1
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
2
|
Milligan K, Deng X, Ali-Adeeb R, Shreeves P, Punch S, Costie N, Crook JM, Brolo AG, Lum JJ, Andrews JL, Jirasek A. Prediction of disease progression indicators in prostate cancer patients receiving HDR-brachytherapy using Raman spectroscopy and semi-supervised learning: a pilot study. Sci Rep 2022; 12:15104. [PMID: 36068275 PMCID: PMC9448740 DOI: 10.1038/s41598-022-19446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022] Open
Abstract
This work combines Raman spectroscopy (RS) with supervised learning methods-group and basis restricted non-negative matrix factorisation (GBR-NMF) and linear discriminant analysis (LDA)-to aid in the prediction of clinical indicators of disease progression in a cohort of 9 patients receiving high dose rate brachytherapy (HDR-BT) as the primary treatment for intermediate risk (D'Amico) prostate adenocarcinoma. The combination of Raman spectroscopy and GBR-NMF-sparseLDA modelling allowed for the prediction of the following clinical information; Gleason score, cancer of the prostate risk assessment (CAPRA) score of pre-treatment biopsies and a Ki67 score of < 3.5% or > 3.5% in post treatment biopsies. The three clinical indicators of disease progression investigated in this study were predicted using a single set of Raman spectral data acquired from each individual biopsy, obtained pre HDR-BT treatment. This work highlights the potential of RS, combined with supervised learning, as a tool for the prediction of multiple types of clinically relevant information to be acquired simultaneously using pre-treatment biopsies, therefore opening up the potential for avoiding the need for multiple immunohistochemistry (IHC) staining procedures (H&E, Ki67) and blood sample analysis (PSA) to aid in CAPRA scoring.
Collapse
Affiliation(s)
- Kirsty Milligan
- Department of Physics, University of British Columbia, Kelowna, BC, Canada
| | - Xinchen Deng
- Department of Physics, University of British Columbia, Kelowna, BC, Canada
| | - Ramie Ali-Adeeb
- Department of Physics, University of British Columbia, Kelowna, BC, Canada
| | - Phillip Shreeves
- Department of Statistics, University of British Columbia, Kelowna, Canada
| | - Samantha Punch
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Nathalie Costie
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Juanita M Crook
- Department of Radiation Oncology, University of British Columbia, Kelowna, BC, Canada
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Jeffrey L Andrews
- Department of Statistics, University of British Columbia, Kelowna, Canada
| | - Andrew Jirasek
- Department of Physics, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
3
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
4
|
Falchook G, Infante J, Arkenau HT, Patel MR, Dean E, Borazanci E, Brenner A, Cook N, Lopez J, Pant S, Frankel A, Schmid P, Moore K, McCulloch W, Grimmer K, O'Farrell M, Kemble G, Burris H. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine 2021; 34:100797. [PMID: 33870151 PMCID: PMC8040281 DOI: 10.1016/j.eclinm.2021.100797] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We conducted a first-in-human dose-escalation study with the oral FASN inhibitor TVB-2640 to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D), as monotherapy and with a taxane. METHODS This completed open-label outpatient study was conducted at 11 sites in the United States and United Kingdom. Patients with previously-treated advanced metastatic solid tumors and adequate performance status and organ function were eligible. TVB-2640 was administered orally daily until PD. Dose escalation initially followed an accelerated titration design that switched to a standard 3 + 3 design after Grade 2 toxicity occurred. Disease-specific cohorts were enrolled at the MTD. Statistical analyses were primarily descriptive. Safety analyses were performed on patients who received at least 1 dose of study drug. (Clinicaltrials.gov identifier NCT02223247). FINDINGS The study was conducted from 21 November 2013 to 07 February 2017. Overall, 136 patients received TVB-2640, 76 as monotherapy (weight-based doses of 60 mg/m2 to 240 mg/m2 and flat doses of 200 and 250 mg) and 60 in combination, (weight-based doses of 60 mg/m2 to 100 mg/m2 and flat dose of 200 mg) (55 paclitaxel, 5 docetaxel). DLTs with TVB-2640 were reversible skin and ocular effects. The MTD/RP2D was 100 mg/m2. The most common TEAEs (n,%) with TVB-2640 monotherapy were alopecia (46; 61%), PPE syndrome (35; 46%), fatigue (28; 37%), decreased appetite (20; 26%), and dry skin (17; 22%), and with TVB-2640+paclitaxel were fatigue (29 ; 53%), alopecia (25; 46%), PPE syndrome (25; 46%), nausea (22; 40%), and peripheral neuropathy (20; 36%). One fatal case of drug-related pneumonitis occurred with TVB-2640+paclitaxel; no other treatment-related deaths occurred. Target engagement (FASN inhibition) and inhibition of lipogenesis were demonstrated with TVB-2640. The disease control rate (DCR) with TVB-2640 monotherapy was 42%; no patient treated with monotherapy had a complete or partial response (CR or PR). In combination with paclitaxel, the PR rate was 11% and the DCR was 70%. Responses were seen across multiple tumor types, including in patients with KRASMUT NSCLC, ovarian, and breast cancer. INTERPRETATION TVB-2640 demonstrated potent FASN inhibition and a predictable and manageable safety profile, primarily characterized by non-serious, reversible adverse events affecting skin and eyes. Further investigation of TVB-2640 in patients with solid tumors, particularly in KRASMUT lung, ovarian, and breast cancer, is warranted. FUNDING This trial was funded by 3-V Biosciences, Inc. (now known as Sagimet Biosciences Inc.).
Collapse
Affiliation(s)
- Gerald Falchook
- Sarah Cannon Research Institute at HealthONE, 1800 Williams St Ste 300, Denver, CO, 80218, United States
| | - Jeffrey Infante
- Tennessee Oncology, 250 25th Ave N #100, Nashville, TN 37203, United States
| | - Hendrik-Tobias Arkenau
- Sarah Cannon Research Institute UK, 93 Harley St., Marylebone, London W1G 6AD, United Kingdom
| | - Manish R. Patel
- Florida Cancer Specialists and Research Institute, 600 N Cattleman Rd, Ste 200, Sarasota, FL 34232, United States
- Sarah Cannon Research Institute, 1100 Martin L. King Jr. Boulevard, Nashville, TN 37203 United States
| | - Emma Dean
- Christie Hospital – Clinical Oncology, The Christie NHS Foundation Trust, Clinical Oncology Department, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Erkut Borazanci
- Scottsdale Healthcare Research Institute, 10510 North 92nd Street, Suite 200, Scottsdale, AZ 85258, United States
| | - Andrew Brenner
- CTRC at The University of Texas Health Center, 7979 Wurzbach Rd., San Antonio, TX 78229, United States
| | - Natalie Cook
- Christie Hospital – Clinical Oncology, The Christie NHS Foundation Trust, Clinical, Oncology Department, Wilmslow Road, Manchester, M20 4BX, United Kingdom
- Division of Cancer Sciences, University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdom
| | - Juanita Lopez
- Royal Marsden Hospital, Downs Road, Sutton, SM25PT, United Kingdom
| | - Shubham Pant
- University of Oklahoma Health Sciences, 800 NE 10 Street, 5th Floor, Oklahoma City, OK 73104, United States
| | - Arthur Frankel
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Peter Schmid
- St Bartholomew's Hospital, West Smithfield, London, EC1A7BE, United Kingdom
| | - Kathleen Moore
- University of Oklahoma Health Sciences, 800 NE 10 Street, 5th Floor, Oklahoma City, OK 73104, United States
| | - William McCulloch
- Sagimet Biosciences Inc., 155 Bovet Rd., San Mateo, CA 94402, United States
- Corresponding author at: Sagimet Biosciences Inc., 155 Bovet Rd., San Mateo, CA 94402, USA.
| | - Katharine Grimmer
- Sagimet Biosciences Inc., 155 Bovet Rd., San Mateo, CA 94402, United States
| | - Marie O'Farrell
- Sagimet Biosciences Inc., 155 Bovet Rd., San Mateo, CA 94402, United States
| | - George Kemble
- Sagimet Biosciences Inc., 155 Bovet Rd., San Mateo, CA 94402, United States
| | - Howard Burris
- Sarah Cannon Research Institute, 1100 Martin L. King Jr. Boulevard, Nashville, TN 37203 United States
- Tennessee Oncology, 250 25th Ave N #100, Nashville, TN 37203, United States
| |
Collapse
|
5
|
Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev 2020; 41:1499-1538. [PMID: 33274768 DOI: 10.1002/med.21766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa), one of the most commonly diagnosed cancers worldwide, still presents important unmet clinical needs concerning treatment. In the last years, the metabolic reprogramming and the specificities of tumor cells emerged as an exciting field for cancer therapy. The unique features of PCa cells metabolism, and the activation of specific metabolic pathways, propelled the use of metabolic inhibitors for treatment. The present work revises the knowledge of PCa metabolism and the metabolic alterations that underlie the development and progression of the disease. A focus is given to the role of bioenergetic sources, namely, glucose, lipids, and glutamine sustaining PCa cell survival and growth. Moreover, it is described as the action of oncogenes/tumor suppressors and sex steroid hormones in the metabolic reprogramming of PCa. Finally, the status of PCa treatment based on the inhibition of metabolic pathways is presented. Globally, this review updates the landscape of PCa metabolism, highlighting the critical metabolic alterations that could have a clinical and therapeutic interest.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
6
|
Abdelrahman AE, Rashed HE, Elkady E, Elsebai EA, El-Azony A, Matar I. Fatty acid synthase, Her2/neu, and E2F1 as prognostic markers of progression in non-muscle invasive bladder cancer. Ann Diagn Pathol 2019; 39:42-52. [PMID: 30684846 DOI: 10.1016/j.anndiagpath.2019.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/25/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Abstract
Non-muscle-invasive bladder cancer (NMIBC) is a heterogeneous disease which has an unpredictable risk of progression to muscle-invasive bladder cancer (MIBC). The selection of patients who may benefit from early radical intervention is a challenge. To define the useful prognostic markers for progression, we analyzed the immunohistochemical expression of fatty acid synthase (FASN), Her2/neu, and E2F1 in 60 cases of NMIBC who underwent TURBT and adjuvant intravesical bacillus-Calmette-Guérin (BCG). Their predicting role for tumor recurrence, progression, recurrence-free survival (RFS) and progression-free survival (PFS) was analyzed. High FASN expression was observed in 56.7% (34/60) of NMIBC cases, and FASN expression was significantly associated with the tumor size, grade, and tumor stage (p = 0.003, p < 0.001, p < 0.0001 respectively). Positive Her2/neu was noted in 18.3% (11/60) of the cases, and its expression was significantly associated with the tumor size, histologic grade, and tumor stage (p = 0.001, p = 0.002, p = 0.011 respectively). High E2F1 expression was detected in 40% of the cases, and it was associated with tumor size, histologic grade, and tumor stage (p < 0.001 for each). Analysis of follow-up period revealed that NMIBC with high FASN, positive Her2/neu, and high E2F1 expression exhibited a potent relation with tumor progression, shorter RFS, and poor PFS. Conclusions: High FASN, Her2/neu, and E2F1 are considered as adverse prognostic factors of tumor recurrence and progression in NMIBC and these patients should be followed carefully. Therefore, we suggest that FASN, Her2/neu, and E2F1 should be considered and evaluated during the selection of the appropriate management strategy for NMIBC patients.
Collapse
Affiliation(s)
| | - Hayam E Rashed
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Ehab Elkady
- Urology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Eman A Elsebai
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Ahmed El-Azony
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Ihab Matar
- Surgical Oncology Department, Al-Ahrar Zagazig Teaching Hospital, Egypt
| |
Collapse
|
7
|
Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, Dutta P, Pudakalakatti S, Titus M, McGuire SE, Bhattacharya PK, Frigo DE. Prostate Cancer Energetics and Biosynthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:185-237. [PMID: 31900911 PMCID: PMC8096614 DOI: 10.1007/978-3-030-32656-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.
Collapse
Affiliation(s)
- Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
8
|
Galbraith L, Leung HY, Ahmad I. Lipid pathway deregulation in advanced prostate cancer. Pharmacol Res 2018; 131:177-184. [PMID: 29466694 DOI: 10.1016/j.phrs.2018.02.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 01/03/2023]
Abstract
The link between prostate cancer (PC) development and lipid metabolism is well established, with AR intimately involved in a number of lipogenic processes involving SREBP1, PPARG, FASN, ACC, ACLY and SCD1. Recently, there is growing evidence implicating the role of obesity and peri-prostatic adipose tissue (PPAT) in PC aggressiveness and related mortality, suggesting the importance of lipid pathways in both localised and disseminated disease. A number of promising agents are in development to target the lipogenic axis in PC, and the likelihood is that these agents will form part of combination drug strategies, with targeting of multiple metabolic pathways (e.g. FASN and CPT1), or in combination with AR pathway inhibitors (SCD1 and AR).
Collapse
Affiliation(s)
- Laura Galbraith
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Hing Y Leung
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Imran Ahmad
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
9
|
Gang X, Yang Y, Zhong J, Jiang K, Pan Y, Karnes RJ, Zhang J, Xu W, Wang G, Huang H. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget 2017; 7:15135-49. [PMID: 26934656 PMCID: PMC4924775 DOI: 10.18632/oncotarget.7715] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/30/2016] [Indexed: 11/25/2022] Open
Abstract
De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yinhui Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jian Zhong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kui Jiang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Oncology, The Second affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Atef A, Oreiby R. Fatty acid synthase and hepsin expression in benign prostatic hyperplasia and prostatic carcinoma. ACTA ACUST UNITED AC 2016. [DOI: 10.1097/01.xej.0000484373.45163.e6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Hamada S, Horiguchi A, Kuroda K, Ito K, Asano T, Miyai K, Iwaya K. Erratum: Increased fatty acid synthase expression in prostate biopsy cores predicts higher Gleason score in radical prostatectomy specimen. BMC Clin Pathol 2015; 15:7. [PMID: 25972764 PMCID: PMC4430029 DOI: 10.1186/s12907-015-0007-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shinsuke Hamada
- Department of Urology, National Defense Medical College, Tokorozawa-City, Saitama Japan
| | - Akio Horiguchi
- Department of Urology, National Defense Medical College, Tokorozawa-City, Saitama Japan
| | - Kenji Kuroda
- Department of Urology, National Defense Medical College, Tokorozawa-City, Saitama Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Tokorozawa-City, Saitama Japan
| | - Tomohiko Asano
- Department of Urology, National Defense Medical College, Tokorozawa-City, Saitama Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, Tokorozawa-City, Saitama Japan
| | - Keiichi Iwaya
- Department of Basic Pathology, National Defense Medical College, Tokorozawa-City, Saitama Japan
| |
Collapse
|
12
|
Rodrigues Â, Freitas R, Nogueira-Silva P, Jerónimo C, Henrique R. Biopsy sampling and histopathological markers for diagnosis of prostate cancer. Expert Rev Anticancer Ther 2014; 14:1323-36. [PMID: 25278357 DOI: 10.1586/14737140.2014.965688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer is one of the most common malignant tumors and a leading cause of cancer-related morbidity and mortality. Irrespective of the method that allows for risk stratification of prostate cancer suspects, diagnosis relies on tissue sampling through prostate biopsy and subsequent histopathological evaluation. This provides critical information about disease aggressiveness, which is required for adequate patient management. Prostate biopsy methods have significantly evolved over the years, including the definition of indications, sampling schemes and use of imaging techniques (ultrasound and MRI) that allow for more accurate tissue sampling. In response to the challenges emerging from more precise collection of minute prostate tissue samples for analysis, histopathological assessment should include not only the observation of routinely stained sections, but also, and increasingly so, a series of ancillary techniques, especially immunohistochemistry, which increment the accuracy of prostate cancer diagnosis and may provide relevant information to guide patient management.
Collapse
Affiliation(s)
- Ângelo Rodrigues
- Department of Pathology, Portuguese Oncology Institute, Rua Dr. António Bernardino Almeida, 4200-072 - Porto, Portugal
| | | | | | | | | |
Collapse
|