1
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Ruiz-Sorribas A, Poilvache H, Kamarudin NHN, Braem A, Van Bambeke F. In vitro polymicrobial inter-kingdom three-species biofilm model: influence of hyphae on biofilm formation and bacterial physiology. BIOFOULING 2021; 37:481-493. [PMID: 34225500 DOI: 10.1080/08927014.2021.1919301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Biofilms are an important medical burden, notably for patients with orthopaedic device-related infections. When polymicrobial, these infections are more lethal and recalcitrant. Inter-kingdom biofilm infections are poorly understood and challenging to treat. Here, an in vitro three-species model including Staphylococcus aureus, Escherichia coli and Candida albicans was developed, to represent part of the diversity observed in orthopaedic infections or other clinical contexts. The importance of fungal hyphae for biofilm formation and virulence factor expression was explored. Two protocols were set up, allowing, or not, for hyphal formation. Culturable cells and biomass were characterised in both models, and biofilms were imaged in bright-field, confocal and electron microscopes. The expression of genes related to virulence, adhesion, exopolysaccharide synthesis and stress response was analysed in early-stage and mature biofilms. It was found that biofilms enriched in hyphae had larger biomass and showed higher expression levels of genes related to bacterial virulence or exopolysaccharides synthesis.
Collapse
Affiliation(s)
- Albert Ruiz-Sorribas
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hervé Poilvache
- Laboratoire de neuro musculo squelettique, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Orthopaedic Surgery Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nur Hidayatul Nazirah Kamarudin
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
3
|
Xiu W, Gan S, Wen Q, Qiu Q, Dai S, Dong H, Li Q, Yuwen L, Weng L, Teng Z, Mou Y, Wang L. Biofilm Microenvironment-Responsive Nanotheranostics for Dual-Mode Imaging and Hypoxia-Relief-Enhanced Photodynamic Therapy of Bacterial Infections. RESEARCH 2020; 2020:9426453. [PMID: 32377640 PMCID: PMC7128073 DOI: 10.34133/2020/9426453] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/05/2020] [Indexed: 01/06/2023]
Abstract
The formation of bacterial biofilms closely associates with infectious diseases. Until now, precise diagnosis and effective treatment of bacterial biofilm infections are still in great need. Herein, a novel multifunctional theranostic nanoplatform based on MnO2 nanosheets (MnO2 NSs) has been designed to achieve pH-responsive dual-mode imaging and hypoxia-relief-enhanced antimicrobial photodynamic therapy (aPDT) of bacterial biofilm infections. In this study, MnO2 NSs were modified with bovine serum albumin (BSA) and polyethylene glycol (PEG) and then loaded with chlorin e6 (Ce6) as photosensitizer to form MnO2-BSA/PEG-Ce6 nanosheets (MBP-Ce6 NSs). After being delivered into the bacterial biofilm-infected tissues, the MBP-Ce6 NSs could be decomposed in acidic biofilm microenvironment and release Ce6 with Mn2+, which subsequently activate both fluorescence (FL) and magnetic resonance (MR) signals for effective dual-mode FL/MR imaging of bacterial biofilm infections. Meanwhile, MnO2 could catalyze the decomposing of H2O2 in biofilm-infected tissues into O2 and relieve the hypoxic condition of biofilm, which significantly enhances the efficacy of aPDT. An in vitro study showed that MBP-Ce6 NSs could significantly reduce the number of methicillin-resistant Staphylococcus aureus (MRSA) in biofilms after 635 nm laser irradiation. Guided by FL/MR imaging, MRSA biofilm-infected mice can be efficiently treated by MBP-Ce6 NSs-based aPDT. Overall, MBP-Ce6 NSs not only possess biofilm microenvironment-responsive dual-mode FL/MR imaging ability but also have significantly enhanced aPDT efficacy by relieving the hypoxia habitat of biofilm, which provides a promising theranostic nanoplatform for bacterial biofilm infections.
Collapse
Affiliation(s)
- Weijun Xiu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Siyu Gan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qirui Wen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qiu Qiu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Sulai Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Qiang Li
- Department of Oral Implantology, Nanjing Stomatological Hospital, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhaogang Teng
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
4
|
Wi YM, Patel R. Understanding Biofilms and Novel Approaches to the Diagnosis, Prevention, and Treatment of Medical Device-Associated Infections. Infect Dis Clin North Am 2018; 32:915-929. [PMID: 30241715 DOI: 10.1016/j.idc.2018.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Treatment of medical device-related infections is challenging and recurrence is common. The main reason for this is that microorganisms adhere to the surfaces of medical devices and enter into a biofilm state in which they display distinct growth rates, structural features, and protection from antimicrobial agents and host immune mechanisms compared with their planktonic counterparts. This article reviews how microorganisms form biofilms and the mechanisms of protection against antimicrobial agents and the host immune system provided by biofilms. Also discussed are innovative strategies for the diagnosis of biofilm-associated infection and novel approaches to treatment and prevention of medical device-associated infections.
Collapse
Affiliation(s)
- Yu Mi Wi
- Division of Infectious Diseases, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University, 158 palyong-ro, MasanHoiwon-gu, Changwon-si, Gyeongsangnam-do 51353, Korea
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Comparative Analysis of Bacterial Community Composition and Structure in Clinically Symptomatic and Asymptomatic Central Venous Catheters. mSphere 2017; 2:mSphere00146-17. [PMID: 28959736 PMCID: PMC5615130 DOI: 10.1128/msphere.00146-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023] Open
Abstract
Totally implanted venous access ports (TIVAPs) are commonly used catheters for the management of acute or chronic pathologies. Although these devices improve health care, repeated use of this type of device for venous access over long periods of time is also associated with risk of colonization and infection by pathogenic bacteria, often originating from skin. However, although the skin microbiota is composed of both pathogenic and nonpathogenic bacteria, the extent and the consequences of TIVAP colonization by nonpathogenic bacteria have rarely been studied. Here, we used culture-dependent and 16S rRNA gene-based culture-independent approaches to identify differences in bacterial colonization of TIVAPs obtained from two French hospitals. To explore the relationships between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection, we analyzed the bacterial community parameters between TIVAPs suspected (symptomatic) or not (asymptomatic) of infection. Although we did not find a particular species assemblage or community marker to distinguish infection risk on an individual sample level, we identified differences in bacterial community composition, diversity, and structure between clinically symptomatic and asymptomatic TIVAPs that could be explored further. This study therefore provides a new view of bacterial communities and colonization patterns in intravascular TIVAPs and suggests that microbial ecology approaches could improve our understanding of device-associated infections and could be a prognostic tool to monitor the evolution of bacterial communities in implants and their potential susceptibility to infections. IMPORTANCE Totally implanted venous access ports (TIVAPs) are commonly used implants for the management of acute or chronic pathologies. Although their use improves the patient's health care and quality of life, they are associated with a risk of infection and subsequent clinical complications, often leading to implant removal. While all TIVAPs appear to be colonized, only a fraction become infected, and the relationship between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection is unknown. We explored bacteria present on TIVAPs implanted in patients with or without signs of TIVAP infection and identified differences in phylum composition and community structure. Our data suggest that the microbial ecology of intravascular devices could be predictive of TIVAP infection status and that ultimately a microbial ecological signature could be identified as a tool to predict TIVAP infection susceptibility and improve clinical management.
Collapse
|
6
|
Gominet M, Compain F, Beloin C, Lebeaux D. Central venous catheters and biofilms: where do we stand in 2017? APMIS 2017; 125:365-375. [PMID: 28407421 DOI: 10.1111/apm.12665] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/29/2016] [Indexed: 12/28/2022]
Abstract
The use of central venous catheters (CVC) is associated with a risk of microbial colonization and subsequent potentially severe infection. Microbial contamination of the catheter leads to the development of a microbial consortia associated with the CVC surface and embedded in an extracellular matrix, named biofilm. This biofilm provides bacterial cells the ability to survive antimicrobial agents and the host immune system and to disseminate to other sites of the body. The best preventive strategy is to avoid any unnecessary catheterization or to reduce indwelling duration when a CVC is required. Beside aseptic care and antibiotic-impregnated catheters (like minocycline/rifampin), preventive locks can be proposed in some cases, whereas non-biocidal approaches are under active research like anti-adhesive or competitive interactions strategies. When the diagnosis of catheter-related bloodstream infection (CRBSI) is suspected on clinical symptoms, it requires a microbiological confirmation by paired blood cultures in order to avoid unnecessary catheter removal. The treatment of CRBSI relies on catheter removal and systemic antimicrobials. However, antibiotic lock technique (ALT) can be used as an attempt to eradicate biofilm formed on the inside lumen of the catheter in case of uncomplicated long-term catheter-related BSI caused by coagulase-negative staphylococci (CoNS) or Enterobacteriaceae. Recently, promising strategies have been developed to improve biofilm eradication; they rely on matrix degradation or destabilization or the development of anti-persister compounds, targeting the most tolerant bacterial cells inside the biofilm. Understanding biofilm formation at the molecular level may help us to develop new approaches to prevent or treat these frequent infections.
Collapse
Affiliation(s)
- Marie Gominet
- Service de Microbiologie, Unité Mobile de Microbiologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Université Paris Descartes, Paris, France
| | - Fabrice Compain
- Université Paris Descartes, Paris, France.,Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Christophe Beloin
- Unité de Génétique des Biofilms, Département de Microbiologie, Institut Pasteur, Paris, France
| | - David Lebeaux
- Service de Microbiologie, Unité Mobile de Microbiologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
7
|
|
8
|
Zhang L, Marsh N, Long D, Wei M, Morrison M, Rickard CM. Microbial diversity on intravascular catheters from paediatric patients. Eur J Clin Microbiol Infect Dis 2015; 34:2463-70. [PMID: 26515578 DOI: 10.1007/s10096-015-2504-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Abstract
Microorganisms play important roles in intravascular catheter (IVC)-related infections, which are the most serious complications in children with IVCs, leading to increased hospitalisation, intensive care admissions, extensive antibiotic treatment and mortality. A greater understanding of bacterial communities is needed in order to improve the management of infections. We describe here the systematic culture-independent evaluation of IVC bacteriology in IVC biofilms. Twenty-four IVC samples (six peripherally inserted central catheters, eight central venous catheters and ten arterial catheters) were collected from 24 paediatric patients aged 0 to 14 years old. Barcoded amplicon libraries produced from genes coding 16S rRNA and roll-plate culture methods were used to determine the microbial composition of these samples. From a total of 1,043,406 high-quality sequence reads, eight microbial phyla and 136 diverse microbial genera were detected, separated into 12,224 operational taxonomic units (OTUs). Three phyla (Actinobacteria, Firmicutes and Proteobacteria) predominate the microorganism on the IVC surfaces, with Firmicutes representing nearly half of the OTUs found. Among the Firmicutes, Staphylococcus (15.0% of 16S rRNA reads), Streptococcus (9.6%) and Bacillus (6.1%) were the most common. Community composition did not appear to be affected by patients' age, gender, antibiotic treatment or IVC type. Differences in IVC microbiota were more likely associated with events arising from catheter dwell time, rather than the type of IVC used.
Collapse
Affiliation(s)
- L Zhang
- AVATAR Group, Research Centre for Health Practice Innovation, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia. .,Translational Research Institute, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane, Australia. .,Griffith University, N48 Nathan Campus, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| | - N Marsh
- AVATAR Group, Research Centre for Health Practice Innovation, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia.,Centre for Clinical Nursing, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia
| | - D Long
- AVATAR Group, Research Centre for Health Practice Innovation, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia.,Paediatric Intensive Care Unit, Lady Cilento Children's Hospital, Brisbane, Australia
| | - M Wei
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Southport, Australia
| | - M Morrison
- Translational Research Institute, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane, Australia
| | - C M Rickard
- AVATAR Group, Research Centre for Health Practice Innovation, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia.,Centre for Clinical Nursing, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia
| |
Collapse
|
9
|
Høiby N, Bjarnsholt T, Moser C, Bassi G, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann A, Williams C. ESCMID∗ guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 2015; 21 Suppl 1:S1-25. [DOI: 10.1016/j.cmi.2014.10.024] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 01/22/2023]
|
10
|
Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 2015; 64:323-334. [PMID: 25670813 DOI: 10.1099/jmm.0.000032] [Citation(s) in RCA: 444] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/23/2015] [Indexed: 01/30/2023] Open
Abstract
Biofilms are of great importance in infection control and healthcare-associated infections owing to their inherent tolerance and 'resistance' to antimicrobial therapies. Biofilms have been shown to develop on medical device surfaces, and dispersal of single and clustered cells implies a significant risk of microbial dissemination within the host and increased risk of infection. Although routine microbiological testing assists with the diagnosis of a clinical infection, there is no 'gold standard' available to reveal the presence of microbial biofilm from samples collected within clinical settings. Furthermore, such limiting factors as viable but non-culturable micro-organisms and small-colony variants often prevent successful detection. In order to increase the chances of detection and provide a more accurate diagnosis, a combination of microbiological culture techniques and molecular methods should be employed. Measures such as antimicrobial coating and surface alterations of medical devices provide promising opportunities in the prevention of biofilm formation on medical devices.
Collapse
Affiliation(s)
- Steven L Percival
- Scapa Healthcare, Manchester, UK.,Surface Science Research Centre, University of Liverpool, Liverpool, UK.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Louise Suleman
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
11
|
Donlan RM. A new approach to mitigate biofilm formation on totally implantable venous access ports. J Infect Dis 2014; 210:1345-6. [PMID: 24795474 DOI: 10.1093/infdis/jiu251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rodney M Donlan
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
12
|
Microbial biofilms on needleless connectors for central venous catheters: comparison of standard and silver-coated devices collected from patients in an acute care hospital. J Clin Microbiol 2013; 52:823-31. [PMID: 24371233 DOI: 10.1128/jcm.02220-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms may colonize needleless connectors (NCs) on intravascular catheters, forming biofilms and predisposing patients to catheter-associated infection (CAI). Standard and silver-coated NCs were collected from catheterized intensive care unit patients to characterize biofilm formation using culture-dependent and culture-independent methods and to investigate the associations between NC usage and biofilm characteristics. Viable microorganisms were detected by plate counts from 46% of standard NCs and 59% of silver-coated NCs (P=0.11). There were no significant associations (P>0.05, chi-square test) between catheter type, side of catheter placement, number of catheter lumens, site of catheter placement, or NC placement duration and positive NC findings. There was an association (P=0.04, chi-square test) between infusion type and positive findings for standard NCs. Viable microorganisms exhibiting intracellular esterase activity were detected on >90% of both NC types (P=0.751), suggesting that a large percentage of organisms were not culturable using the conditions provided in this study. Amplification of the 16S rRNA gene from selected NCs provided a substantially larger number of operational taxonomic units per NC than did plate counts (26 to 43 versus 1 to 4 operational taxonomic units/NC, respectively), suggesting that culture-dependent methods may substantially underestimate microbial diversity on NCs. NC bacterial communities were clustered by patient and venous access type and may reflect the composition of the patient's local microbiome but also may contain organisms from the health care environment. NCs provide a portal of entry for a wide diversity of opportunistic pathogens to colonize the catheter lumen, forming a biofilm and increasing the potential for CAI, highlighting the importance of catheter maintenance practices to reduce microbial contamination.
Collapse
|
13
|
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013; 2:288-356. [PMID: 25437038 PMCID: PMC4235718 DOI: 10.3390/pathogens2020288] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.
Collapse
Affiliation(s)
- David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
14
|
Manolescu BN. Paraoxonases as protective agents against N-acyl homoserine lactone - producing pathogenic microorganisms. MAEDICA 2013; 8:49-52. [PMID: 24023599 PMCID: PMC3749762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 01/16/2013] [Indexed: 06/02/2023]
Abstract
Paraoxonases are a group of enzymes with a high "substrate-promiscuity", being able to act on many structurally different compounds. To date, there is no consensus regarding the physiological substrate(s) of these enzymes. Recent data suggest that the N-acyl homoserine lactones (AHLs) produced by different Gram-negative bacteria, including the opportunistic Pseudomonas aeruginosa, could be such substrates. Due to the ability of paraoxonases to hydrolyze AHLs, they represent an alternative mechanism of protection against pathogen microorganisms, interfering with the quorum sensing systems that allow these bacteria to respond in a coordinate manner to different changes in the extracellular environment. This mini-review presents some novel aspects regarding the relationship between paraoxonases and the aforementioned compounds, highlighting the potential role of these enzymes as a component of the humoral innate defence system.
Collapse
|
15
|
Direct sequencing and RipSeq interpretation as a tool for identification of polymicrobial infections. J Clin Microbiol 2013; 51:1281-4. [PMID: 23363825 DOI: 10.1128/jcm.00190-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, RipSeq Mixed, a software resolving uninterpretable mixed DNA sequencing chromatograms, revealed the bacterial content of 15 polymicrobial samples. Direct sequencing combined with RipSeq Mixed constitutes a valuable supplement to cultivation, particularly when cultivation is negative and direct sequencing is inconclusive despite continued clinical indications of infection.
Collapse
|
16
|
Culture-dependent and -independent investigations of microbial diversity on urinary catheters. J Clin Microbiol 2012; 50:3901-8. [PMID: 23015674 DOI: 10.1128/jcm.01237-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Catheter-associated urinary tract infection is caused by bacteria, which ascend the catheter along its external or internal surface to the bladder and subsequently develop into biofilms on the catheter and uroepithelium. Antibiotic-treated bacteria and bacteria residing in biofilm can be difficult to culture. In this study we used culture-based and 16S rRNA gene-based culture-independent methods (fingerprinting, cloning, and pyrosequencing) to determine the microbial diversity of biofilms on 24 urinary catheters. Most of the patients were catheterized for <30 days and had undergone recent antibiotic treatment. In addition, the corresponding urine samples for 16 patients were cultured. We found that gene analyses of the catheters were consistent with cultures of the corresponding urine samples for the presence of bacteria but sometimes discordant for the identity of the species. Cultures of catheter tips detected bacteria more frequently than urine cultures and gene analyses; coagulase-negative staphylococci were, in particular, cultured much more often from catheter tips, indicating potential contamination of the catheter tips during sampling. The external and internal surfaces of 19 catheters were separately analyzed by molecular methods, and discordant results were found in six catheters, suggesting that bacterial colonization intra- and extraluminally may be different. Molecular analyses showed that most of the species identified in this study were known uropathogens, and infected catheters were generally colonized by one to two species, probably due to antibiotic usage and short-term catheterization. In conclusion, our data showed that culture-independent molecular methods did not detect bacteria from urinary catheters more frequently than culture-based methods.
Collapse
|
17
|
Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T. Towards diagnostic guidelines for biofilm-associated infections. ACTA ACUST UNITED AC 2012; 65:127-45. [PMID: 22469292 DOI: 10.1111/j.1574-695x.2012.00968.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/21/2012] [Accepted: 03/25/2012] [Indexed: 12/17/2022]
Abstract
Biofilms associated with the human body, particularly in typically sterile locations, are difficult to diagnose and treat effectively because of their recalcitrance to conventional antibiotic therapy and host immune responses. The study of biofilms in medicine today requires a translational approach, with examination of clinically relevant biofilms in the context of specific anatomic sites, host tissues, and diseases, focusing on what can be done to mitigate their pathologic consequences. This review, which grew out of a discussion session on clinical biofilms at the 5th ASM Biofilm Conference in Cancun, Mexico, is designed to give an overview of biofilm-associated infections (BAI) and to propose a platform for further discussion that includes clinicians, medical microbiologists, and biofilm researchers who are stakeholders in advancing the scientific pursuit of better diagnosis and treatment of BAI to mitigate their human and healthcare costs. It also highlights the need for better diagnostic markers, which exploit the difference between planktonic and biofilm cells.
Collapse
Affiliation(s)
- Luanne Hall-Stoodley
- Wellcome Trust Clinical Research Facility, University Hospital Southampton Foundation Trust, Southampton, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu Y, Rudkjøbing VB, Simonsen O, Pedersen C, Lorenzen J, Schønheyder HC, Nielsen PH, Thomsen TR. Bacterial diversity in suspected prosthetic joint infections: an exploratory study using 16S rRNA gene analysis. ACTA ACUST UNITED AC 2012; 65:291-304. [PMID: 22364231 DOI: 10.1111/j.1574-695x.2012.00949.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 11/28/2022]
Abstract
Formation of biofilm is a prominent feature of prosthetic joint infections (PJIs) and constitutes a challenge to current sampling procedures and culture practices. Molecular techniques have a potential for improving diagnosis of biofilm-adapted, slow-growing and non-culturable bacteria. In this exploratory study we investigated the bacterial diversity in specimens from 22 patients clinically suspected of having PJIs. Bacteriological cultures were performed according to standard practice. A total of 55 specimens from 25 procedures ('specimen sets') were submitted to broad range 16S rRNA gene PCR, cloning, sequencing and phylogenetic analysis. More than 40 bacterial taxa within six phyla were identified in 14 specimen sets originating from 11 patients. Direct observation of biofilm was made in selected specimens by fluorescence in situ hydridization. 16S rRNA gene analysis and bacteriological cultures were concordant for 15/25 specimen sets (60%; five positive, 10 negative); additional taxa were detected in four sets by gene analysis, and discrepant results were obtained for six sets, five of which were negative on culture. Polymicrobial communities were revealed in 9/14 sets by gene analysis and 1/10 sets by culture (P < 0.05). Although our study was not conclusive, these findings are consistent with a primary role of biofilm formation in PJIs.
Collapse
Affiliation(s)
- Yijuan Xu
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Peters BM, Jabra-Rizk MA, O'May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 2012; 25:193-213. [PMID: 22232376 PMCID: PMC3255964 DOI: 10.1128/cmr.00013-11] [Citation(s) in RCA: 464] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms coexist in a complex milieu of bacteria, fungi, archaea, and viruses on or within the human body, often as multifaceted polymicrobial biofilm communities at mucosal sites and on abiotic surfaces. Only recently have we begun to appreciate the complicated biofilm phenotype during infection; moreover, even less is known about the interactions that occur between microorganisms during polymicrobial growth and their implications in human disease. Therefore, this review focuses on polymicrobial biofilm-mediated infections and examines the contribution of bacterial-bacterial, bacterial-fungal, and bacterial-viral interactions during human infection and potential strategies for protection against such diseases.
Collapse
Affiliation(s)
- Brian M. Peters
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Graeme A. O'May
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
| | - J. William Costerton
- Department of Orthopedic Surgery, Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland—Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Azevedo NF, Jardim T, Almeida C, Cerqueira L, Almeida AJ, Rodrigues F, Keevil CW, Vieira MJ. Application of flow cytometry for the identification of Staphylococcus epidermidis by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) in blood samples. Antonie van Leeuwenhoek 2011; 100:463-70. [PMID: 21638111 DOI: 10.1007/s10482-011-9595-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/20/2011] [Indexed: 11/28/2022]
Abstract
Staphylococcus epidermidis is considered to be one of the most common causes of nosocomial bloodstream infections, particularly in immune-compromised individuals. Here, we report the development and application of a novel peptide nucleic acid probe for the specific detection of S. epidermidis by fluorescence in situ hybridization. The theoretical estimates of probe matching specificity and sensitivity were 89 and 87%, respectively. More importantly, the probe was shown not to hybridize with closely related species such as Staphylococcus aureus. The method was subsequently successfully adapted for the detection of S. epidermidis in mixed-species blood cultures both by microscopy and flow cytometry.
Collapse
Affiliation(s)
- N F Azevedo
- IBB, Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Leonidou L, Gogos CA. Catheter-related bloodstream infections: catheter management according to pathogen. Int J Antimicrob Agents 2010; 36 Suppl 2:S26-32. [PMID: 21129929 DOI: 10.1016/j.ijantimicag.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central-line access is an essential part of modern healthcare practice; however, catheter-related bloodstream infection is a major problem that causes substantial morbidity and mortality, and excess length of stay and cost. The risk of infection depends on the type of device, the site of insertion, the underlying conditions and the appropriate prevention measures taken during catheter insertion. Management of catheter-related bloodstream infection involves deciding on catheter removal, antimicrobial catheter lock solution and the type and duration of systemic antimicrobial therapy. Systemic antimicrobial use is essential but, although generally effective in controlling sepsis, it often fails to sterilise the line, increasing the incidence of complications or recurrence. The decision regarding whether the catheter should be removed or retained is therefore crucial. One of the major factors to be considered is the type of organism involved in the catheter-related infection. This review outlines the epidemiology, pathogenesis, diagnosis, microbiology and management of catheter-related infections, mainly focusing on the management of the intravascular device according to the pathogen.
Collapse
Affiliation(s)
- Leonidia Leonidou
- Department of Infectious Diseases, Patras University Medical School, Patras, Greece
| | | |
Collapse
|