1
|
Targeting Oxidative Stress and Endothelial Dysfunction Using Tanshinone IIA for the Treatment of Tissue Inflammation and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2811789. [PMID: 35432718 PMCID: PMC9010204 DOI: 10.1155/2022/2811789] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
Salvia miltiorrhiza Burge (Danshen), a member of the Lamiaceae family, has been used in traditional Chinese medicine for many centuries as a valuable medicinal herb with antioxidative, anti-inflammatory, and antifibrotic potential. Several evidence-based reports have suggested that Salvia miltiorrhiza and its components prevent vascular diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy, and cardiac fibrosis. Tanshinone IIA (TanIIA), a lipophilic component of Salvia miltiorrhiza, has gained attention because of its possible preventive and curative activity against cardiovascular disorders. TanIIA, which possesses antioxidative, anti-inflammatory, and antifibrotic properties, could be a key component in the therapeutic potential of Salvia miltiorrhiza. Vascular diseases are often initiated by endothelial dysfunction, which is accompanied by vascular inflammation and fibrosis. In this review, we summarize how TanIIA suppresses tissue inflammation and fibrosis through signaling pathways such as PI3K/Akt/mTOR/eNOS, TGF-β1/Smad2/3, NF-κB, JNK/SAPK (stress-activated protein kinase)/MAPK, and ERK/Nrf2 pathways. In brief, this review illustrates the therapeutic value of TanIIA in the alleviation of oxidative stress, inflammation, and fibrosis, which are critical components of cardiovascular disorders.
Collapse
|
2
|
Zhang B, Yu P, Su E, Jia J, Zhang C, Xie S, Huang Z, Dong Y, Ding J, Zou Y, Jiang H, Ge J. Sodium tanshinone IIA sulfonate improves adverse ventricular remodeling post MI by reducing myocardial necrosis, modulating inflammation and promoting angiogenesis. Curr Pharm Des 2021; 28:751-759. [PMID: 34951571 DOI: 10.2174/1381612828666211224152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Myocardial infarction (MI) leads to pathological cardiac remodeling and heart failure. Sodium tanshinone IIA sulfonate (STS) shows therapeutic values. The present study aimed to explore the potential role of STS in ventricular remodeling post-MI. METHODS Mice were randomly divided into sham, MI + normal saline (NS) and MI + STS (20.8 mg/kg/day intraperitoneally) groups. MI was established following left anterior descending artery ligation. Cardiac function was evaluated using echocardiography. Scar size and myocardial fibrosis-associated markers were detected using Masson's trichrome staining and western blot analysis (WB). Necrosis and inflammation were assessed using H&E staining, lactate dehydrogenase (LDH) detection, ELISA, immunohistochemical staining, and WB. Furthermore, angiogenesis markers and associated proteins were detected using immunohistochemical staining and WB. RESULTS Mice treated with STS exhibited significant improvements in cardiac function, smaller scar size, and low expression levels of α-smooth muscle actin and collagen I and III at 28 days following surgery, compared with the NS-treated group. Moreover, treatment with STS reduced eosinophil necrosis, the infiltration of inflammatory cells, plasma levels of LDH, high mobility group protein B1, interleukin-1β and tumor necrosis factor-α, and protein expression of these cytokines at 3 days. Macrophage infiltration was also decreased in the STS group in the early phase. Additionally, CD31+ vascular density, protein levels of hypoxia-inducible factor-1α, and vascular endothelial growth factor were elevated in the STS-treated mice at 28 days. CONCLUSION STS improved pathological remodeling post-MI, and the associated therapeutic effects may result from a decrease in myocardial necrosis, modulation of inflammation, and an increase in angiogenesis.
Collapse
Affiliation(s)
- Baoli Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Enyong Su
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jianguo Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chunyu Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shiyao Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhenhui Huang
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Ying Dong
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Jinguo Ding
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
3
|
Xu L, Xu Y, Zhu Z, Gu H, Chen C, Chen J. Tanshinone IIA attenuates renal injury during hypothermic preservation via the MEK/ERK1/2/GSK-3β pathway. BMC Complement Med Ther 2021; 21:257. [PMID: 34625061 PMCID: PMC8501657 DOI: 10.1186/s12906-021-03427-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Background Oxidative stress-induced injury during hypothermic preservation is a universal problem that delays graft function and decrease the success of organ transplantation. Tanshinone IIA (Tan IIA) was reported to exhibit a variety of biochemical activities, including protection against oxidative stress. Therefore, the specific molecular pathway by which Tan IIA protects renal tissues during preservation was investigated in this study. Methods In vivo study, Sprague-Dawley (SD) rats were divided into twelve groups and the kidneys were isolated and preserved in different solutions for 0, 24 or 48 h, respectively: control group (Celsior solution) and Tan II groups (Celsior solution containing 10, 50,100 μM). In vitro study, primary renal cell from SD rats was cultured which was treated H2O2 (800 μM) for 6 h to mimic oxidative stress injury. Four groups were finally divided: control group; H2O2 group; H2O2 + Tan IIA group; H2O2 + Tan IIA + G15 group. Results In present study, we demonstrate data indicating that a significant increase in the superoxide dismutase (SOD) activity and a decrease in the reactive oxygen species (ROS) content were observed in the kidneys and renal cells preserved with Tan IIA compared with those preserved with the Celsior solution alone after 24 h and 48 h of hypothermic preservation (P < 0.01). The expression of phosphorylated mitogen-activated protein kinase kinase (MEK), phosphorylated extracellular signal-regulated protein kinases 1/2 (ERK1/2), phosphorylated glycogen synthase kinase-3β (GSK-3β) and cleaved caspase-3 was lower in the kidneys and renal cells preserved with Tan IIA than in those preserved with the Celsior solution alone after 24 h and 48 h of hypothermic preservation (P < 0.01). The mitochondrial morphology was rescued and adenosine triphophate (ATP) production and mitochondrial membrane potential were increased in the Tan IIA groups. Finally, Tan IIA also decreased cell apoptosis. Conclusion It suggests that the supplementation of the standard Celsior solution with Tan IIA may significantly improve long-term kidney preservation. Tan IIA attenuated oxidative stress injury and decreased apoptosis levels via activation of the MEK/ERK1/2/GSK-3β signaling pathway during kidney hypothermic preservation. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03427-7.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhoujing Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Huiquan Gu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Chaofeng Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jian Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
4
|
Feng J, Liu L, Yao F, Zhou D, He Y, Wang J. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol 2021; 14:239-248. [PMID: 33463381 DOI: 10.1080/17512433.2021.1878877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis. Accumulating studies have shown that TSA can improve endothelial function through various pathways. AREAS COVERED The PubMed database was reviewed for relevant papers published up to 2020. This review summarizes the current clinical and pharmaceutical studies to provide a systemic overview of the pharmacological and therapeutic effects of TSA on endothelial cells. EXPERT OPINION TSA is a representative monomeric compound extracted from Danshen and it exhibits significant pharmacological and therapeutic properties to improve endothelial cell function, including alleviating oxidative stress, attenuating inflammatory injury, modulating ion channels and so on. TSA represents a spectrum of agents that are extracted from plants and can restore the endothelial function to establish the beneficial and harmless molecular therapeutics. This also suggests the possible detection of endothelial cells for very early diagnosis of diseases. In future, precise therapeutic methods will be developed to repair endothelial cells injury and recover endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yao
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhang WL, Cao YA, Xia J, Tian L, Yang L, Peng CS. Neuroprotective effect of tanshinone IIA weakens spastic cerebral palsy through inflammation, p38MAPK and VEGF in neonatal rats. Mol Med Rep 2017; 17:2012-2018. [PMID: 29257210 DOI: 10.3892/mmr.2017.8069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
As one of main active ingredients of salvia miltiorrhizae, which is a traditional Chinese medicine, tanshinone IIA is the basis of its pharmacological activities. In the present study, the effect of tanshinone IIA on weakening spastic cerebral palsy (SCP) in neonatal rats was investigated. Radial arm water maze and holding tests were used to measure the alterations of spastic cerebral palsy, inflammation was measured using an ELISA kit, and western blot analysis was used to analyze the protein expression of p‑p38 mitogen‑activated protein kinase (MAPK) and vascular endothelial growth factor (VEGF). The central mechanisms involved in the mediation or modulation of inflammation, p‑p38 MAPK and VEGF were also investigated. Treatment with tanshinone IIA effectively inhibited spastic cerebral palsy, and the activities of interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α, monocyte chemoattractant protein 1, cyclooxygenase‑2 and prostaglandin E2 in a neonatal rat model of SCP. Tanshinone IIA effectively suppressed the protein expression of inducible nitric oxide synthase (NOS), phosphorylated (p‑) nuclear factor (NF)‑κB, p‑p38MAPK and VEGF, and activated the phosphorylation of inhibitor of NF‑κB and the protein expression of neuronal NOS in the SCP rat model. These results suggested that the neuroprotective effect of tanshinone IIA weakened SCP through inflammation, p38MAPK and VEGF in the neonatal rats.
Collapse
Affiliation(s)
- Wen-Luo Zhang
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Yue-An Cao
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Jing Xia
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Li Tian
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Lu Yang
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Chao-Sheng Peng
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
6
|
Hua Y, Ding S, Cheng H, Luo H, Zhu X. Tanshinone IIA increases aquaporins expression in human amniotic epithelial WISH cells by stimulating GSK-3β phosphorylation. Clin Chim Acta 2017; 473:204-212. [DOI: 10.1016/j.cca.2016.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
7
|
Xie J, Liu JH, Liu H, Liao XZ, Chen Y, Lin MG, Gu YY, Liu TL, Wang DM, Ge H, Mo SL. Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way. BMC Cancer 2016; 16:899. [PMID: 27863471 PMCID: PMC5116215 DOI: 10.1186/s12885-016-2921-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
Background The study was designed to develop a platform to verify whether the extract of herbs combined with chemotherapy drugs play a synergistic role in anti-tumor effects, and to provide experimental evidence and theoretical reference for finding new effective sensitizers. Methods Inhibition of tanshinone IIA and adriamycin on the proliferation of A549, PC9 and HLF cells were assessed by CCK8 assays. The combination index (CI) was calculated with the Chou-Talalay method, based on the median-effect principle. Migration and invasion ability of A549 cells were determined by wound healing assay and transwell assay. Flow cytometry was used to detect the cell apoptosis and the distribution of cell cycles. TUNEL staining was used to detect the apoptotic cells. Immunofluorescence staining was used to detect the expression of Cleaved Caspase-3. Western blotting was used to detect the proteins expression of relative apoptotic signal pathways. CDOCKER module in DS 2.5 was used to detect the binding modes of the drugs and the proteins. Results Both tanshinone IIA and adriamycin could inhibit the growth of A549, PC9, and HLF cells in a dose- and time-dependent manner, while the proliferative inhibition effect of tanshinone IIA on cells was much weaker than that of adriamycin. Different from the cancer cells, HLF cells displayed a stronger sensitivity to adriamycin, and a weaker sensitivity to tanshinone IIA. When tanshinone IIA combined with adriamycin at a ratio of 20:1, they exhibited a synergistic anti-proliferation effect on A549 and PC9 cells, but not in HLF cells. Tanshinone IIA combined with adriamycin could synergistically inhibit migration, induce apoptosis and arrest cell cycle at the S and G2 phases in A549 cells. Both groups of the single drug treatment and the drug combination up-regulated the expressions of Cleaved Caspase-3 and Bax, but down-regulated the expressions of VEGF, VEGFR2, p-PI3K, p-Akt, Bcl-2, and Caspase-3 protein. Compared with the single drug treatment groups, the drug combination groups were more statistically significant. The molecular docking algorithms indicated that tanshinone IIA could be docked into the active sites of all the tested proteins with H-bond and aromatic interactions, compared with that of adriamycin. Conclusions Tanshinone IIA can be developed as a novel agent in the postoperative adjuvant therapy combined with other anti-tumor agents, and improve the sensibility of chemotherapeutics for non-small cell lung cancer with fewer side effects. In addition, this experiment can not only provide a reference for the development of more effective anti-tumor medicine ingredients, but also build a platform for evaluating the anti-tumor effects of Chinese herbal medicines in combination with chemotherapy drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2921-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Xie
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., People's Republic of China
| | - Jia-Hui Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Heng Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xiao-Zhong Liao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yuling Chen
- Kiang Wu Hospital, Macau S.A.R., People's Republic of China
| | - Mei-Gui Lin
- Liwan District Shiweitang Street Community Health Service Center, Guangzhou, 510360, People's Republic of China
| | - Yue-Yu Gu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Tao-Li Liu
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Dong-Mei Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Hui Ge
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Sui-Lin Mo
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
8
|
Retraction: Zihan Xu, et al. Tanshinone IIA Pretreatment Renders Free Flaps against Hypoxic Injury through Activating Wnt Signaling and Upregulating Stem Cell-Related Biomarkers. Int. J. Mol. Sci. 2014, 15, 18117-18130. Int J Mol Sci 2016; 17:ijms17050768. [PMID: 27213350 PMCID: PMC4881587 DOI: 10.3390/ijms17050768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 11/16/2022] Open
Abstract
We have been made aware that text, figures and experimental data reported in the title paper [1] are duplicated in another publication by Zihan Xu et al. [2].[...].
Collapse
|