1
|
Nurcholis W, Rahmadansah R, Astuti P, Priosoeryanto BP, Arianti R, Kristóf E. Comparative Analysis of Volatile Compounds and Biochemical Activity of Curcuma xanthorrhiza Roxb. Essential Oil Extracted from Distinct Shaded Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2682. [PMID: 39409552 PMCID: PMC11479211 DOI: 10.3390/plants13192682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
The application of shade during plants' growth significantly alters the biochemical compounds of the essential oil (EO). We aimed to analyze the effect of shade on the volatile compounds and biochemical activities of EO extracted from Curcuma xanthorrhiza Roxb. (C. xanthorrhiza) plants. Four shading conditions were applied: no shading (S0), 25% (S25), 50% (S50), and 75% shade (S75). The volatile compounds of EO extracted from each shaded plant were analyzed by gas chromatography-mass spectrometry. The antioxidant, antibacterial, and antiproliferative activities of EO were also investigated. We found that shade application significantly reduced the C. xanthorrhiza EO yield but increased its aroma and bioactive compound concentration. α-curcumene, xanthorrhizol, α-cedrene, epicurzerenone, and germacrone were found in EO extracted from all conditions. However, β-bisabolol, curzerene, curcuphenol, and γ-himachalene were only detected in the EO of S75 plants. The EO of the shaded plants also showed higher antioxidant activity as compared to unshaded ones. In addition, the EO extracted from S75 exerted higher antiproliferative activity on HeLa cells as compared to S0. The EO extracted from S0 and S25 showed higher antibacterial activity against Gram-positive bacteria than kanamycin. Our results suggest that shade applications alter the composition of the extractable volatile compounds in C. xanthorrhiza, which may result in beneficial changes in the biochemical activity of the EO.
Collapse
Affiliation(s)
- Waras Nurcholis
- Tropical Biopharmaca Research Center, IPB University, Bogor 16151, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Rahmadansah Rahmadansah
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Puji Astuti
- Department of Biochemistry and Biomolecular Science, Faculty of Medicine, Universitas Tanjungpura, Pontianak 78124, Indonesia;
| | | | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.A.); (E.K.)
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang 33684, Indonesia
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.A.); (E.K.)
| |
Collapse
|
2
|
Rezaul Islam M, Rauf A, Akash S, Kumer A, Hussain MS, Akter S, Gupta JK, Thameemul Ansari L, Mahfoj Islam Raj MM, Bin Emran T, Aljohani AS, Abdulmonem WA, Thiruvengadam R, Thiruvengadam M. Recent perspective on the potential role of phytocompounds in the prevention of gastric cancer. Process Biochem 2023; 135:83-101. [DOI: 10.1016/j.procbio.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
3
|
Overview of the Justicia Genus: Insights into Its Chemical Diversity and Biological Potential. Molecules 2023; 28:molecules28031190. [PMID: 36770856 PMCID: PMC9920429 DOI: 10.3390/molecules28031190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
The genus Justicia has more than 600 species distributed in both hemispheres, in the tropics and temperate regions, and it is used in the treatment of numerous pathologies. This study presents a review of the biological activities of plant extracts and isolated chemical constituents of Justicia (ACANTHACEAE), identified in the period from May 2011 to August 2022. We analyzed over 176 articles with various biological activities and chemical compound descriptions present in the 29 species of Justicia. These have a variety of applications, such as antioxidant and antimicrobial, with alkaloids and flavonoids (e.g., naringenin) the most frequently identified secondary metabolites. The most observed species were Justicia gendarussa Burm., Justicia procumbens L., Justicia adhatoda L., Justicia spicigera Schltdl, and Justicia pectoralis Jacq. The frontier molecular orbitals carried out using density functional theory (M062X and basis set 6-311++G(d,p) indicate reactive sites for naringenin compound and a chemical reaction on phytomedicine activity. The energy gap (206.99 kcal/mol) and dimer solid state packing point to chemical stability. Due to the wide variety of pharmacological uses of these species, this review points toward the development of new phytomedicines.
Collapse
|
4
|
da Silva MACN, Soares CS, Borges KRA, Wolff LAS, Barbosa MDCL, Nascimento MDDSB, Carvalho JED. Ultrastructural changes induced by açaí (Euterpe oleracea Mart) in MCF-7 breast cancer cell line. Ultrastruct Pathol 2022; 46:511-518. [DOI: 10.1080/01913123.2022.2141404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcos Antonio Custódio Neto da Silva
- Faculty of Medical Science, Post-graduate Program in Internal Medicine, Universidade Estadual de Campi- nas. Rua Tessália Vieira de Camargo, Campinas, Brasil
| | - Camila Simões Soares
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | - Kátia Regina Assunção Borges
- Department of Pathology, Federal University of Maranhão (UFMA), Nucleum of Basic and Applied Immunology, São Luís, Brazil
| | - Laís Araujo Souza Wolff
- Department of Pathology, Federal University of Maranhão (UFMA), Nucleum of Basic and Applied Immunology, São Luís, Brazil
| | - Maria Do Carmo Lacerda Barbosa
- Department of Pathology, Federal University of Maranhão (UFMA), Nucleum of Basic and Applied Immunology, São Luís, Brazil
| | | | | |
Collapse
|
5
|
Bagoudou AF, Zheng Y, Nakabayashi M, Rawdkuen S, Park HY, Vattem DA, Sato K, Nakamura S, Katayama S. Glochidion littorale Leaf Extract Exhibits Neuroprotective Effects in Caenorhabditis elegans via DAF-16 Activation. Molecules 2021; 26:molecules26133958. [PMID: 34203560 PMCID: PMC8271589 DOI: 10.3390/molecules26133958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
A number of plants used in folk medicine in Thailand and Eastern Asia are attracting interest due to the high bioactivities of their extracts. The aim of this study was to screen the edible leaf extracts of 20 plants found in Thailand and investigate the potential neuroprotective effects of the most bioactive sample. The total phenol and flavonoid content and 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity were determined for all 20 leaf extracts. Based on these assays, Glochidion littorale leaf extract (GLE), which showed a high value in all tested parameters, was used in further experiments to evaluate its effects on neurodegeneration in Caenorhabditis elegans. GLE treatment ameliorated H2O2-induced oxidative stress by attenuating the accumulation of reactive oxygen species and protected the worms against 1-methyl-4-phenylpyridinium-induced neurodegeneration. The neuroprotective effects observed may be associated with the activation of the transcription factor DAF-16. The characterization of this extract by LC-MS identified several phenolic compounds, including myricetin, coumestrin, chlorogenic acid, and hesperidin, which may play a key role in neuroprotection. This study reports the novel neuroprotective activity of GLE, which may be used to develop treatments for neurodegenerative diseases such as Parkinson’s syndrome.
Collapse
Affiliation(s)
- Abdel Fawaz Bagoudou
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (A.F.B.); (S.N.)
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (Y.Z.); (M.N.)
| | - Masahiro Nakabayashi
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (Y.Z.); (M.N.)
| | - Saroat Rawdkuen
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1, Thasud, Muang, Chiang Rai 57100, Thailand;
| | - Hyun-Young Park
- Edison Biotechnology Institute, Konneker Research Laboratories, Ohio University, Athens, OH 45701, USA; (H.-Y.P.); (D.A.V.)
| | - Dhiraj A. Vattem
- Edison Biotechnology Institute, Konneker Research Laboratories, Ohio University, Athens, OH 45701, USA; (H.-Y.P.); (D.A.V.)
- College of Health Sciences & Professions, Ohio University, Athens, OH 45701, USA
| | - Kenji Sato
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Soichiro Nakamura
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (A.F.B.); (S.N.)
| | - Shigeru Katayama
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (A.F.B.); (S.N.)
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (Y.Z.); (M.N.)
- Correspondence: ; Tel.: +81-265-77-1603
| |
Collapse
|
6
|
Mangmool S, Kunpukpong I, Kitphati W, Anantachoke N. Antioxidant and Anticholinesterase Activities of Extracts and Phytochemicals of Syzygium antisepticum Leaves. Molecules 2021; 26:molecules26113295. [PMID: 34070837 PMCID: PMC8198064 DOI: 10.3390/molecules26113295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Bioassay-guided separation of young leaves extracts of Syzygium antisepticum (Blume) Merr. & L.M. Perry led to the isolation of four triterpenoids (betulinic acid, ursolic acid, jacoumaric acid, corosolic acid) and one sterol glucoside (daucosterol) from the ethyl acetate extract, and three polyphenols (gallic acid, myricitrin, and quercitrin) from the methanol (MeOH) extract. The MeOH extract of S. antisepticum and some isolated compounds, ursolic acid and gallic acid potentially exhibited acetylcholinesterase activity evaluated by Ellman’s method. The MeOH extract and its isolated compounds, gallic acid, myricitrin, and quercitrin, also strongly elicited DPPH radical scavenging activity. In HEK-293 cells, the MeOH extract possessed cellular antioxidant effects by attenuating hydrogen peroxide (H2O2)-induced ROS production and increasing catalase, glutathione peroxidase-1 (GPx-1), and glutathione reductase (GRe). Furthermore, myricitrin and quercitrin also suppressed ROS production induced by H2O2 and induced GPx-1 and catalase production in HEK-293 cells. These results indicated that the young leaves of S. antisepticum are the potential sources of antioxidant and anticholinesterase agents. Consequently, S. antisepticum leaves are one of indigenous vegetables which advantage to promote the health and prevent diseases related to oxidative stress.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Issaree Kunpukpong
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Worawan Kitphati
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
7
|
Pakdeechote P, Meephat S, Sakonsinsiri C, Phetcharaburanin J, Bunbupha S, Maneesai P. Syzygium gratum Extract Alleviates Vascular Alterations in Hypertensive Rats. ACTA ACUST UNITED AC 2020; 56:medicina56100509. [PMID: 33007813 PMCID: PMC7600592 DOI: 10.3390/medicina56100509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Background and Objectives: Syzygium gratum (SG) is a local vegetable and widely consumed in Thailand. Previously, a strong antioxidative effect of SG extract has been reported. The effects of SG extract on hypertension have remained unknown. The effect of SG aqueous extract on blood pressure and vascular changes were examined in L-NAME-induced hypertensive rats (LHR), and its potential active constituents were also explored. Materials and Methods: Male Sprague Dawley rats were allocated to control, L-NAME (40 mg/kg/day), L-NAME + SG (100, 300, 500 mg/kg/day), or captopril (5 mg/kg/day) groups. The components of SG extract were analyzed. Results: The analysis of aqueous SG extract was carried out using HPLC-Mass spectroscopy, and phenolic compounds could be identified as predominant components which might be responsible for its antihypertensive effects observed in the LHR model (p < 0.05). Additionally, SG extract also improved vascular responses to acetylcholine and decreased vascular remodeling in LHR (p < 0.05). Enhancements of eNOS expression and plasma nitric oxide metabolite levels, and attenuation of angiotensin converting enzyme (ACE) activity and plasma angiotensin II levels were observed in the LHR group treated with SG. Moreover, SG exhibited strong antioxidant activities by reducing vascular superoxide generation and systemic malondialdehyde in LHRs. Captopril suppressed high blood pressure and alleviated vascular changes and ACE activity in LHRs, similar to those of the SG extract (p < 0.05). Conclusion: Our results suggest that the SG extract exhibited antihypertensive effects, which is relevant to alleviation of vascular dysfunction and vascular remodeling of LHRs. These effects might be mediated by phenolic compounds to inhibit ACE activity and scavenge reactive oxygen species in LHR.
Collapse
Affiliation(s)
- Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (J.P.)
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (J.P.)
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
- Correspondence: ; Tel.: +66-43348394
| |
Collapse
|
8
|
Roleira FM, Varela CL, Costa SC, Tavares-da-Silva EJ. Phenolic Derivatives From Medicinal Herbs and Plant Extracts: Anticancer Effects and Synthetic Approaches to Modulate Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64057-4.00004-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Hung KF, Hsu CP, Chiang JH, Lin HJ, Kuo YT, Sun MF, Yen HR. Complementary Chinese herbal medicine therapy improves survival of patients with gastric cancer in Taiwan: A nationwide retrospective matched-cohort study. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:168-174. [PMID: 28163114 DOI: 10.1016/j.jep.2017.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many patients with gastric cancer seek traditional medicine consultations in Asian countries. This study aimed to investigate the prescription of Chinese herbal medicine (CHM) and its benefits for the patients with gastric cancer in Taiwan. METHODS From the Registry for Catastrophic Illness Patients Database, we included all patients with gastric cancer whose age at diagnosis was ≥18 from 1997 to 2010 in Taiwan. We used 1:1 frequency matching by age, sex, Charlson comorbidity score, treatment and index year to compare the CHM users and non-CHM users. We used the Cox regression model to compare the hazard ratios (HR) for the risk of mortality and the Kaplan-Meier curve for the survival time. RESULTS There was a total of 1333 patients in the CHM-cohort and 44786 patients in the non-CHM cohort. After matching, we compared 962 newly diagnosed CHM users and 962 non-CHM users. Adjusted HRs (aHR) were higher among patients of above 60-year-old group, with a Charlson Comorbidity Index score ≥2 before the index date, and those who need surgery combined with chemotherapy or radiotherapy. CHM users had a lower HR of mortality risk (adjusted HR: 0.55, 95% CI: 0.48-0.62). Compared to the non-CHM users, the aHR among CHM-users is 0.37 (95% CI:0.2-0.67) for those who used CHM more than 180 days annually. The Kaplan-Meier curve revealed that the survival probability was higher for complementary CHM-users. Bai-Hua-She-She-Cao (Herba Hedyotidis Diffusae) was the most commonly used single herb and Xiang-Sha-Liu-Jun-Zi-Tang was the most commonly used herbal formula among CHM prescriptions. CONCLUSIONS Complementary CHM improves the overall survival among patients with gastric cancer in Taiwan. Further ethnopharmacological investigations and clinical trials are required to validate the efficacy and safety.
Collapse
Affiliation(s)
- Kuo-Feng Hung
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Ping Hsu
- Department of Family Physicians, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ting Kuo
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Mao-Feng Sun
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Rong Yen
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan; Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
10
|
Al-Abd NM, Mohamed Nor Z, Mansor M, Azhar F, Hasan MS, Kassim M. Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract. Altern Ther Health Med 2015; 15:385. [PMID: 26497742 PMCID: PMC4619549 DOI: 10.1186/s12906-015-0914-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 10/13/2015] [Indexed: 12/04/2022]
Abstract
Background The threat posed by drug-resistant pathogens has resulted in the increasing momentum in research and development for effective alternative medications. The antioxidant and antibacterial properties of phytochemical extracts makes them attractive alternative complementary medicines. Therefore, this study evaluated the phytochemical constituents of Melaleuca cajuputi flower and leaf (GF and GL, respectively) extracts and their antioxidant and antibacterial activities. Methods Radical scavenging capacity of the extracts was estimated using 2,2-diphenyl-2-picrylhydrazyl and Fe2+-chelating activity. Total antioxidant activity was determined using ferric reducing antioxidant power assay. Well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration assays were used to determine antibacterial activity against eight pathogens, namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, Staphylococcus epidermidis, Salmonella typhimurium, Klebsiella pneumonia, Streptococcus pneumoniae, and Pasteurella multocida. We identified and quantified the phytochemical constituents in methanol extracts using liquid chromatography/mass spectrometry (LC/MS) and gas chromatography (GC)/MS. Results This study reports the antioxidant and radical scavenging activity of M. cajuputi methanolic extracts. The GF extract showed better efficacy than that of the GL extract. The total phenolic contents were higher in the flower extract than they were in the leaf extract (0.55 ± 0.05 and 0.37 ± 0.05 gallic acid equivalent per mg extract dry weight, respectively). As expected, the percentage radical inhibition by GF was higher than that by the GL extract (81 and 75 %, respectively). A similar trend was observed in Fe2+-chelating activity and β-carotene bleaching tests. The antibacterial assay of the extracts revealed no inhibition zones with the Gram-negative bacteria tested. However, the extracts demonstrated activity against B. cereus, S. aureus, and S. epidermidis. Conclusions In this study, we found that M. cajuputi extracts possess antioxidant and antibacterial activities. The results revealed that both extracts had significant antioxidant and free radical-scavenging activity. Both extracts had antibacterial activity against S. aureus, S. epidermidis, and B. cereus. The antioxidant and antimicrobial activities could be attributed to high flavonoid and phenolic contents identified using GC/MS and LC/MS. Therefore, M. cajuputi could be an excellent source for natural antioxidant and antibacterial agents for medical and nutraceutical applications.
Collapse
|
11
|
Promraksa B, Daduang J, Khampitak T, Tavichakorntrakool R, Koraneekit A, Palasap A, Tangrassameeprasert R, Boonsiri P. Anticancer Potential of Cratoxylum formosum Subsp. Pruniflorum (Kurz.) Gogel Extracts Against Cervical Cancer Cell Lines. Asian Pac J Cancer Prev 2015; 16:6117-21. [DOI: 10.7314/apjcp.2015.16.14.6117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
High resolution scanning electron microscopy of cells using dielectrophoresis. PLoS One 2014; 9:e104109. [PMID: 25089528 PMCID: PMC4121316 DOI: 10.1371/journal.pone.0104109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/08/2014] [Indexed: 12/02/2022] Open
Abstract
Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment.
Collapse
|