF) by introducing an endosome-escaping polymer and tumor-targeting peptide in the design of a polymeric prodrug. Colloids Surf B Biointerfaces 2018; 166:224-234. [PMID: 29602078 DOI: 10.1016/j.colsurfb.2018.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Abstract
A well-defined multifunctional brush-type polymeric prodrug covalently linked with an anticancer drug (bufalin, BUF), a tumor-targeting peptide (RGD), and an endosome-escaping polymer, poly(N,N-diethylaminoethyl methacrylate-co-butyl methacrylate (P(DEA-co-BMA)), was developed. Its anticancer performance against colon cancer was investigated in vitro and in vivo. Reversible addition-fragmentation transfer (RAFT) polymerization of oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA), 2-((3-(tert-butoxy)-3-oxopropyl)thio)ethyl methacrylate (BSTMA), and 2-(2-bromoisobutyryloxy)ethylmethacrylate (BIEM) afforded the multifunctional random copolymer, P(OEGMA-co-BSTMA-co-BIEM), in which hydrophilic POEGMA can stabilize nanoparticles in water, PBSTMA can be converted into carboxyl groups, and PBIEM can be employed as a macromolecular atom radical transfer polymerization (ATRP) initiator. The ATRP of DEA and BMA using P(OEGMA-co-BSTMA-co-BIEM) as a macromolecular ATRP initiator led to the formation of the pH-responsive brush-type copolymer, P(OEGMA-co-BSTMA)-g-P(DEA-co- BMA). After hydrolysis by trifluoroacetic acid and post-functionalization the final polymeric prodrug, P(OEGMA-co-BUF-co-RGD)-g-P(DEA-co-BMA), was obtained with a drug content of ∼7.8 wt%. P(OEGMA-co-BUF-co-RGD)-g-P(DEA-co-BMA) can be assembled into nanoparticles (BUF- NP-RGD) in aqueous solution with a diameter of 148.4 ± 0.7 nm and a zeta potential of -7.6 ± 0.4 mV. BUF-NP-RGD exhibited controlled drug release in the presence of esterase. Additionally, P(OEGMA-co- BSMA)-g-P(DEA-co-BMA) showed a significant hemolysis effect at a pH comparable to that of endosomes/lysosomes. Cell viability and a tumor-bearing nude mouse model were employed to evaluate the anticancer efficacy of BUF-NP-RGD. It was revealed that BUF-NP-RGD showed improved anticancer performance compared with that of free BUF both in vitro and in vivo. Histological and immunochemical analysis further demonstrated that BUF-NP-RGD exhibited improved cell apoptosis, angiogenesis inhibition, and an anti-proliferation effect.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yan-Yan Qiu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hui Yu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Cheng Liu
- Centralab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yu-Xia Yuan
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Pei-Hao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Tao Liu
- Centralab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
36
|
Bufalin suppresses hepatocarcinogenesis by targeting β-catenin/TCF signaling via cell cycle-related kinase. Sci Rep 2018; 8:3891. [PMID: 29497076 PMCID: PMC5832857 DOI: 10.1038/s41598-018-22113-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignant tumors, of which treatment options are limited especially in advanced stage. Bufalin, the major digoxin-like component of the traditional Chinese medicine Chansu, exhibits significant antitumor activities in hepatoma cells, but the potential mechanism is obscure. Cell cycle-related kinase (CCRK) is recently identified to be a crucial oncogenic master regulator to drive hepatocarcinogenesis. Here we investigated the molecular function of bufalin on CCRK-regulated signaling pathway, and expounded the underlying mechanism in HCC suppression. In vitro with PLC5 HCC cells and human immortal LO2 cells, proliferation, malignant transformation and cell cycle progression assays were performed to evaluate the antitumor effect of bufalin. In vivo with xenograft and orthotopic mice models, tumor growths with weight and volume change were assessed with or without bufalin treatment. Western blot, RT-qPCR, immunofluorescence and immunohistochemistry were conducted to examine the expression level of CCRK and β-catenin/TCF signaling cascade. We revealed that bufalin suppresses PLC5 HCC cell proliferation, transformation and cell cycle progression rather than LO2 cells, which is correlated with CCRK-mediated β-catenin/TCF signaling. It was also confirmed in mice model. Thus, bufalin is a potential anti-HCC therapeutic candidate through the inhibition of CCRK-driven β-catenin/TCF oncogenic signaling pathway.
Collapse
|
37
|
Feng Y, Chen Y, Meng Y, Cao Q, Liu Q, Ling C, Wang C. Bufalin Suppresses Migration and Invasion of Hepatocellular Carcinoma Cells Elicited by Poly (I:C) Therapy. Oncoimmunology 2018; 7:e1426434. [PMID: 29721392 PMCID: PMC5927531 DOI: 10.1080/2162402x.2018.1426434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Toll-like receptor 3 (TLR3) agonists as polyriboinosinic–polyribocytidylic acid (poly (I:C)) have been implicated as potential immunotherapy adjuvant for cancer whereas the exact roles of TLR3 agonists in hepatocellular carcinoma (HCC) treatment have not been clearly evaluated. In consistent with previous reports, we found that poly (I:C) triggering of TLR3 inhibited cell proliferation and induced apoptosis in HCC cells. However, poly (I:C), when used at lower concentration that cannot remarkably inhibit proliferation and induce apoptosis in HCC cells, enhanced the migration and invasion in vitro and the metastasis in vivo. More importantly, we found that bufalin, a prominent component of toad venom, could suppress poly (I:C)-inspired migration, invasion and metastasis of HCC cells despite that bufalin could not potentiate poly (I:C)-induced inhibition of proliferation and induction of apoptosis. In MHCC97 H cells, bufalin impaired poly (I:C)-induced activation of Tank-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) pathway and NF-κB pathway. Inhibitor for TBK1 but not NF-κB suppressed poly (I:C)-inspired migration and invasion, which was further supported by using TBK1 deficient (Tbk1–/–) cells. In another model using poly (I:C) transfection, bufalin could also suppress the migration and invasion of HCC cells, which was not observed in Tbk1–/– MHCC97 H cells. Our data suggest that bufalin can suppress the metastasis of HCC cells in poly (I:C) therapy by impairing TBK1 activation, indicating that bufalin may be used in combination with poly (I:C) therapy in HCC treatment for the sake of reversing poly (I:C)-triggered metastasis of HCC cells.
Collapse
Affiliation(s)
- Yinglu Feng
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Traditional Chinese Medicine, 401 Hospital of the Chinese People's Liberation Army, Qingdao, Shandong, China
| | - Yongan Chen
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yongbin Meng
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qingxin Cao
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qun Liu
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Bufalin suppresses hepatocellular carcinoma invasion and metastasis by targeting HIF-1α via the PI3K/AKT/mTOR pathway. Oncotarget 2018; 7:20193-208. [PMID: 26958938 PMCID: PMC4991447 DOI: 10.18632/oncotarget.7935] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/06/2016] [Indexed: 01/21/2023] Open
Abstract
It has been reported that there are multiple mechanisms by which bufalin could exert its antimetastatic effect. HIF-1α has been reported to be involved in tumor migration and invasion by regulating EMT. However, it is not known whether bufalin could exert the antimetastatic effect by modulating HIF-1α expression in hepatocellular carcinoma. In the present study, we aimed to evaluate the antimetastatic potential of bufalin in vivo and in vitro. Our results demonstrated that the liver/lung metastases were significantly reduced in bufalin-treated mice, as tested in the orthotopic transplanted and tail vein injection tumor models. Furthermore, the epithelial-to-mesenchymal transition (EMT) was inhibited in bufalin-treated tumors, as reflected the upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, Snail. Similar results were observed in SMMC7721 cells treated with bufalin. Moreover, the transforming growth factor-β1 (TGF-β1)-induced EMT was also abrogated by bufalin. Mechanistically, our study demonstrated that hypoxia-inducible factor-1α (HIF-1α) played an important role in the antimetastatic effect of bufalin in hepatocellular carcinoma. Importantly, HIF-1α expression may be regulated through the inhibition of the PI3K/AKT/mTOR pathway. Taken together, our results suggest that bufalin suppresses hepatic tumor invasion and metastasis and that this process may be related to the PI3K/AKT/mTOR/ HIF-1α axis.
Collapse
|
39
|
Wang J, Cai H, Xia Y, Wang S, Xing L, Chen C, Zhang Y, Xu J, Yin P, Jiang Y, Zhao R, Zuo Q, Chen T. Bufalin inhibits gastric cancer invasion and metastasis by down-regulating Wnt/ASCL2 expression. Oncotarget 2018; 9:23320-23333. [PMID: 29805736 PMCID: PMC5955089 DOI: 10.18632/oncotarget.24157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
Achaete-scute-like 2 (ASCL2) is a transcription factor containing a basic helix-loop-helix (bHLH) domain and is a downstream target of Wnt signaling in intestinal stem cells. Bufalin is the primary active ingredient in Chan Su, a traditional Chinese medicine obtained from the skin and parotid venom glands of toads. The purpose of this study was to research the anti-invasion and anti-metastasis activity of bufalin in gastric cancer and to identify the potential mechanism. Bufalin inhibited gastric cancer cell invasion and metastasis, suppressed cancer cell colony formation, and inhibited the growth of subcutaneous xenografted tumors in nude mice. Furthermore, bufalin inhibited ASCL2 expression and down-regulated the expression of invasion-related genes such as MMP2, MMP9, and vimentin, thereby suppressing epithelial-mesenchymal transition (EMT) in gastric cancer. A Wnt signaling inhibitor (XAV939) down-regulated invasion and the expression of ASCL2, β-catenin, and vimentin but up-regulated E-cadherin expression. In nude mice, bufalin inhibited the tumorigenic behavior of gastric cancer cells, induced cancer cell apoptosis, and regulated invasion-related gene expression. Together, our results suggest that bufalin arrests invasion and metastasis and that its mechanism of action may involve down-regulating Wnt/ASCL2 expression.
Collapse
Affiliation(s)
- Jie Wang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Han Cai
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yue Xia
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Shiying Wang
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Likai Xing
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Chao Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yong Zhang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jie Xu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Peihao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yiming Jiang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ronghua Zhao
- Department of Medical, Virogin Biotech Ltd., Vancouver, British Columbia V6S 2L9, Canada
| | - Qingshong Zuo
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Teng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai 200062, China
| |
Collapse
|
40
|
Dong H, Tian L, Gao M, Xu H, Zhang C, Lv L, Zhang J, Wang C, Tian Y, Ma X. Promising galactose-decorated biodegradable poloxamer 188-PLGA diblock copolymer nanoparticles of resibufogenin for enhancing liver cancer therapy. Drug Deliv 2017; 24:1302-1316. [PMID: 28895767 PMCID: PMC8240972 DOI: 10.1080/10717544.2017.1373165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Liver cancer is one of the major diseases affecting human health. Modified drug delivery systems through the asialoglycoprotein receptor, which is highly expressed on the surface of hepatocytes, have become a research focus for the treatment of liver cancer. Resibufogenin (RBG) is a popular traditional Chinese medicine and natural anti-cancer drug that was isolated from Chansu, but its cardiotoxicity and hydrophobicity have limited its clinical applications. Galactosyl-succinyl-poloxamer 188 and galactosyl-succinyl-poloxamer 188-polylactide-co-glycolide (Gal-SP188–PLGA) were synthesized using galactose, P188, and PLGA to achieve active liver-targeting properties. RBG-loaded Gal-SP188–PLGA nanoparticles (RGPPNs) and coumarin-6-loaded Gal-SP188–PLGA nanoparticles (CGPPNs) were prepared. The in vitro cellular uptake, cytotoxicity, and apoptosis of nanoparticles in HepG2 cells were analyzed. The in vivo therapeutic effects of nanoparticles were assessed in a hepatocarcinogenic mouse model. The results showed that Gal-SP188–PLGA was successfully synthesized. The cellular uptake assay demonstrated that CGPPNs had superior active liver-targeting properties. The ratio of apoptotic cells was increased in the RGPPN group. In comparison to the other groups, RGPPNs showed superior in vivo therapeutic effects and anticancer efficacy. Thus, the active liver-targeting RGPPNs, which can enhance the pharmacological effects and decrease the toxicity of RBG, are expected to become a promising and effective treatment for liver cancer.
Collapse
Affiliation(s)
- Hao Dong
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Li Tian
- b Department of Pharmaceutics , The First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Meng Gao
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Hong Xu
- c College of Basic Medical Sciences , Dalian Medical University , Dalian , China
| | - Chenghong Zhang
- c College of Basic Medical Sciences , Dalian Medical University , Dalian , China
| | - Li Lv
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Jianbin Zhang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Changyuan Wang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Yan Tian
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Xiaochi Ma
- a College of Pharmacy , Dalian Medical University , Dalian , China
| |
Collapse
|
41
|
Zhang XH, Wang XY, Zhou ZW, Bai H, Shi L, Yang YX, Zhou SF, Zhang XC. The combination of digoxin and GSK2606414 exerts synergistic anticancer activity against leukemia in vitro and in vivo. Biofactors 2017; 43:812-820. [PMID: 28817203 DOI: 10.1002/biof.1380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Digoxin is a member of cardiac glycosides and recent studies show that digoxin plays anticancer role in several types of cancer. However, the anticancer effects and mechanism of digoxin in leukemia is largely unknown. Her, our data show that digoxin treatment significantly inhibits leukemia cell viability. In addition, digoxin treatment significantly induced apoptosis and G2/M cell cycle arrest in leukemia cells. Furthermore, we demonstrated that digoxin treatment inactivate that oncogenic pathway Akt/mTOR signaling in leukemia cells. In addition, our data show that digoxin treatment induces activation of unfolded protein response (UPR) signaling in leukemia cells. Interestingly, our in vitro and in vivo experiments show that combination treatment of digoxin and UPR inhibitor can synergistically suppress leukemia growth and induces apoptosis and cell cycle arrest compared to single drug treatment. In summary, our findings indicate that digoxin has potential anticancer effects on leukemia. The combination of digoxin and UPR signaling inhibitor can exerts synergistic anticancer activity against leukemia. © 2017 BioFactors, 43(6):812-820, 2017.
Collapse
Affiliation(s)
- Xue-Hong Zhang
- Department of Pediatrics, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xin-Yu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
- Department of Pharmacy and Institute of Clinical Pharmacology, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Bai
- Department of Pediatrics, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Lin Shi
- Department of Pediatrics, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xiao-Chun Zhang
- Department of Pediatrics, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
42
|
Bufalin attenuates cancer-induced pain and bone destruction in a model of bone cancer. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1211-1219. [PMID: 28840279 DOI: 10.1007/s00210-017-1419-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/10/2017] [Indexed: 01/01/2023]
Abstract
Bufalin is a natural anti-inflammatory small molecule. Given the close relationship between inflammation and cancer, many scholars have studied the effect of bufalin on cancer in vitro, but in vivo research is still lacking. A murine bone cancer model was used in this study. We conducted pain sensitive test on mice with bone cancer, by nocifensive behavior, mechanical allodynia, and thermal hyperalgesia. Serum levels of bone loss markers with bufalin treatment were measured by ELISA. Expressions of osteoprotegerin (OPG) and receptor activator of NF-κB ligand (RANKL) were analyzed in bufalin-treated mice by real-time PCR and Western blot. Cannabinoid 2 receptor (CB2) inverse agonist AM630 was administrated to mice with bone cancer together with bufalin. Bufalin relieved cancer-induced pain and bone destruction in the murine bone cancer model. Serum levels of bone loss markers after bufalin treatment were reduced. Bufalin upregulated OPG and downregulated RANKL. The CB2 receptor inverse agonist, AM630, reduced the pain relief of bufalin treatment in the mouse bone cancer model. This study demonstrates that bufalin relieves cancer-induced pain and bone destruction, which is mediated through the CB2 receptor.
Collapse
|
43
|
Song T, Zhang Y, Song Q, Han X, Guan S, Zhang X, Chu X, Zhang F, Zhang J, Chu L. Bufalin, a bufanolide steroid from the parotoid glands of the Chinese toad, suppresses hERG K + currents expressed in HEK293 cells. Fundam Clin Pharmacol 2017; 31:695-700. [PMID: 28755515 DOI: 10.1111/fcp.12306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 01/16/2023]
Abstract
In this study, we investigated the effect of bufalin on the human ether-à-go-go-related gene (hERG) K+ channels using the perforated patch recording technique. We measured a half-maximal inhibitory concentration (IC50 ) of 24.83 μM and maximal inhibitory effect of 39.45 ± 1.14% with bufalin. These findings suggest that bufalin is a potent hERG K+ channel blocker and may provide a new way for understanding Chan Su-induced arrhythmia.
Collapse
Affiliation(s)
- Tao Song
- Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yuanyuan Zhang
- Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang, 050200, Hebei, China.,Hebei key laboratory of integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, 050200, Hebei, China
| | - Qiongtao Song
- Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xue Han
- Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Shengjiang Guan
- Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xuan Zhang
- Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang, 050200, Hebei, China.,Hebei key laboratory of integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, 050200, Hebei, China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Fenghua Zhang
- Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Jianping Zhang
- Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang, 050200, Hebei, China.,Hebei key laboratory of integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, 050200, Hebei, China
| | - Li Chu
- Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang, 050200, Hebei, China.,Hebei key laboratory of integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, 050200, Hebei, China
| |
Collapse
|
44
|
Liu Y, Wang X, Jia Y, Liu Y. Effects of bufalin on the mTOR/p70S6K pathway and apoptosis in esophageal squamous cell carcinoma in nude mice. Int J Mol Med 2017; 40:357-366. [PMID: 28656204 PMCID: PMC5504976 DOI: 10.3892/ijmm.2017.3039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to investigate the effects of bufalin on the mammalian target of rapamycin (mTOR/p70S6 kinase (p70S6K) signaling pathway and cell apoptosis in orthotopically transplanted tumors in nude mice. The mice were inoculated with human esophageal squamous cell carcinoma (ESCC) ECA109 cells in order to establish a model of orthotopicall transplanted ESCC tumors. The mice are administered low, medium and high doses of bufalin (0.5, 1.0 and 1.5 mg/kg) or rapamycin, or a combination of both. After the tumors were removed, the mRNA expression levels of mTOR, p70S6K, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), cellular inhibitor of apoptosis protein 1 (cIAP1) and caspase-3 were detected by RT-PCR. In addition, we performed western blot analysis and immunohistochemical analysis to determine the protein expression of mTOR, p70S6K, 4EBP1, cIAP1, active caspase-3, Bcl-2 and Bad in the tumor tissue. The results revealed that bufalin exerted a significant anti-tumor effect in the nude mice with ESCC orthotopically transplanted tumors. This was shown by the decrease in the expression of mTOR, p70S6K and 4EBP1, which suggested that bufalin may possibly be used to inhibit tumor growth via the inhibition of the activation of p70S6K and 4EBP1. We also found that bufalin decreased the expression of cIAP1 and Bcl-2, and increased that of active caspase-3 and Bad, thus indicating that bufalin promoted apoptosis. Thus, our findings suggest that bufalin promotes tumor cell apoptosis, and this may be one of the important anti-tumor mechanisms of action of bufalin.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xu Wang
- Department of Pathology, The First Central Hospital of Baoding, Baoding, Hebei 071000, P.R. China
| | - Ying Jia
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
45
|
Song T, Chu X, Zhang X, Song Q, Zhang Y, Zhang Y, Han X, Zhang J, Chu L. Bufalin, a bufanolide steroid from the parotoid glands of the Chinese toad, inhibits L-type Ca2+
channels and contractility in rat ventricular myocytes. Fundam Clin Pharmacol 2017; 31:340-346. [DOI: 10.1111/fcp.12265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/31/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Tao Song
- Hebei Medical University; No. 361, East Zhongshan Road Shijiazhuang 050017 Hebei China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University; No. 12, Jiankang Road Shijiazhuang 050011 Hebei China
| | - Xuan Zhang
- Hebei University of Chinese Medicine; No. 3, Xingyuan Road Shijiazhuang 050200 Hebei China
| | - Qiongtao Song
- Hebei Medical University; No. 361, East Zhongshan Road Shijiazhuang 050017 Hebei China
| | - Ying Zhang
- Hebei University of Chinese Medicine; No. 3, Xingyuan Road Shijiazhuang 050200 Hebei China
| | - Yuanyuan Zhang
- Hebei University of Chinese Medicine; No. 3, Xingyuan Road Shijiazhuang 050200 Hebei China
| | - Xue Han
- Hebei University of Chinese Medicine; No. 3, Xingyuan Road Shijiazhuang 050200 Hebei China
| | - Jianping Zhang
- Hebei University of Chinese Medicine; No. 3, Xingyuan Road Shijiazhuang 050200 Hebei China
| | - Li Chu
- Hebei Medical University; No. 361, East Zhongshan Road Shijiazhuang 050017 Hebei China
- Hebei University of Chinese Medicine; No. 3, Xingyuan Road Shijiazhuang 050200 Hebei China
| |
Collapse
|
46
|
Yang Z, Liu J, Huang Q, Zhang Z, Zhang J, Pan Y, Yang Y, Cheng D. Radiosynthesis and pharmacokinetics of [ 18F]fluoroethyl bufalin in hepatocellular carcinoma-bearing mice. Onco Targets Ther 2017; 10:329-338. [PMID: 28138256 PMCID: PMC5238771 DOI: 10.2147/ott.s110281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Bufalin, the main component of a Chinese traditional medicine chansu, shows convincing anticancer effects in a lot of tumor cell lines. However, its in vivo behavior is still unclear. This research aimed to evaluate how bufalin was dynamically absorbed after intravenous injection in animal models. We developed a radiosynthesis method of [18F]fluoroethyl bufalin to noninvasively evaluate the tissue biodistribution and pharmacokinetics in hepatocellular carcinoma-bearing mice. Methods [18F]fluoroethyl bufalin was synthesized with conjugation of 18F-CH2CH2OTs and bufalin. The radiochemical purity was proved by the radio-high-performance liquid chromatography (HPLC). The pharmacokinetic studies of [18F]fluoroethyl bufalin were then performed in Institute of Cancer Research (ICR) mice. Furthermore, the biodistribution and metabolism of [18F]fluoroethyl bufalin in HepG2 and SMMC-7721 tumor-bearing nude mice were studied in vivo by micro-positron emission tomography (micro-PET). Results The radiochemical purity (RCP) of [18F]fluoroethyl bufalin confirmed by radio-HPLC was 99%±0.18%, and [18F]fluoroethyl bufalin showed good in vitro and in vivo stabilities. Blood dynamics of [18F]fluoroethyl bufalin conformed to the two compartments in the ICR mice model. The pharmacokinetic parameters of [18F]fluoroethyl bufalin were calculated by DAS 2.0 software. The area under concentration–time curve (AUC0–t) and the values of clearance (CL) were 540.137 μg/L·min and 0.001 L/min/kg, respectively. The half-life of distribution (t1/2α) and half-life of elimination (t1/2β) were 0.693 and 510.223 min, respectively. Micro-PET imaging showed that [18F]fluoroethyl bufalin was quickly distributed via the blood circulation; the major tissue biodistribution of [18F]fluoroethyl bufalin in HepG2 and SMMC-7721 tumor-bearing mice was liver and bladder. Conclusion [18F]fluoroethyl bufalin was accumulated rapidly in the liver at an early time point (5 min) post injection (pi) and then declined slowly, mainly through both the hepatic pathway and the renal pathway. Our study showed the biodistribution of [18F]fluoroethyl bufalin in micro-PET images and provided visible information for demonstrating the bioactivities of bufalin.
Collapse
Affiliation(s)
- Zhaoshuo Yang
- Department of Chinese Traditional Medicine, Zhongshan Hospital, Fudan University
| | - Jianhua Liu
- School of Medicine, Shanghai Jiao Tong University
| | - Qingqing Huang
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine
| | - Zhouji Zhang
- Department of Chinese Traditional Medicine, Zhongshan Hospital, Fudan University
| | - Jiawei Zhang
- Department of Chinese Traditional Medicine, Zhongshan Hospital, Fudan University
| | - Yanjia Pan
- Department of Chinese Traditional Medicine, Zhongshan Hospital, Fudan University
| | - Yunke Yang
- Department of Chinese Traditional Medicine, Zhongshan Hospital, Fudan University
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Zhang K, Yan G, Zhang A, Sun H, Wang X. Recent advances in pharmacokinetics approach for herbal medicine. RSC Adv 2017. [DOI: 10.1039/c7ra02369c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traditional Chinese Medicine (TCM), an indispensable part of herbal medicine, has been used for treating many diseases and/or symptoms for thousands of years.
Collapse
Affiliation(s)
- Kunming Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Guangli Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| |
Collapse
|
48
|
Huang AC, Yang MD, Hsiao YT, Lin TS, Ma YS, Peng SF, Hsia TC, Cheng YD, Kuo CL, Chung JG. Bufalin inhibits gefitinib resistant NCI-H460 human lung cancer cell migration and invasion in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:1043-1050. [PMID: 27833027 DOI: 10.1016/j.jep.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bufalin, a component of Chan Su (frog), has been shown to have biological activities including anti-tumor effects. Gefitinib has been used as an anti-cancer drug in lung cancer patients; however, some patients eventually become gefitinib resistant. AIM OF THE STUDY In this study, we investigated anti-metastasis effects of bufalin in gefitinib resistant NCI-H460 lung cancer cells. MATERIALS AND METHODS The effects of the bufalin in gefitinib resistant NCI-H460 lung cancer cells were investigated on cell viability using flow cytometry. The adhesion capacity, wound healing assay, invasion and migration assay, and Western blot analysis were used to understand the molecular mechanisms in this study RESULTS: Under sub-lethal concentrations (from 2.5 up to 10nM), bufalin significantly inhibits cell adhension, migration and invasion nature of gefitinib resistant H460 cells. Western blotting assay revealed that bufalin depressed some of the key metastasis-related proteins, such as SOS-1, MMP-2 and Rho A underwent significant reduction. Phosphorylated Focal adhesion kinase (p-FAK), phosphorylated extracellular signal-regulated kinase (p-ERK1/2), Ras and E-cadherin were significantly reduced at 48h treatment. However, phosphorylated p38 (p-p38), phosphorylated c-Jun NH2-terminal kinase (p-JNK1/2) and NF-κBp65 were increased. CONCLUSIONS Based on these observations, we suggest that bufalin can be used in anti-metastasis of gefitinib resistant NCI-H460 lung cancer cells in the future.
Collapse
Affiliation(s)
- An-Cheng Huang
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County, Taiwan
| | - Mei-Due Yang
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tzu-Shun Lin
- Department of Pharmacy, Saint Mary's Hospital Luodong, Luodong Township, Yilan County, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan; Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yih-Dih Cheng
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Medicine Resources, China Medical University, Taichung, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
49
|
Liu M, Feng LX, Sun P, Liu W, Mi T, Lei M, Wu W, Jiang B, Yang M, Hu L, Guo DA, Liu X. Knockdown of Apolipoprotein E Enhanced Sensitivity of Hep3B Cells to Cardiac Steroids via Regulating Na+/K+-ATPase Signalosome. Mol Cancer Ther 2016; 15:2955-2965. [PMID: 27507851 DOI: 10.1158/1535-7163.mct-15-0961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 11/16/2022]
Abstract
This study compared the sensitivity of human hepatoma Hep3B, SK-HEP-1, SMMC-7721, and BEL-7402 cells to cardiac steroids, including bufalin (BF), a bufalin derivative (BF211), ouabain (OUA), and digitoxin (DIG). Hep3B cells exhibited relatively low sensitivity to cardiac steroids. Expression levels of subunits of Na+/K+-ATPase were high in Hep3B cells. However, colocalization of Na+/K+-ATPase and caveolin was nearly undetectable in Hep3B cells. By using RNA-Seq technology, we found a total of 36 genes to be differentially expressed between Hep3B cells and SK-HEP-1 cells, which are highly sensitive to cardiac steroids. Our bioinformatics analysis determined that these genes were mostly comprised of extracellular space, protein binding, and extracellular region. Among these 36 genes, apolipoprotein E (APOE) played a critical role, as knockdown APOE expression induced colocalization of Na+/K+-ATPase and caveolin and increased sensitivity of Hep3B cells to both proliferation-inhibiting and cytotoxic effects of BF or BF211. Also, the effects of BF on PI3K/AKT/GSK3β and apoptosis signal cascades were enhanced in APOE knockdown cells. The results of our study confirmed the role of Na+/K+-ATPase signalosome in cytotoxicity of cardiac steroids and suggested that APOE regulated the sensitivity of cells to cardiac steroids by affecting formation and function of Na+/K+-ATPase signalosome. In addition, intercellular interaction with high level of Na+/K+-ATPase β1 subunit may be also a factor in the low sensitivity of Hep3B cells to cardiac steroids. Mol Cancer Ther; 15(12); 2955-65. ©2016 AACR.
Collapse
Affiliation(s)
- Miao Liu
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Li-Xing Feng
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Peng Sun
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Wang Liu
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Tian Mi
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Min Lei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Wanying Wu
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Baohong Jiang
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Min Yang
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Lihong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - De-An Guo
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Xuan Liu
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China. .,Department of Cardiology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|
50
|
Meng Q, Yau LF, Lu JG, Wu ZZ, Zhang BX, Wang JR, Jiang ZH. Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:74-82. [PMID: 27063985 DOI: 10.1016/j.jep.2016.03.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 03/16/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toad venom and toad skin have been widely used for treating various cancers in China. Bufadienolides are regarded as the main anticancer components of toad venom, but the difference on composition and anticancer activities of bufadienolides between toad venom and toad skin remains unclear. METHODS Fractions enriched with free and conjugated bufadienolides were prepared from toad venom and toad skin. Bufadienolides in each fraction were comprehensively profiled by using a versatile UHPLC-TOF-MS method. Relative contents of major bufadienolides were determined by using three bufogenins and one bufotoxin as marker compounds with validated UHPLC-TOF-MS method. Furthermore, cytotoxicity of the fractions was examined by MTT assay. RESULTS Two fractions, i.e., bufogenin and bufotoxin fractions (TV-F and TV-C) were isolated from toad venom, and one bufotoxin fraction (TS-C) was isolated from toad skin. Totally 56 bufadienolides in these three fractions were identified, and 29 were quantified or semi-quantified. Bufotoxins were identified in both toad venom and toad skin, whereas bufogenins exist only in toad venom. Bufalin-3-conjugated bufotoxins are major components in toad venom, whereas cinobufotalin and cinobufagin-3-conjugated bufotoxins are main bufotoxins in toad skin. MTT assay revealed potent cytotoxicity of all the fractions in an order of TV-F>TV-C>TS-C. CONCLUSIONS Our study represents the most comprehensive investigation on the chemical profiles of toad venom and toad skin from both qualitative and quantitative aspects. Eight bufotoxins were identified in toad skin responsible for the cytotoxicity for the first time. Our research provides valuable chemical evidence for the appropriate processing method, quality control and rational exploration of toad skin and toad venom for the development of anticancer medicines.
Collapse
Affiliation(s)
- Qiong Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhen-Zhen Wu
- Beijing Increase Pharm. Co. Ltd., Beijing, China
| | | | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|