1
|
Bang SG, Joeng WT, Hyun TK. Gibberellic acid 3 enhanced the anticancer activity of Abeliophyllum distichum adventitious roots by activating the diterpenoid biosynthesis pathway. Nat Prod Res 2024; 38:3902-3908. [PMID: 37820039 DOI: 10.1080/14786419.2023.2266169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The industrial value of various plants has been improved through the of plant cell culture systems with elicitation. In this study, the adventitious root of Abeliophyllum distichum (AdAR) was treated with gibberellic acid 3 (GA3) to improve its anticancer property. The hexane fraction of the GA3-treated A. distichum adventitious root exhibited a stronger cytotoxic activity against A549 cells than the hexane fraction of AdAR. Through GC/MS and principal component analysis, we identified ferruginol and sugiol as anticancer compounds, which were induced by GA3 treatment in AdAR. Gene expression analysis combined with functional characterisation suggests that the GA3 treatment increased the transcription of geranylgeranyl pyrophosphate synthases and copalyl diphosphate synthase, which led to the accumulation of diterpenoids, including ferruginol and sugiol. Overall, these findings can contribute to the advancement of metabolic engineering for enhancing the biosynthesis of active diterpenoids, and facilitate the large-scale production of bioactive compounds sourced from A. distichum.
Collapse
Affiliation(s)
- Seoung Gun Bang
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Won Tae Joeng
- Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Wanju, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Kim JH, Yoon YH, Dhungana SK, Kim ID, Shin DH. Soaking Soybean Seeds with <i>Abeliophyllum distichum</i> Nakai Extract Increased the Yield and Nutritional Value of Soybean Sprouts. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/147520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Cheng Z, Jiang S, Tao R, Ge H, Qin J. Activating transcription factor 3-activated long noncoding RNA forkhead box P4-antisense RNA 1 aggravates colorectal cancer progression by regulating microRNA-423-5p/nucleus accumbens associated 1 axis. Bioengineered 2022; 13:2114-2129. [PMID: 35034547 PMCID: PMC8973600 DOI: 10.1080/21655979.2021.2023798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have vital roles in the progression of colorectal cancer (CRC). Forkhead box P4-antisense RNA 1 (FOXP4-AS1) showed a potential unfavorable prognostic factor for CRC, while its underlying mechanism remains elusive. Thus, the goal of this research is to determine mechanism of FOXP4-AS1 in CRC occurrence and development. Herein, a Dual-luciferase reporter assay was performed to assess the regulation of miR-423-5p to nucleus accumbens-associated protein 1 (NACC1) and activating transcription factor 3 (ATF3) to FOXP4-AS1 promoter. Hematoxylin-eosin (H&E) staining was performed to detect the pathological changes of tumor tissues. Flow cytometry, cell counting kit 8, Transwell, and wound healing assays were conducted to assess apoptosis, proliferation, migration, and invasion of CRC cells, respectively. The results showed that FOXP4-AS1 was highly expressed in CRC cell lines and tissues. CRC progression was promoted by the overexpression of FOXP4-AS1 in HTC116 cells and animal models. Furthermore, FOXP4-AS1 served as a molecular sponge for miR-423-5p, and NACC1 is a direct target of miR-423-5p. MiR-423-5p silencing or overexpression of NACC1 increased proliferation, migration, and invasion of HCT116 cells while suppressing apoptosis. We also found that the upregulation of FOXP4-AS1 was activated by ATF3 in CRC cells. Collectively, our results demonstrated that ATF3-activated FOXP4-AS1 aggravates CRC progression by regulating miR-423-5p/NACC1 axis, indicating a new target for CRC treatment.
Collapse
Affiliation(s)
- Zhouyang Cheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Song Jiang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Ran Tao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Haipeng Ge
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Jun Qin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| |
Collapse
|
4
|
Choi YJ, Fan M, Tang Y, Moon S, Lee SH, Lee B, Bae SM, Lee SM, Kim EK. Ameliorative effect of Abeliophyllum distichum Nakai on benign prostatic hyperplasia in vitro and in vivo. Nutr Res Pract 2022; 16:419-434. [PMID: 35919286 PMCID: PMC9314191 DOI: 10.4162/nrp.2022.16.4.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/17/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/OBJECTIVES Benign prostatic hyperplasia (BPH) is the most common prostate disease and one of the most common chronic diseases caused by aging in men. On the other hand, there has been no research on BPH using Abeliophyllum distichum Nakai (A. distichum). Therefore, this study investigated the effects of A. distichum on BPH. MATERIALS/METHODS A. distichum leaves were extracted with distilled water, 70% ethanol, and 95% hexane as solvents. Subsequently, the inhibitory effects of each A. distichum extract on androgen receptor (AR) signaling were evaluated in vitro. The testosterone-induced BPH model was then used to confirm the efficacy of A. distichum leaves in 70% ethanol extract (ADLE). RESULTS ADLE had the strongest inhibitory effect on AR signaling. A comparison of the activity of ADLE by harvest time showed that the leaves of A. distichum harvested in autumn had a superior inhibitory effect on AR signaling to those harvested at other times. In the BPH rat model, the administration of ADLE reduced the prostate size and prostate epithelial cell thickness significantly and inhibited AR signaling. Subsequently, the administration of ADLE also reduced the expression of growth factors, thereby inactivating the PI3K/AKT pathway. CONCLUSIONS An analysis of the efficacy of ADLE to relieve BPH showed that the ethanol extract grown in autumn exhibited the highest inhibitory ability of the androgen-signaling related factors in vitro. ADLE also inhibited the expression of growth factors by inhibiting the expression of the androgen-signaling related factors in vivo. Overall, ADLE is proposed as a functional food that is effective in preventing BPH.
Collapse
Affiliation(s)
- Young-Jin Choi
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
- Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
| | - Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea
| | - Yujiao Tang
- School of Bio-Science and Food Engineering, Changchun University of Science and Technology, Changchun 130600, China
| | - Sangho Moon
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea
| | - Seung-Hyun Lee
- Department of Microbiology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Bokyung Lee
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
- Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
| | - Sung Mun Bae
- Gyeongnam Agricultural Research and Extension Services, Jinju 52733, Korea
| | - Sang Moo Lee
- Department of Animal Science, Kyungpook National University, Sangju 37224, Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
- Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
| |
Collapse
|
5
|
Thomas SS, Eom J, Sung NY, Kim DS, Cha YS, Kim KA. Inhibitory effect of ethanolic extract of Abeliophyllum distichum leaf on 3T3-L1 adipocyte differentiation. Nutr Res Pract 2021; 15:555-567. [PMID: 34603604 PMCID: PMC8446690 DOI: 10.4162/nrp.2021.15.5.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/OBJECTIVES Abeliophyllum distichum is a plant endemic to Korea, containing several beneficial natural compounds. This study investigated the effect of A. distichum leaf extract (ALE) on adipocyte differentiation. MATERIALS/METHODS The cytotoxic effect of ALE was analyzed using cell viability assay. 3T3-L1 preadipocytes were differentiated using induction media in the presence or absence of ALE. Lipid accumulation was confirmed using Oil Red O staining. The mRNA expression of adipogenic markers was measured using RT-PCR, and the protein expressions of mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor gamma (PPARγ) were measured using western blot. Cell proliferation was measured by calculating the incorporation of Bromodeoxyuridine (BrdU) into DNA. RESULTS ALE reduced lipid accumulation in differentiated adipocytes, as indicated by Oil Red O staining and triglyceride assays. Treatment with ALE decreased the gene expression of adipogenic markers such as Pparγ, CCAAT/enhancer binding protein alpha (C/ebpα), lipoprotein lipase, adipocyte protein-2, acetyl-CoA carboxylase, and fatty acid synthase. Also, the protein expression of PPARγ was reduced by ALE. Treating the cells with ALE at different time points revealed that the inhibitory effect of ALE on adipogenesis is higher in the early period treatment than in the terminal period. Furthermore, ALE inhibited adipocyte differentiation by reducing the early phase of adipogenesis and mitotic clonal expansion. This was indicated by the lower number of cells in the Synthesis phase of the cell cycle (labeled using BrdU assay) and a decrease in the expression of early adipogenic transcription factors such as C/ebpβ and C/ebpδ. ALE suppressed the phosphorylation of MAPK, confirming that the effect of ALE was through the suppression of early phase of adipogenesis. CONCLUSIONS Altogether, the results of the present study revealed that ALE inhibits lipid accumulation and may be a potential agent for managing obesity.
Collapse
Affiliation(s)
- Shalom Sara Thomas
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
| | - Ji Eom
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 58144, Korea
| | - Nak-Yun Sung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 58144, Korea
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 58144, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea.,Obesity Research Center, Jeonbuk National University, Jeonju 54896, Korea
| | - Kyung-Ah Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Xu L, Zu T, Li T, Li M, Mi J, Bai F, Liu G, Wen J, Li H, Brakebusch C, Wang X, Wu X. ATF3 downmodulates its new targets IFI6 and IFI27 to suppress the growth and migration of tongue squamous cell carcinoma cells. PLoS Genet 2021; 17:e1009283. [PMID: 33539340 PMCID: PMC7888615 DOI: 10.1371/journal.pgen.1009283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 02/17/2021] [Accepted: 11/18/2020] [Indexed: 01/16/2023] Open
Abstract
Activating transcription factor 3 (ATF3) is a key transcription factor involved in regulating cellular stress responses, with different expression levels and functions in different tissues. ATF3 has also been shown to play crucial roles in regulating tumor development and progression, however its potential role in oral squamous cell carcinomas has not been fully explored. In this study, we examined biopsies of tongue squamous cell carcinomas (TSCCs) and found that the nuclear expression level of ATF3 correlated negatively with the differentiation status of TSCCs, which was validated by analysis of the ATGC database. By using gain- or loss- of function analyses of ATF3 in four different TSCC cell lines, we demonstrated that ATF3 negatively regulates the growth and migration of human TSCC cells in vitro. RNA-seq analysis identified two new downstream targets of ATF3, interferon alpha inducible proteins 6 (IFI6) and 27 (IFI27), which were upregulated in ATF3-deleted cells and were downregulated in ATF3-overexpressing cells. Chromatin immunoprecipitation assays showed that ATF3 binds the promoter regions of the IFI6 and IFI27 genes. Both IFI6 and IFI27 were highly expressed in TSCC biopsies and knockdown of either IFI6 or IFI27 in TSCC cells blocked the cell growth and migration induced by the deletion of ATF3. Conversely, overexpression of either IFI6 or IFI27 counteracted the inhibition of TSCC cell growth and migration induced by the overexpression of ATF3. Finally, an in vivo study in mice confirmed those in vitro findings. Our study suggests that ATF3 plays an anti-tumor function in TSCCs through the negative regulation of its downstream targets, IFI6 and IFI27. Activating transcription factor 3 (ATF3), a stress response gene, has been shown to play either tumor promoting or tumor suppressing functions depending on the type of tumor cell and the stromal context. Here we discovered that ATF3 plays an anti-tumor role in tongue squamous cell carcinoma (TSCC) cells through the transcriptional suppression of its new downstream targets interferon alpha inducible proteins 6 (IFI6) and 27 (IFI27). This finding contributes to understanding how ATF3, a transcriptional repressor, can target specific downstream genes in different tumor cells to play anti-tumor or pro-tumor functions. A thorough understanding of ATF3 functions and its downstream signaling pathways provides a potential approach to develop new therapeutics for the treatment of tumors such as TSCCs.
Collapse
Affiliation(s)
- Lin Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- Department of Orthodontics, Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Precision Biomedical Key Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Tao Li
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
| | - Min Li
- Precision Biomedical Key Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Guanyi Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- * E-mail: (XW); (XW)
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- * E-mail: (XW); (XW)
| |
Collapse
|
7
|
Antioxidant Activity and Acteoside Analysis of Abeliophyllum distichum. Antioxidants (Basel) 2020; 9:antiox9111148. [PMID: 33228093 PMCID: PMC7699419 DOI: 10.3390/antiox9111148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
This study determined acteoside and its content in Abeliophyllum distichum via HPLC/UV and LC/ESI-MS to obtain insights into the potential use of this plant as an antioxidant agent. Moreover, 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (•OH), and O2- radical scavenging activity assays were performed to assess in vitro antioxidative activity. The DPPH, •OH, and O2- radical scavenging activities of A. distichum leaf EtOH extracts at a 250 μg/mL concentration were 88.32%, 94.48%, and 14.36%, respectively, whereas those of stem extracts at the same concentration were 88.15%, 88.99%, and 15.36%, respectively. The contents of acteoside in A. distichum leaves and stems were 162.11 and 29.68 mg/g, respectively. Acteoside was identified as the main antioxidant compound in A. distichum leaves, which resulted in DPPH, •OH, and O2- radical scavenging activities of 82.84%, 89.46%, and 30.31%, respectively, at a 25 μg/mL concentration. These results indicate that A. distichum leaves and stems containing the antioxidant acteoside can be used as natural ingredients for functional and nutritional supplements.
Collapse
|
8
|
Eom J, Thomas SS, Sung NY, Kim DS, Cha YS, Kim KA. Abeliophyllum distichum Ameliorates High-Fat Diet-Induced Obesity in C57BL/6J Mice by Upregulating the AMPK Pathway. Nutrients 2020; 12:nu12113320. [PMID: 33138026 PMCID: PMC7692136 DOI: 10.3390/nu12113320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
The use of natural compounds as anti-obesity agents has been gaining attention over the past few years. Abeliophyllum distichum Nakai is endemic to Korea. In the present study, an A. distichum leaf extract (AE) was analyzed for its anti-obesity effects in mice fed a high-fat diet. Seven-week-old male C57BL/6J mice were divided into five groups, namely, normal diet (ND), high-fat diet (HD), HD + Garcinia (GE300), HD + AE low dose (AE100), and HD + AE high dose (AE300). After 8 weeks of the experimental period, treatment with AE reduced body weight and ameliorated high-fat diet-induced changes in serum lipid levels. Histological analysis revealed that treatment with AE decreased lipid accumulation in the liver and brown adipose tissue. Also, AE reduced the adipocyte size in epididymal fat. The reduction in adipose tissue mass in the AE-treated groups was clearly visible in micro-computed tomography images. The expression levels of lipogenic genes, such as PPARγ, C/EBPα, ACC, and FAS, were significantly reduced in the AE300 group. The levels of p-AMPK and p-ACC were increased in the AE300 group compared to the HD group, indicating that the anti-obesity effect of AE was mediated through the AMPK pathway.
Collapse
Affiliation(s)
- Ji Eom
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 61473, Korea; (J.E.); (N.-Y.S.); (D.-S.K.)
| | - Shalom Sara Thomas
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea; (S.S.T.); (Y.-S.C.)
| | - Nak-Yun Sung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 61473, Korea; (J.E.); (N.-Y.S.); (D.-S.K.)
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 61473, Korea; (J.E.); (N.-Y.S.); (D.-S.K.)
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea; (S.S.T.); (Y.-S.C.)
- Obesity Research Center, Jeonbuk National University, Jeonju 54896, Korea
| | - Kyung-Ah Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-6832
| |
Collapse
|
9
|
Verbascoside-Rich Abeliophyllum distichum Nakai Leaf Extracts Prevent LPS-Induced Preterm Birth Through Inhibiting the Expression of Proinflammatory Cytokines from Macrophages and the Cell Death of Trophoblasts Induced by TNF-α. Molecules 2020; 25:molecules25194579. [PMID: 33036475 PMCID: PMC7583932 DOI: 10.3390/molecules25194579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Preterm birth is a known leading cause of neonatal mortality and morbidity. The underlying causes of pregnancy-associated complications are numerous, but infection and inflammation are the essential high-risk factors. However, there are no safe and effective preventive drugs that can be applied to pregnant women. Objective: The objectives of the study were to investigate a natural product, Abeliophyllum distichum leaf (ADL) extract, to examine the possibility of preventing preterm birth caused by inflammation. Methods: We used a mouse preterm birth model by intraperitoneally injecting lipopolysaccharides (LPS). ELISA, Western blot, real-time PCR and immunofluorescence staining analyses were performed to confirm the anti-inflammatory efficacy and related mechanisms of the ADL extracts. Cytotoxicity and cell death were measured using Cell Counting Kit-8 (CCK-8) analysis and flow cytometer. Results: A daily administration of ADL extract significantly reduced preterm birth, fetal loss, and fetal growth restriction after an intraperitoneal injection of LPS in mice. The ADL extract prevented the LPS-induced expression of TNF-α in maternal serum and amniotic fluid and attenuated the LPS-induced upregulation of placental proinflammatory genes, including IL-1β, IL-6, IL-12p40, and TNF-α and the chemokine gene CXCL-1, CCL-2, CCL3, and CCL-4. LPS-treated THP-1 cell-conditioned medium accelerated trophoblast cell death, and TNF-α played an essential role in this effect. The ADL extract reduced LPS-treated THP-1 cell-conditioned medium-induced trophoblast cell death by inhibiting MAPKs and the NF-κB pathway in macrophages. ADL extract prevented exogenous TNF-α-induced increased trophoblast cell death and decreased cell viability. Conclusions: We have demonstrated that the inhibition of LPS-induced inflammation by ADL extract can prevent preterm birth, fetal loss, and fetal growth restriction.
Collapse
|
10
|
Transcriptome Analysis Reveals That Abeliophyllum distichum Nakai Extract Inhibits RANKL-Mediated Osteoclastogenensis Mainly Through Suppressing Nfatc1 Expression. BIOLOGY 2020; 9:biology9080212. [PMID: 32781784 PMCID: PMC7491199 DOI: 10.3390/biology9080212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Abeliophyllum distichum Nakai is known as a monotypic genus endemic to South Korea. Currently, several pharmacological studies have revealed that A. distichum extract exhibits diverse biological functions, including anti-cancer, anti-diabetic, anti-hypertensive, and anti-inflammatory activities. In this study, we present the anti-osteoporotic activity of A. distichum extract by inhibiting osteoclast formation. First, we show that the methanolic extract of the leaves of A. distichum, but not extracts of the branches or fruits, significantly inhibits receptor activator of the NF-κB ligand (RANKL)-induced osteoclast differentiation. Second, our transcriptome analysis revealed that the leaf extract (LE) blocks sets of RANKL-mediated osteoclast-related genes. Third, the LE attenuates the phosphorylation of extracellular signal-related kinase. Finally, treatment with the LE effectively prevents postmenopausal bone loss in ovariectomized mice and glucocorticoid-induced osteoporosis in zebrafish. Our findings show that the extract of A. distichum efficiently suppressed osteoclastogenesis by regulating osteoclast-related genes, thus offering a novel therapeutic strategy for osteoporosis.
Collapse
|
11
|
Polyphenolic Composition and Anti-Melanoma Activity of White Forsythia ( Abeliophyllum distichum Nakai) Organ Extracts. PLANTS 2020; 9:plants9060757. [PMID: 32560393 PMCID: PMC7356668 DOI: 10.3390/plants9060757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Abeliophyllum distichum Nakai, commonly called white forsythia, is a monotypic genus endemic to Korea. Although A. distichum is mainly used as an ornamental plant because of its horticultural value, recent studies have demonstrated its bioactivities, including antioxidant and anti-inflammatory activities, prompting us to investigate the potential anticancer effect of A. distichum organ extracts (leaves, fruit, and branches) against human melanoma SK-MEL-2 cells. The methanol extract of A. distichum leaves (AL) exhibited dose- and time-dependent cytotoxicities against SK-MEL-2 cells but not against HDFa human dermal fibroblasts. Based on high-performance liquid chromatography analysis, we identified 18 polyphenolic compounds from A. distichum organ extracts and suggest that differences in anticancer activity between organ extracts should be caused by different compositions of polyphenolic compounds. Additionally, the Annexin V/propidium iodide staining assay and analysis of caspase activity and expression indicated that AL induced cell death, including early and late apoptosis, as well as necrosis, by inducing the extrinsic pathway. Furthermore, we analyzed the differentially expressed genes between mock- and AL-treated cells using RNA-seq technology, suggesting that the anti-melanoma action of AL is mediated by down-regulation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Taken together, these results shed light on the potential use of A. distichum as a green resource with potent anti-melanoma activity.
Collapse
|
12
|
Zu T, Wen J, Xu L, Li H, Mi J, Li H, Brakebusch C, Fisher DE, Wu X. Up-Regulation of Activating Transcription Factor 3 in Human Fibroblasts Inhibits Melanoma Cell Growth and Migration Through a Paracrine Pathway. Front Oncol 2020; 10:624. [PMID: 32373541 PMCID: PMC7187895 DOI: 10.3389/fonc.2020.00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
The treatment of melanoma has remained a difficult challenge. Targeting the tumor stroma has recently attracted attention for developing novel strategies for melanoma therapy. Activating transcription factor 3 (ATF3) plays a crucial role in regulating tumorigenesis and development, but whether the expression of ATF3 in human dermal fibroblasts (HDFs) can affect melanoma development hasn't been studied. Our results show that ATF3 expression is downregulated in stromal cells of human melanoma. HDFs expressing high levels of ATF3 suppressed the growth and migration of melanoma cells in association with downregulation of different cytokines including IL-6 in vitro. In vivo, HDFs with high ATF3 expression reduced tumor formation. Adding recombinant IL-6 to melanoma cells reversed those in vitro and in vivo effects, suggesting that ATF3 expression by HDFs regulates melanoma progression through the IL-6/STAT3 pathway. More importantly, HDFs pretreated with cyclosporine A or phenformin to induce ATF3 expression inhibited melanoma cell growth in vitro and in vivo. In summary, our study reveals that ATF3 suppresses human melanoma growth and that inducing the expression of ATF3 in HDFs can inhibit melanoma growth, a new potential melanoma therapeutic approach.
Collapse
Affiliation(s)
- Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lin Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Orthodontics, Liaocheng People's Hospital, Liaocheng, China
| | - Hui Li
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Zhao W, Sun M, Li S, Chen Z, Geng D. Transcription factor ATF3 mediates the radioresistance of breast cancer. J Cell Mol Med 2018; 22:4664-4675. [PMID: 30117642 PMCID: PMC6156394 DOI: 10.1111/jcmm.13688] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
This study was designed to research the influence of activating transcription factor 3 (ATF3) on the radioresistance of breast cancer. ATF3 expression was measured by qRT‐PCR and immunohistochemistry. Cancerous cell lines were cultured in vitro, and the expression of ATF3 was gauged by both qRT‐PCR and Western blot before and after the radiation therapy. Cellular cycle and apoptosis were analysed by flow cytometry. Changes in the expression of corresponding proteins in the downstream pathways were identified by Western blot. Tumour xenograft was used to evaluate the effect of ATF3 in vivo. ATF3 was observed stronger in breast cancer tissues and cells. After radiation therapy, the expression of ATF3 in breast cancer cells was up‐regulated. Silencing ATF3 could promote G2/M phase block, facilitate cell apoptosis and decrease clonogenic survival rate. The overexpression of ATF3 could curb G2/M‐phase block, cell apoptosis and increase clonogenic survival rate. Overexpression ATF3 could increase radioresistance by up‐regulating the level of phosphorylation of Akt in the PI3K/Akt signalling pathway. Radioresistance of breast cancer cells could be alleviated by inhibiting the PI3K/Akt signalling pathway. ATF3 could also promote radioresistance in vivo. ATF3 gene was able to promote radioresistance of breast cancer cells.
Collapse
Affiliation(s)
- Wenyan Zhao
- Department of General Surgery, Shengjing Hospital Affiliated China Medical University, Shenyang, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital Affiliated China Medical University, Shenyang, China
| | - Shuqiang Li
- Department of General Surgery, Shengjing Hospital Affiliated China Medical University, Shenyang, China
| | - Zhaofu Chen
- Department of Urology, Shengjing Hospital Affiliated China Medical University, Shenyang, China
| | - Donghua Geng
- Department of General Surgery, Shengjing Hospital Affiliated China Medical University, Shenyang, China
| |
Collapse
|